Note

Vertex critical 4-dichromatic circulant tournaments

V. Neumann-Lara*

Instituto de Matemáticas, UNAM, Circuito Exterior, CU, 04510 Mexico DF, Mexico

Received 24 May 1994; revised 30 November 1995

Abstract

An infinite family of vertex critical 4-dichromatic circulant tournaments is presented, answering a problem posed by Neumann–Lara and Urrutia (1984).

AMS classification: primary: 05C20; 05C15

Keywords: Tournaments; Circulant; Dichromatic number; Vertex critical

Let D be a digraph; $V(D)$ and $A(D)$ will denote the sets of vertices and arcs of D, respectively. The digraph D is acyclic if it contains no directed cycle. A subset of $V(D)$ which induces an acyclic subdigraph of D will be called acyclic; D is said to be an oriented graph provided it contains no directed cycle of length two.

The dichromatic number $dc(D)$ of a digraph D was defined in [3] (and independently in [2]) as the least number of colours needed to colour the vertices of D in such a way that each chromatic class is acyclic. A digraph D is called n-dichromatic if $dc(D) = n$ and vertex critical (v.c.) n-dichromatic if $dc(D) = n$ and $dc(D - u) < n$ for every $u \in V(D)$.

There is only one v.c. 2-dichromatic tournament: the cyclic triangle, $\overline{C_3}$. In [5] an infinite family of v.c. r-dichromatic regular tournaments was constructed for each $r \geq 3$, $r \neq 4$ but only one example of a v.c. 4-dichromatic regular tournament was presented. Given three digraphs D_1, D_2, D_3, a new digraph $t(D_1, D_2, D_3)$ was defined there, up to isomorphism, as follows: Let D'_1, D'_2, D'_3 be three pairwise vertex-disjoint digraphs such that $D'_j \cong D_j$ for $j = 1, 2, 3$.

Then $t(D_1, D_2, D_3)$ is the digraph whose vertex set is $\bigcup_{i=0}^{2} V(D'_i)$ and with arc set $\bigcup_{i=0}^{2} A(D'_i) \cup \{(u,v): u \in V(D'_i), v \in V(D'_{i+1})\}$, where the indices are taken mod 3.

* Fax: (52) 5 616 03 48; e-mail: neumann@gauss.matem.unam.mx.

0012-365X/97/$17.00 Copyright © 1997 Elsevier Science B.V. All rights reserved

P II S 0 0 1 2 - 3 6 5 X (9 6) 0 0 1 2 8 - 8
The existence of an infinite family of (nonregular) v.c. 4-dichromatic tournaments is an immediate consequence of the fact that $t(C_3, C_3, T)$ is a (nonregular) v.c. 4-dichromatic tournament provided T is a v.c. 3-dichromatic tournament [5, Theorem 3].

In this paper an infinite family of v.c. 4-dichromatic circulant tournaments is presented, solving a problem of [5].

Let Z_{2n+1} be the set of integers mod $2n + 1$ and J a subset of $Z_{2n+1} - \{0\}$ such that for every $w \in Z_{2n+1}$, $w \in J$ if and only if $-w \notin J$. We define the circulant tournament $\tilde{C}_{2n+1}(J)$ by $V(\tilde{C}_{2n+1}(J)) = Z_{2n+1}$, $A(\tilde{C}_{2n+1}(J)) = \{(i,j): i, j \in Z_{2n+1} \text{ and } j - i \in J\}$.

We recall that the automorphism group of any circulant digraph is vertex transitive.

In [4] it was proved that $\tilde{C}_{11}(1, 3, 4, 5, 9)$ is the only 4-dichromatic tournament of minimum order. So it is v. critical. From the fact that $\{\{0, 1, 4, 5\}, \{2, 3, 6, 7\}, \{8, 9, 10\}\}$ is a partition of Z_{11} into acyclic subsets of $\tilde{C}_{11}(1,3,4,5,9)$ — arc 89 and since $\tilde{C}_{11}(1,3,4,5,9)$ is arc-transitive (proof of Theorem 2.1 in [4]), it follows that $\tilde{C}_{11}(1,3,4,5,9)$ is also arc critical 4-dichromatic. It follows that $\tilde{C}_{11}(1,3,4,5,9)$ is the only 4-dichromatic oriented graph of order at most 11.

In [6], Parker and Reid proved that $\tilde{C}_{13}(1,2,3,5,6,9)$ which is denoted by ST13, is the only tournament of order 13 (up to isomorphism) which does not contain a transitive tournament on 5 vertices. Therefore, $dc(ST_{13}) \geq 4$, and since $\{\{0,1,2,3\}, \{4,5,6,7\}, \{8,9,10,11\}, \{12\}\}$ is a partition of the set of vertices into 4 acyclic subsets, it follows that $dc(ST_{13}) = 4$ and $dc(ST_{13}-\{12\}) = 3$. Then ST13 is a v.c. 4-dichromatic circulant tournament. Let D_m be the circulant tournament defined by

$$D_m = \tilde{C}_{6m+1}(1, 2, \ldots, 2m - 1, -2m, 2m + 1, 2m + 2, \ldots, 3m) .$$

Clearly, $\{\{0, 1, \ldots, 2m - 1\}, \{2m, 2m + 1, \ldots, 4m - 1\}, \{4m, 4m + 1, \ldots, 6m - 1\}, \{6m\}\}$ is a partition of $V(D_m)$ into 4 acyclic subsets. Therefore, $dc(D_m) \leq 4$ and $dc(D_m - \{6m\}) \leq 3$. In order to prove that D_m is v.c. 4-dichromatic for $m \geq 2$ it is sufficient to prove that $dc(D_m) \geq 4$ for $m \geq 2$. Notice that $D_2 = ST_{13}$. Notice also that $D_1 = \tilde{C}_5(1,-2,3) \cong \tilde{C}_5(1,2,3)$ is 2-dichromatic.

Let r and s be two integers such that $1 \leq s < r$. The tournament $H_{r,s}$ is defined by $V(H_{r,s}) = \{1, 2, \ldots, r + s\}$; $A(H_{r,s}) = \{(i,j): 1 \leq i < j \leq r + s \text{ and } j - i \neq r\} \cup \{(i + r, i): i \leq s\}$.

We need the following lemma.

Lemma. The maximum number of vertices in a transitive subtournament of $H_{r,s}$ is r.

Proof. Let S be an acyclic set of vertices of $H_{r,s}$. If for every $1 \leq i \leq s$, S does not contain $\{i, i + r\}$, then $|S| \leq r$. If for some i, $\{i,i + r\} \subseteq S$, then $k \notin S$ for every k such that $i < k < i + r$, since $\{i,k,i + r\}$ induces a cyclic triangle in $H_{r,s}$. It follows that $|S| \leq s + 1 \leq r$. Since $\{1, 2, \ldots, r\}$ induces a transitive subtournament of $H_{r,s}$ the lemma follows. \(\square\)

Theorem. D_m is a vertex critical 4-dichromatic circulant tournament for $m \geq 2$.
Proof. We only need to prove that $dc(D_m) \geq 4$. To this end, it suffices to prove that every acyclic set of vertices S of D_m has cardinality at most $2m$. Since D_m is vertex transitive, we may assume that 0 is the source of $D_m[S]$. Therefore, $S_1 = S - \{0\} \subseteq N^+(0) = \{1,2,\ldots,3m\} \cup \{4m+1\} - \{2m\}$.

Since $D_m[N^+(0)] - \{4m+1\} \cong H_{2m-1,m}$ (the order preserving bijection is an isomorphism), it follows from the lemma that $|S_1| \leq 2m - 1$ in case $4m + 1 \notin S_1$. Assume that $4m + 1 \in S_1$.

From the equality
\[
A(D_m[N^+(0)]) = A(D_m[N^+(0)] - \{4m+1\}) \cup \{(4m+1,j): j = 1,2,\ldots,m,2m+1\} \\
\cup \{(m+j,4m+1): j = 1,2,\ldots,m-1,m+2,\ldots,2m\},
\]
it follows that either $S_1 \cap \{1,2,\ldots,m\} = \emptyset$ or $S_1 \cap \{m+1,m+2,\ldots,2m-1\} = \emptyset$ for otherwise, $D_m[S_1]$ would contain a cyclic triangle. Similarly, either $2m+1 \notin S_1$ or $S_1 \cap \{2m+2,2m+3,\ldots,3m\} = \emptyset$.

Therefore, if $S_1 \cap \{m+1,m+2,\ldots,2m-1\} \neq \emptyset$ then $|S_1| \leq 2m - 1$.

Suppose that $S_1 \cap \{m+1,m+2,\ldots,2m-1\} = \emptyset$. If $2m+1 \in S_1$ then $S_1 \subseteq \{1,2,\ldots,m,2m+1,4m+1\}$. But since $\{1,2,2m+1\}$ induces a cyclic triangle, then $|S_1| \leq m+1 \leq 2m-1$. Finally, if $2m+1 \notin S_1$ then $S_1 \subseteq \{1,2,\ldots,m\} \cup \{2m+2,2m+3,\ldots,3m\} \cup \{4m+1\}$. But since $\{j,j+2m+1,4m+1\}$ induces a cyclic triangle for every $j \in \{1,2,\ldots,m-1\}$, it follows that $|S_1| \leq m+1 \leq 2m-1$. \qed

We recall that the v.c. r-dichromatic tournaments given in [5] are circulants only for $r = 3, 5$ and 8, so it is natural to propose the following conjecture.

Conjecture. There is an infinite family of v.c. r-dichromatic circulant tournaments for each $r \geq 3$ (only the values $r \geq 6$, $r \neq 8$ have to be considered).

References

