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Abstract

On the basis of the mechanism of tapered piles and evidence obtained from small scale model tests, this paper proposes cylindrical and
spherical cavity expansion theories to evaluate the skin friction by introducing a stress–dilatancy relationship, as well as the end bearing capacity
of tapered piles by introducing a tapering factor. In general, in order to evaluate the skin friction, either the angle of internal friction or dilatancy
angle is assumed to be constant. This research improves on this drawback and considers both properties to calculate the skin friction through an
iterative process in the load transfer method. At the mean time, the effect of angle of tapering is introduced to evaluate the end bearing capacity of
tapered piles. The test results and proposed models show that a slight increase in the tapering angle of the pile results in higher skin friction and
affects the end bearing resistance compared with conventional straight piles on different types of sands at different relative densities. The
proposed models are then applied to different types of prototype and real type pile tests in order to evaluate the predicted skin friction, expected
end bearing capacity and vertical bearing capacity.
& 2013 The Japanese Geotechnical Society. Production and hosting by Elsevier B.V. All rights reserved.
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1. Introduction

Tapered piles with a difference in axial diameter at their top
and bottom have merits over conventional piles in terms of the
bearing capacity and the radial stress. A small increase in the
degree of tapering can achieve higher skin friction and affect
the end bearing resistance. Dmokhovskii (1927) observed that
the overall resistance of piles was increased by a factor of 5–9
when mobilised towards depth. However, there is a negligible
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taper on the lateral surface of the pile. In the meantime, when
tapered piles are penetrated downward in a frictional mode, the
mechanism demonstrates a good pressure effect on it
(Manandhar et al., 2009a, 2009b). Further, Manadhar (2010),
Manandhar et al. (2010a, 2010b) found that tapering and
wedging effects are responsible for increasing the normalised
skin friction and normalised horizontal stresses. Yet in
practice, very few researchers have been carrying out research
on tapered piles, which may be due to a lack of awareness of
their basic existence together with a lack of modern and
reliable analytical methods for evaluating their bearing capa-
city (Horvath and Trochalides, 2004). Nevertheless, Norlund
(1963) applied an analytical method in order to estimate the
axial capacity of tapered piles when the tapered piles were
driven into cohesionless soil, the accurate model was not well
introduced in the context of deep foundation. A number of
Elsevier B.V. All rights reserved.
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pioneering experts in geotech proposed theoretical methods
using a cavity expansion theory (Vesic´, 1972; Baligh, 1976;
Hughes et al., 1977; Yu and Houlsby, 1991). It has been found
that the cavity expansion theory introduced by Yu and
Houlsby (1991) is widely used by researchers due to its
characteristics in evaluating large straining conditions, pro-
vides a complete solution for cylindrical cavity expansion in
ideal elastic–plastic models in non-associated flow rule, and
measures the most closed form solution (Kodikara and Moore,
1993). In general, one of the soil parameters, angle of internal
friction or dilatancy angle is assumed to be constant for the
ease of computing process. However, the stress–dilatancy
relationship is an interdependent function of confining pres-
sure, relative density and angle of internal friction. Therefore,
the new concept is inserted to extend the idea proposed by
Kodikara and Moore (1993) together with cavity expansion
theory to evaluate the skin friction of tapered piles by
introducing Bolton's (1986, 1987) stress–dilatancy equation.
In the extended model, the increase of confining pressure will
increase relative density along with an increase in the angle of
internal friction and dilatancy. All these parameters are
successfully inserted in Yu and Houlsby's (1991) cavity
expansion solution and computed at each segment of the pile
(Manandhar, 2010; Manandhar and Yasufuku, 2011b).

Moreover, there have been a limited number of studies
related to the influence of tapering on an end bearing
mechanism (Manandhar and Yasufuku, 2011a). Evidence
derived from prototype model tests reported by Sakr et al.
(2004) in the laboratory showed significant tapering effects on
end bearing capacity even though the tapering angle is
increased in small fractions. Very few researchers have noticed
that the end bearing capacity is increased by tapered piles. In
this regard, the research has been further assessed so as to
introduce the tapering angle of the pile in the previously
established analytical spherical cavity expansion theory with
the aim of evaluating the end bearing capacity of non-
displacement cylindrical piles in closed forms (Yasufuku and
Hyde, 1995; Yasufuku et al., 2001). Hence, the model is
Table 1
Geometrical configuration of different types of piles.

Types of Model Piles Naming L (mm) Dt (mm)

Smallest model steel piles S′ 345 13
T1′ 345 20
T2′ 345 28

Smaller model steel piles S 500 25
T-1 500 35
T-2 500 45

Prototype FRP piles FC 1524 168.3
T-3 1524 170.0
T-4 1524 159.0
T-5 1524 155.0

Note: L: length of pile; Dt: diameter at the pile head; d: pile tip diameter; FRP: fib
advanced by inserting the tapering angle of the pile to measure
the effects on end bearing capacity.
2. Mobilised mechanism of skin friction and end bearing
capacity

When the pile is mobilised downward in a frictional mode,
the failure zone developed along the soil–pile interface partly
causes the surface to bulge up to certain depths. Furthermore,
horizontal displacement occurs below the critical depth when
the soil is compressed elastically and partly consolidated
around the interface. A medium dense sand shows that a thin
layer of soil particles drag along and compress the layers along
lateral directions. Kézdi (1975) noticed that the diameter of the
disturbed zone was approximately six times the diameter of the
pile in which the displacements had decreased according to
parabolic law. Besides, the failure zone exceeds below the tip
of the pile when the angle of tapering is changed (Manandhar
and Yasufuku, 2011b). In order to understand the mobilised
mechanism, the smallest model pile testing was performed
with different types of tapered piles in dense sand.
Three steel chromium piles—one straight (S′) and two

tapered (T1′ and T2′)—with the same pile tip diameter and
length were considered for the pile loading test (Table 1). The
pile load chamber has dimensions of 460 mm height and
280 mm diameter as shown in Fig. 1(a). The cylindrical
chamber has the merit of splitting the chamber into two halves
to observe the mobilised mechanism of pile. A typical Toyoura
sand (TO sand) was prepared at 80% relative density utilising
the free fall method. One centimetre of each black-coloured
soil was filled alternatively with non-coloured TO sand at the
same density. Then the pile was installed at the centre of the
chamber as a cast-in-place type. Then, layered modelled
ground was prepared up to a depth of 400 mm and covered
by an upper plate to furnish the overburden pressure. Since this
is a very small model chamber, only 3.2 kPa overburden
pressure can be applied. Then, piles were mobilised at a speed
d (mm) α1 FRP reinforcement
direction

Modulus of
elasticity GPa

13 0.00 2.0
13 0.70 2.0
13 1.40 2.0

25 0.00 na 2.0
25 0.70 na 2.0
25 1.40 na 2.0

168.3 0.00 na 31.86
198.0 0.53 01 33.20
197.0 0.71 01 33.15
215.0 1.13 01 33.15

er-reinforced polymer; α: angle of tapering; na: not applicable.



Fig. 1. (a) Schematic figure of smallest pile loading test (figure not to scale); (b) mobilised mechanism of pile: a′¼effective length of influenced zone; b¼convex
heave due to effect of pile; c¼effective length at the pile tip settlement.
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Fig. 2. Visually measured radius of influence of skin friction of piles.

Fig. 3. Visually measured pile tip settlement.
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of 4 mm/min up to a depth of 100 mm. After loading, the
chamber was detached and immersed in the water bath for a
couple of hours, following which half of the chamber was split
up. Then, the modelled ground was easily trimmed to observe
the mobilised mechanism carefully (Fig. 1(b)). Here, the
chamber was submerged in the water bath to prevent failure
of the soil specimen during splitting and trimming of the
modelled ground.

2.1. Visual interpretation of skin friction and end bearing
capacity

In this section, a visual inspection was carried out in the
disturbed pile–ground interface around the chamber after trimming
the soil. The failed zone is termed as the influence zone and the
linear dimension of the disturbed region from the centre of the pile
named as the radius of influenced zone. The radius of the affected
area around the shaft of the pile was measured visually. The results
showed that the tapered pile had a higher radius of influence
compared to the straight pile, as shown in Fig. 1(b). The effect of
the radius of influence area increases in line with increases to the
angle of tapering. Moreover, it was found that the convex heave on
the pile–ground interface had narrowed and decreased in the
tapered piles. The reason for this mechanism is due to an increase
in horizontal stresses with increases to the degree of tapering. All
the measured maximum and minimum radiuses of influence of the
pile–ground influenced area were measured and the mean of the
influenced area was plotted for all three types of piles, as shown in
Fig. 2. The most tapered pile considered for this experiment
showed the highest radius of influence when compared to that of
straight piles. This visual inspection gives strong evidence of
increases in skin friction and radial stress and minimises the failure
zone effectively through the tapered pile. The next section
discusses a relatively larger model pile loading test, which supports
the visual interpretation of skin friction and radial stresses of
tapered piles of the smallest model pile loading tests. The mobilised
mechanism of tapered piles does not only affect the shaft around
the soil–pile interface, but also below the pile tip settlement. Fig. 3
shows the increment of failure mode measured from the pile tip to
the maximum curvature for all piles. Increases in tapering angle
serve to increase the failure zone below the pile tip.
3. Benefits of tapered piles based on small model tests

In this section, air-dried typical TO sand was considered for
model tests at 80% of relative density after determining the



Table 2
Index and strength parameters of different types of soil.

Descriptions TO sand K-7 sand
FB sand (Sakr et al.
(2004, 2005, 2007)

Density of particles, ρs (g/cm
3) 2.65 2.62 2.68

Maximum density, ρmax (g/cm3) 1.64 1.60 1.772
Minimum density, ρmin (g/cm3) 1.34 1.19 1.466
Density at ID 80%, ρ80 (g/cm3) 1.58 1.52 na
Density at ID 60%, ρ60 (g/cm3) 1.52 1.43 na
Maximum void ratio, emax 0.98 1.20 0.794
Minimum void ratio, emin 0.62 0.64 0.484
Void ratio at ID 90%, e90 na na 0.68
Void ratio at ID 80%, e80 0.68 0.73 na
Void ratio at ID 60%, e60 0.74 0.83 na
Effective grain size, D10 (mm) na na 0.14
Mean grain size, D50 (mm) na na 0.26
Uniformity coefficient, Uc 1.40 4.0 2.143
Coefficient of curvature, U′c 0.86 1.21 0.905
Per cent fines, (%) Fc 1.10 14 na
Peak stress, ϕ (deg) 42.00 47.00 37.00
Critical stress state, ϕ′cv (deg) 32.00 34.00 31.00 (assumed)

Fig. 4. Schematic figure of smaller pile loading apparatus, types of steel piles, and procedures of cast-in-place pile set up and loading (diagrams (a) and (b) not to
scale).
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maximum–minimum densities (Japan Geotechnical Society,
2009). The model ground was prepared using multiple sieving
techniques (Miura and Toki, 1982). Chromium plated steel
model piles with the same pile tip diameter (25 mm) and equal
lengths (500 mm) were taken into consideration for experi-
mental purposes. One straight (S) and two tapered (T1 and T2)
piles having an angle of tapering of 0.71 and 1.41 were chosen,
similar to the smallest model chamber testing. The only
differences in these hollow types are the presence of load
cells at the pile head and tip connected with a cord to measure
the skin friction directly. The difference between the loads at
the pile head and pile tip, gives the skin friction. Table 2 shows
the fundamental parameters of soils and geometry of model
piles. A typical pile loading apparatus which has dimensions of
1000 mm� 750 mm, and its arrangements are shown in Fig. 4.
The overburden pressure was transferred through the upper
plate to the model ground vertically. At first, the cylindrical
chamber was almost completely filled with sand at an 80%
relative density up to 710 mm from the bottom. Then, the pile
was installed at the centre of the chamber. Four transducers at
an equal interval of 60 mm from one to another were mounted
to measure lateral earth pressures. The first transducer was set
up near to the pile tip. From the centre, earth pressure sensors
1, 2, 3 and 4 were mounted at 30 mm, 90 mm, 150 mm, and
210 mm intervals respectively (Fig. 4). Afterwards, the cham-
ber was filled up to 930 mm with soil to simulate cast-in-place
conditions. Then, 50 kPa overburden pressure (sv) was furn-
ished vertically. Initially, the pile was penetrated down up to



Fig. 7. Lateral stress distribution at 0.1 settlement ratio on TO sand.
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200 mm into the model ground at a rate of 5 mm/min and the
stress was relaxed for up to fifteen hours. Finally, the pile loading
test was carried out up to a 0.4 settlement ratio in which S and D
are considered as settlement and pile tip diameter. During pile
penetration, the normalised unit skin friction (fs) is generally
calculated by dividing the surface area of the pile to the skin
friction, considering the average diameter of the pile head and tip.
As Fig. 5 shows, the unit skin frictions of the most tapered pile
increased more compared to that of a conventional straight
cylindrical pile. Similarly, Fig. 6 shows that there is also an
increase in normalised end bearing capacity of tapered piles. On
the basis of these benefits of tapered piles, two different types of
models are proposed to evaluate skin friction and end bearing
capacity separately using cavity expansion theory.
Fig. 8. Outline of evaluation of bearing capacity.
3.1. Effects of lateral pressure

Radial distance from the centre of the pile was normalised by
dividing the distance of transducers to the pile tip radius (r/rn) to
check the effect of lateral pressure by installing pressure cells in the
ground from the centre of the pile. Then, the stress obtained during
pile loading was carefully measured at 0.1 settlement ratios, since it
is generally considered for the purpose of design (Fig. 4). Fig. 7
shows that near the pile–ground interface, the stresses are higher
and reduced significantly from the centre of pile–ground interface.
TO sand showed the highest radial stress governed at the pile–
ground interface, which was more than 3 times when the most
tapered pile T2 was penetrated at a 0.1 settlement ratio compared to
Fig. 5. Normalised unit skin friction ratios of TO sand.

Fig. 6. Normalised end bearing capacity of TO sand.
that of the straight cylindrical pile. Furthermore, the lateral earth
pressure adjacent to the first earth transducer shows a sudden fall of
lateral earth pressure and tends nearly to zero. However, it is very
near to the centre of the pile. This may be an indication of the
movement of a greater amount of soil particles towards the pile. It
can be clearly seen that the normalised radial distance of tapered
piles with angles from 01 to 1.41 is affected at least eight times
from the centre of the pile. This mechanism strongly supports the
smallest model tests in the previous section in understanding the
mobilised mechanism and tapering effects.

4. Evaluation of total bearing capacity

The outline of total bearing capacity with settlement of the
tapered pile can be generalised by summation of the total skin
friction and the end-bearing capacity by multiplying their
corresponding surface area and cross-sectional area (Fig. 8),
which can be expressed with the following formula:

PT ¼ PSþPB ð1Þ
where PT is the total bearing capacity of the tapered pile, PS

and PB are total skin friction and total pile tip resistance.
In general, the skin friction, PS and the tip resistance PB in

kN can be expressed with the following formula:

PT ¼ ∑
n

i ¼ 1
ðτxÞi 2πriΔL þqcal πrb

2 ð2Þ

where (τx)i is the vertical shear stress of the embedded pile
section of each incremental length ΔL having radius ri at each
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segment measured from the mid-point of the pile, qcal is the
end bearing capacity and rb is the radius of the pile tip.

The experimental evidence showed that the maximum
tapered pile increased the compressibility and radial stress of
the ground when the pile was penetrated downward in a
frictional mode. Based on these benefits, the closed form
cavity expansion solutions are present to evaluate the skin
friction using the stress–dilatancy property and the end bearing
capacity inserting the tapering angle. The cylindrical cavity
expansion theory evaluates the skin friction together with
horizontal (radial) stress when soil particles are displaced with
the vertical displacement of piles. The load transfer method
iteratively computes the skin friction and horizontal stress for
each assumed small segment of the pile from the bottom.
Similarly, the spherical cavity expansion theory evaluates the
end bearing capacity. Hence, Eq. (2) is used to determine the
total bearing capacity, which is further discussed in the
following sections along with its detail formulations.

4.1. Analytical model of skin friction

4.1.1. Stress–dilatancy relationship
Davis (1968) assumed that the soil is dilated plastically at a

constant rate. The non-associated flow rule is well explained to
model dilatants soils that consider the Mohr–Coulomb yield
criterion. Generally, a dilatants angle of zero has been
considered to compute large strain analyses. In general, the
dilatancy angle is considered to be zero for evaluating large
strain analyses. However, in reality, the angle of internal
friction and the rate of dilatancy at the critical state are
interdependent functions of density and effective stress. When
a tapered pile penetrates with settlement ratios, the density and
confining pressure change significantly. The confining pressure
increases with increasing relative density together with the
angle of internal friction and dilatancy. The stress–dilatancy
property is inserted in the cavity expansion theory proposed by
Yu and Houlsby (1991). For the sake of simplicity, an
expression explained by Bolton (1986, 1987) is adopted to
evaluate the bearing behaviour of different piles. For a plane
strain, the following expression can be obtained:

ϕmax
0 �ϕcv

0 ¼ 0:8ψmax ¼ 5 IoR ð3aÞ

IR ¼ IDð10� ln p
0 Þ�1 ð3bÞ

where ϕ′max, ϕ′cv, ψmax, and IoR are the maximum angle of
friction, the angle of friction at critical states, maximum
dilation angle and the relative dilatancy index at plane strain,
respectively. The relative dilatancy index IR is a function of
relative density ID and mean effective stress p′ as shown in
Eq. (3b). The mean effective stress can be defined as the mean
radial and hoop stresses explained in the cavity expansion
theory. A plastic zone will be obtained after an initial yielding
takes place at the cavity wall within the region arrrb, with
an increment of cavity pressure p. By partitioning elastic and
plastic regions, the meaning of its behaviour can easily be
understood. The flow of equations used to determine the cavity
pressure is shown in Table 3. Hence, the stress component at
the plastic region that satisfies the equilibrium condition can be
written as follows:

p
0 ¼ 1

2
Y

α0 �1
þAr�

ðα0 � 1Þ
α
0 þ Y

α0 �1
þ A

α0 r
�ðα0 � 1Þ

α
0

� �
ð4aÞ

where p′, Y, α′, r and A are effective stress, function of
cohesion and friction angle, function of cohesion, radius of
material point during loading, and constant of integration
respectively. Replacing A, the above equation is simplified
into the following formula:

p
0 ¼ �p0b

ðα0 � 1Þ
α
0 r�

ðα0 � 1Þ
α
0 ð4bÞ

where p0 and b are initial cavity pressure and outer radius of
the plastic zone during loading. The above Eq. (4b) can be
simplified in the elastic–plastic region. At the boundary of the
plastic region where rra, the effective mean stress with the
cavity pressure R can be modified as follows:

p
0 ¼ �p0R ð5Þ

4.1.2. Determination of skin friction
The determination of skin friction is based on τx–up

relationship by dividing the model ground into three stages
of pile–ground interaction, such as elastic, elastic until ground
starts yielding on slip, and elastic perfectly plastic pile–ground
interface during slip. In this section, the deformation beha-
viours of a compressible elastic pile through differential
equations at the equilibrium condition propounded by
Kodikara and Moore (1993) are taken into consideration,
avoiding the elastic deformation of the steel pile during
penetration at a certain depth such that the pile deformation
behaviour can be considered as settlement of the pile.
Furthermore, the stress–dilatancy property is inserted inside
the equation without changing the final results given by
Kodikara and Moore (1993).
When the pile–ground interacts, an initial elastic deforma-

tion occurs at the first stage. The deformation of the ground is
approximated by the theory of concentric cylinder shearing for
small tapering angles of 0–51 (Randolph and Wroth, 1978).
The settlement of the pile and ground becomes the same when
the vertical displacement of the ground, ug and Poisson's ratio
are expressed in terms of the mean radius of the pile rm. Then,
the deformation of pile and ground (τx–up) relation can be
expressed until the pile–ground interface reaches the yield as

τx ¼
G

ζrm
up ð6Þ

where G is shear modulus of the ground and ζ is explained in
Table 3. At the second stage, the pile–ground interface slips
but the ground still demonstrates elastic deformation. In such
cases, the vertical pile movement up at any point X on the pile–
ground interface is greater than the vertical ground movement
ug at the corresponding point Y on the interface. As shown in
Fig. 9(a) and (b), the pile is displaced from point X to X′ while
at the same time, the ground moves from point Y to Y′,
obtaining the lateral movement (radial expansion) v. For small
tapering angles, the increase in radial stress Δs for radial



Table 3
Summary of equations used to compute skin friction and end bearing capacity.

A. Equations used to obtain skin friction Explanations of parameters

p
0 ¼ sr þsθ

2 ; sr ¼ Y
α0 �1

þAr�
ðα0 � 1Þ

α
0 ; sθ ¼ Y

α0 �1
þ A

α0 r
�ðα0 � 1Þ

α
0 (Yu and Houlsby, 1991)

p
0
is effective stress, sr and sθ are radial and hoop stresses; Y is the function of cohesion and friction

angle; and α
0
is the function of cohesion

ζ¼ ln ½2:5Lð1�υÞ=rm�; τx ¼ ðs0þΔsÞ tan ðϕiþαÞþci0 ; Δs¼ Kev L is the length of pile, τx is average vertical shear stress; s0 is initial radial stress; Δs is incremental
radial stress; ϕi is friction angle at interface; and α is tapering angle

Kp ¼ 1
A
1
C
βþ1
β

a
a0

� �ðβþ1Þ=β
1
a ; ¼ ðα0 þ1Þðα0 �1Þ

2α0 ½Yþððα0 �1Þs0Þ� ;

C¼
�γDR� γ�1þ γ

ηR
� γ dΛðR;ξÞ

dR

D2 ; D¼ ð1�δÞðβþ 1Þ
β � γ

η
ΛðR; ξÞ

� �
Kp is tangent gradient; A, C and D are constant of integration, α

0
and β are functions of friction angle

and dilation angle; and γ; δ and η are functions of material properties

ΛðR; ξÞ ¼∑n ¼ 1
n ¼ 0 Pn; Pn ¼

ξn

n! ln R; if n¼ γ:
ξn

n!ðn� γÞ ðRn� γ�1Þ; otherwise

8<
: and hence,

a
a0

h iðβþ1Þ=β
¼ R� γ

ð1�δÞðβþ 1Þ=β � γ
ηΛðR;ξÞ

Λ is infinite power series; ξ is function of material properties; a and a0 are cavity radius and cavity
radius at zero cavity pressure; and n is integer from zero to infinity

B. Equations used to obtain end bearing capacity Explanations of parameters

K0 ¼ 1� sin ϕμ
0

1þ sin ϕμ
0 ; sin ϕcv

0 ¼ 2 sin ϕμ
0

1þ sin ϕμ
0 ; K0 ¼ 1� sin ϕcv

0 (Ochiai, 1976) K0 and ϕμ
0 is the angle of interparticle sliding friction

qpcal ¼ 3ð1þ sin ϕcv
0 Þ

ð1� sin ðϕcv
0 þ2αÞÞð3� sin ϕcv

0 Þ ½Irr �ð4 sin ϕcv
0 Þ=3ð1þ sin ϕcv

0 Þ � 1þ2K0
3

� �
sv0 Fq, Irr and Ir are dimensionless spherical cavity expansion factor, reduced rigidity index and rigidity

index of soil

γmax ¼ 3p0 sin ϕcv
0

ð3� sin ϕcv
0 ÞG

b
r

� �3 � 3p0 sin ϕcv
0

4G
b
r

� �3
(Yamaguchi, 1975) p0, b, r and G are ground stress around the pile tip, radius of plastic zone, radius distance from cavity

centre, and shear stiffness
G¼ 7:0N0:72 ðMPaÞ (Yamaguchi, 1975)

N ¼ 9I2D
ðemax � eminÞ1:7

sv0
98

� 	0:5
(Cubrinosvski and Ishihara, 1999) ID, emax and emin are relative density, maximum and minimum void ratios

G¼ 7:0 9I2D
ðemax � eminÞ1:7

sv0
98

� 	0:5
n o0:72

; Δav ¼ 50ðIrÞ�1:8 ;

Δav ¼
1þ2K0

3

� �
s′v tan ϕ′cv
G

( ) Δav is average volumetric strain

qpcal ¼ A
0

1� sin ðϕcv
0 þ2αÞ

G
sv0

B
0 þD

0 G
sv0
� �� 0:8

( )C
0

sv0
A

0 ¼ 3ð1þ sin ϕcv
0 Þ

ð3� sin ϕcv
0 Þ

1þ2K0
3

� �
; B

0 ¼ 1þ2K0
3

� �
tan ϕcv

0 C
0 ¼ 4 sin ϕcv

0

3ð1þ sin ϕcv
0 Þ ; D

0 ¼ 50 1þ2K0
3

� �
tan ϕcv

0� 	1:8

qcal ¼ S=D
nþmðS=DÞ, Kondner type of hyperbolic n and m are experimental parameter correspond to the inverse values of initial shear stiffness and an

ultimate pile stress
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Fig. 9. (a) Segment of pile–ground interface; and (b) kinematics of initial and
displaced position.
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expansion can be calculated from cylindrical cavity expansion
theory and the τx–up relationship can be expressed in the
following terms until the ground starts yielding

τx ¼
Ke tan α tan ðϕiþαÞupþs0 tan ðϕiþαÞþci0

1þ Keζrm
G tan α tan ðϕiþαÞ ð7Þ

where

Ke ¼
2G
rm

; and ci
0 ¼ cisec2α

ð1� tan α tan ϕiÞ
ð7aÞ

At the third stage, when up4 (up)Y or s4sY (where, (up)Y
and sY are the pile movement and radial stress at ground yield
condition due to expansion) the plastic zone is developed
along with slippage to obtain an elastic perfectly plastic pile–
ground interface. In this case, the influence of the plastic zone
extends further with more pile settlement. It is important to
calculate the tangent gradient (Kp) of cavity stress to cavity
radius during the expansion given by the solution of Yu and
Houlsby (1991). At this stage, a small increment in radial
stress (ds) can be expressed as

ds¼Kpdv ð8Þ
The radial stress (s) can be written as

s¼ sYþ
Z v

vY
Kpdv ð9Þ

where vY can be computed from (9) using (up)Y and (τx,)Y
which is the vertical shear stress in Eq. (7) when up¼ (up)Y.
Then, the corresponding vertical shear stress, τx can be
expressed with the following:

τx ¼ sYþ
Z v

vY
Kpdv


 �
tan ðϕiþαÞþci

0 ð10Þ

Eq. (10) measures the skin friction at a certain depth. For a
complete pile solution, to activate base and skin resistances,
the boundary condition at the base resistance as x¼L is
assumed to be that of a cylindrical pile. The base resistance
can be represented by an elastic spring manner similar to Murff
(1989). Following Randolph and Wroth (1978), the base of the
pile can be assumed to be similar to a rigid punch

Fb

ðupÞb
¼ 4rbG

ð1�νÞηb
ð11Þ
where b is the parameter used at the base and ηb is the
coefficient introduced to allow for the depth of the pile base
below the surface.
4.1.3. Numerical solution and results of the model
The load transfer method proposed by Coyle and Reese

(1966) [based on the work of Seed and Reese (1957)] is used
to determine the skin friction by inserting a stress–dilatancy
property as the extended model of this paper. With this
technique, the pile is divided into a number of small segments
in order to find the vertical shear stress and horizontal stress
along with the pile settlement ratio. During analyses, a small
settlement at the pile base is specified and the axial load at the
top of this segment is iteratively synchronized to satisfy the
equilibrium condition. After obtaining this equilibrium condi-
tion, the process undergoes to the next segment and settle-
ments are calculated. All possible functions such as ν, shear
modulus, stress–dilatancy properties are successfully calcu-
lated by means of iterative techniques. Fig. 10 illustrates a flow
chart showing a numerical solution for the proposed extended
model and explains the steps of calculation in detail.
The extended model is used to determine the skin friction

for various types of soil and pile materials at different relative
densities and confining stresses up to 0.4 settlement ratios. The
properties of TO sand, K-7 sand and Fanshawe brick sand (FB
sand) were taken into consideration. The parameters of FB
sand and pile materials were adopted from Sakr et al. (2004,
2005, 2007). Tables 1 and 2 show the fundamental properties
of soil and pile materials at different pressures. The pile
installation of Fanshawe brick sand was confined to low and
high pressures, respectively.
Increases in average vertical shear stresses and radial

stresses are clearly shown by Figs. 11 and 12 at different
relative densities when different types of model and prototype
piles are taken into consideration in order to observe the effect
of tapering at different pressures. Increases in the tapering
angle serve to increase the stresses for all types of sandy
ground and pressures applied in it. Fig. 11 shows that the
average vertical shear stresses increased from 2.6 times to 3
times for two different types of soils (TO sand and K-7 sand)
with two different relative densities. For instance, TO sand
shows a 288% increase in the average vertical shear stress at a
0.1 settlement ratio when compared to straight piles. This
percentage further increased to 298% when the pile was
penetrated downward up to 0.4 settlement ratio. Similarly,
from Fig. 14, it can be noted that at a 0.1 settlement ratio, the
radial stress increased by nearly 329% for the maximum angle
of tapering at low radial and vertical pressures. When
comparing this percentage with high radial and vertical
pressures of the same sandy ground (FB sand), the radial
stress was found to have increased by up to 339%, which is a
difference of 10% between the two different pressures of the
same sandy ground. At the mean time, at a 0.4 settlement ratio,
both low and high pressures of the sandy ground showed an
increase of almost 310% in radial stresses.
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Fig. 10. Flow chart describing the extended model to evaluate skin friction of different types of piles.

Fig. 11. Average vertical shear stress of K-7 sand and TO sand at different pile
tapering angles at normalised settlement ratio.

Fig. 12. Average radial stress of FB sand at low and high pressures and
different pile tapering angle at normalised settlement ratio.
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4.2. End bearing capacity

The pile end bearing capacity in cohesionless soils depends
on the compressibility of soil, shear stiffness and strength.
Compressibility diverges broadly for different types of soils
through incompressible silica sands to highly compressible
carbonate sands (Yasufuku et al., 2001). The analytical
spherical cavity expansion solution for determination of the
end bearing capacity of non-displacement cylindrical pile in
closed form was incorporated byYasufuku et al. (1995, 2001).
Based on this evaluation technique, the model has been
improved to evaluate the end bearing capacity of tapered piles
by inserting the tapering factor of the pile. Fig. 13(a) and (b)
illustrates the modified failure mechanism which was initially
postulated by Yasufuku and Hyde (1995) and Yasufuku et al.
(2001) for frictional soils adjunct with cavity expansion
pressure pu proposed by Vesic´,1972 to compute the ultimate
bearing capacity qpcal. In the context of the end bearing
capacity of tapered piles, it is assumed that the use of cavity
expansion theory is a rigid cone of soil that exists beneath the
pile tip with the angle ψ′ and outside the conical region, the
zone is subjected to isotropic stress which is equal to the cavity
expansion pressure pu. Furthermore, there exists an active earth
pressure condition sA immediately beneath the pile tip along
the AC plane. Then, the moment is considered at point B for
the cavity expansion pressure pu, ultimate end-bearing pressure
qpcal and the active earth pressure sA (Fig. 13). Hence, the
ultimate bearing capacity qpcal can be expressed as

qpcal ¼
1

1� sin ðϕcv
0 þ2αÞ pu ð12Þ

For straight piles, the angle of tapering α is zero and Eq.
(12) will be reduced in the form qpcal ¼ 1=ð1� sin ϕcv

0 Þ pu.
Fig. 13. (a) Concept of modified failure mechanism around the tapered pile tip
in cavity expansion solution and (b) geometry of calculation procedure to find
ultimate end bearing capacity of tapered pile.
Then, the cavity expansion pressure pu (Vesic´,1972) becomes

pu ¼ Fq
ð1þ2K0Þ

3
sv0 ð13Þ

where

Fq ¼
3ð1þ sin ϕcv

0 Þ
ð3� sin ϕcv

0 Þ ½Irr�ð4 sin ϕcv
0 Þ=3ð1þ sin ϕcv

0 Þ;

Fq, Irr, and Ir are related to ϕ′, G and Δav for the plastic zone
around a cavity, with the coefficient of earth pressure at rest K0

and overburden pressure sv0 (Manandhar and Yasufuku, 2011a,
2011b). Table 3 summarises the computed formulae to evaluate
the end bearing capacity of straight and tapered piles.
Using Table 3, the empirically derived reference displace-

ment (S/D)ref for non-displacement soils is expressed as the
normalised settlement S/D required to mobilise the half of the
ultimate end bearing capacity qpcal, the inverse of the initial
shear stiffness is articulated such that

n¼
S
D

� �
ref

qpcal
ð14Þ

where

S

D


 �
ref

¼ 0:25

Rearranging Eq. (14) from Table 3, it can be expressed as
follows:

qcal ¼
S=D

S
D

� �
ref =qpcal

� �
þ S

D

� �
=qpcal

� � ¼ S=D

0:25þ S
D

� 	 qpcal ð15Þ

The applied pile tip stress at any pile tip settlement can be
calculated using only three parameters needed for calculating
the qpcal in Eq. (15), which presents the effects of the
overburden pressure, soil compressibility, shear stiffness and
strength of soil. This indicates that the load–settlement curves
can easily be computed from the fundamental in-situ soil data.
The total end bearing capacity is calculated as

PB ¼ qcal πrb
2 ð16Þ

where rb is the radius of the pile tip.
In the closed form cavity expansion theory, the total end

bearing capacity increases in line with increases to the tapering
angle. When different radial stresses are furnished at the same
density ground, high radial stresses govern the higher end
bearing capacity in FB sand, as shown in Fig. 14.
The proposed model can evaluate the tapering effects at a

critical state condition when the ultimate bearing capacity is
normalised with the cavity pressure. Fig. 15 shows the
relationship between normalised ultimate bearing capacity
and the angle of friction at the critical state for different types
of tapering angles. Increasing the tapering angle causes the
normalised ultimate bearing capacity to increase. At the same
time, increasing the critical state friction angle also causes the
normalised ultimate bearing capacity to increase.



Fig. 15. Normalised ultimate bearing capacity of tapered piles at critical state
condition.

Fig. 16. Effect of angle of tapering on normalised average vertical shear stress.

Fig. 17. Effects of dilatancy angle on normalised average vertical shear stress.

Fig. 14. Total end bearing capacity of FB sand of different piles at normalised
settlement ratio.
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5. Applicability of the extended model to evaluate total
bearing capacity

A real type Rybnikov (1990) pile and prototype pile (Sakr
et al., 2004, 2005, 2007) are adopted to check and validate the
applicability of the proposed model. Rybnikov (1990) carried
out tests in the Irtysh Pavlodar region of the former Soviet
Union and used bored-cast-in-place tapered piles. Seven
different types of piles were accomplished, each having a
length of 4.5 m, constituting five tapered piles and two
cylindrical piles in order to understand the behaviour of
tapered piles. The top and bottom radii of piles were
200 mm and 100 mm (1.21): one tapered pile with a corre-
sponding radii of 250 mm and 100 mm (21) and two tapered
piles had radii of 300 mm and 100 mm (2.41), respectively.
Here, the soil parameters of TO sand (Table 2) were used for
analyses. Fig. 16 shows the effect of tapering angle for all
types of soil and pile materials used by taking the ratios of the
average vertical shear stress of tapered piles to that of straight
piles. The parametric study shows that the average vertical
shear stress increased in the most tapered pile on FB sand by
236%. Similarly, for K-7 sand and Rybnikov pile, it shows an
increase of 331% and 287%, respectively. Proceeding on from
this, Fig. 17 shows the effect of dilatancy property by the
Rybnikov pile material for evaluating the side resistance. At a
0.1 settlement ratio, the normalised side resistance increased
by up to 30% for a dilation angle of 51 and 61% for a dilation
angle of 101 compared to dilation angle of zero (at a critical
state condition). When the effect was examined at 0.4
settlement ratios, it was increased up to 38% for a 51 dilation
angle and 81% for a 101 dilation angle.
Moreover, measured experimental pile loading data and

predicted data of Sakr et al. (2004, 2005, 2007) were compared
at low and high pressures with tapering angles of 0.711 and
1.131. Figs. 18 and 19 show the measured and predicted skin
friction with respect to settlement ratios. At low settlement
ratios, the values of measured and predicted skin frictions lie
near to each other. When increasing the settlement ratio, low
pressure data in Fig. 18(a) shows it was slightly under-
estimated, being below the measured data at different 1.131
tapering for Fanshawe brick sand of the prototype test. At the
mean time, at high pressures as shown by Fig. 18(b), the
measured data for relatively low angle of tapering of 0.731 was
slightly overestimated. Similarly, when observed in model
tests (Fig. 19) for Toyoura sand, the predicted results are quite
near. In general, it is noticed that with the increase in the
degree of tapering and settlement ratios, skin friction also
increases by following similar trends as straight piles.
The validity of the extended model was checked after

comparing measured and predicted results together with
parametric studies on real type, prototype and model tests
using Tables 1 and 2. Fig. 20 denotes the validity of unit skin



Fig. 18. Measured and predicted skin friction of FB sand at (a) low pressure high tapering angle and (b) high pressure low tapering angle.

Fig. 19. Measured and predicted skin friction of TO sand at high
tapering angle.

Fig. 20. Prediction of calculated and measured skin friction at different relative
densities and pressures.
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frictions of measured and calculated data. The extended model
shows the consistent agreement between measured and calcu-
lated unit skin frictions for different types of piles and sandy
ground.

The proposed model for evaluating end bearing capacity
was checked with measured data with various source paper
using Table 4. Additional data of BCP (1B) (1971) (BCP
Committee, 1971) and Yasufuku et al. (2001) were used to
check with the predicted end bearing capacity on straight
cylindrical piles. In this paper, if tapered piles are used in these
locations using the same soil properties, the expected end
bearing capacities can be predicted in the real field. In this
regard, Fig. 21(a)–(d) shows the expected end bearing capa-
cities for all types of pile and soil materials, which show good
increasing trends with increasing tapering angles when pene-
trating downward in a frictional mode.
Moreover, these additional source data along with BCP (5C)

(1971), Japan Geotechnical Society (JGS) (1993), prototype
tests by Sakr et al. (2004, 2005, 2007) and smaller model tests
were plotted. Fig. 22 shows a remarkable similarity with the
proposed model at a 1:1 ratio. The proposed model proves the
tapering effects of end bearing capacity during the pile
penetration.
Recalling Eq. (1) and Fig. 1, the total bearing capacity is the

summation of the total skin friction around the shaft and pile
tip bearing capacity. Using Eq. (2) in the above section, the
total bearing capacity of different piles on different types of
soils can be determined. Fig. 23 represents an example of
evaluating the total bearing capacity of the prototype test.
Increasing the tapering angle serves to increase the total
bearing capacities at low and high pressures, respectively.
Fig. 24 shows that the total bearing capacity of tapered piles in
FB sand supports the proposed models. There is an ideal match
with the total capacity of prototype FB sand and its corre-
sponding pile material at a 0.1 settlement ratio measured in kN.
The predicted ratios of FC, T3, T4, and T5 at low pressure are
1.19, 0.96, 0.97 and 0.94, respectively. At the same time, the
predicted ratios at high pressure are 0.98, 1.01, 1.10 and 1.15,
respectively.
6. Concluding remarks

The mobilised mechanism of skin friction and end bearing
capacity through the smallest model pile load testing shows
that the effective radius of the influenced zone around the pile
shaft increases in line with increases in the tapering angle. A
visual inspection confirmed that the narrowing of the convex
heave on the pile–ground interface was due to an increase in
radial stress by the tapered pile. In the meantime, the effective
length of the failure tip increases in line with increases to the



Table 4
Pile geometry and soil characteristics from different source papers.

Source paper No. Pile geometry Soil characteristics

Dia., d (m) Length, L (m) Soil type s′v (kPa) ϕ′cv, av (deg) Nav (G) (MPa)

BCP (1B) (BCP Committee, 1971) 1 0.2 4 Fine sand 60 35 (34–36) 20 (60.5)
BCP (1B) (BCP Committee, 1971) 2 0.2 11 Dense sand 170 37 (36–38) 48 (133.5)
JGS data (1993) 3 1.5 44.5 Sand 300 35 25 (71.1)

4 1.5 32 Sand 356 (34–36) 30 (81)
5 1.5 26.5 Sand 256 35 30 (81)
6 1.5 22.4 Sand 212 (34–36) 30 (81)

Yasufuku et al. (2001) 7 0.03 – Quiou sand 100 36 – (21.9)
8 200 – (42)
9 400 – (47.0)

Fig. 21. Measured, predicted and expected end bearing capacity of different piles: (a) source from BCP (1B), (b–d) Yasufuku et al. (2001) at different confining
pressures.
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tapered pile. In addition, the relatively larger model test shows
that the increase in normalised radial distance of tapered piles
(0–1.41) affects at least three times nearer the pile–ground
interface by the most tapered pile compared to cylindrical
straight pile, which indicates the increase in radial stresses of
the ground. Based on these benefits of tapered piles, two
analytical models were present to evaluate the skin friction and
end bearing capacity separately. Their applications have been
verified using model tests, prototype tests, and a real type
database. The main important conclusions can be addressed as
follows:
(1)
 The extended model with the inserted stress–dilatancy
property can predict skin friction using cylindrical cavity
expansion theory in closed form solutions. The dilatancy
index can smoothly evaluate the skin friction of tapered piles
at any confining pressure irrespective of the type of sand.
(2)
 The insertion of tapering angle to the spherical cavity
expansion theory predicts the end bearing capacity of
tapered piles. When the critical state friction angle is
increased, the ultimate bearing capacity normalised by
cavity pressure also increases in line with increases to the
tapering angle of piles.
(3)
 The closed form solution has the practical advantage of
evaluating skin friction and end bearing capacity in a
simple way. The pile load–settlement curves can easily be
determined with the aid of the simple fundamental proper-
ties of soils.
(4)
 The predicted skin friction using the extended model
shows good and reliable trend with measured skin friction.



Fig. 22. Prediction of calculated and measured end bearing capacity of model
and prototype tests.

Fig. 23. Total bearing capacity of prototype test.

Fig. 24. Ideal prediction of calculated and measured total capacity of prototype
pile at 0.1 settlement ratio.
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Similarly, the expected end bearing capacity shows
remarkably good tendencies compared with the measured
end bearing capacity of cylindrical straight piles.
(5)
 The measured and calculated unit skin friction and end
bearing capacity from various sources at different soil
types and tapering angles at different relative densities
show consistent agreement with each other. This indicates
the ability of the model to evaluate the bearing behaviour
of tapered piles in any type of sandy ground. When the
total capacity of the measured prototype test database is
compared with the calculated ones at different pressures,
they ideally fit with each other.
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