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ABSTRACT 

If a matrix T is known only to within a tolerance c (because of measurement or 
roundoff errors), then it may be difficult to compute an eigendecomposition of T, 
since its invariant subspaces are discontinuous functions of its entries. In this paper we 
show how to compute a stable decomposition of an uncertain matrix T which varies 
continuously and boundedly as T varies in a ball of radius c. 

1. INTRODUCTION 

If we are given a complex n by n matrix T, which we only know to 
within a tolerance c > 0, what does it mean to compute an eigendecomposi- 
tion of T,? By only knowing T, to a tolerance c we mean that T, is 
indistinguishable from any matrix in the set 

( 111’)l c denotes the Frobenius norm of the matrix T, although other norms 
could be used as well). An eigendecomposition of T will be written 

T = SW’ (1.1) 

where 8 is block diagonal, 13 = diag(0,, . . . ,8,). The spectrum of T, o(T), will 
be the union of the spectra of the ei’s: a(T) = Uf’zlu(di). We would like to 
produce an eigendecomposition which is valid in some way for all matrices in 
T(e), and gives as much information about all matrices in T(E) as possible. 

To illustrate and motivate our approach, we indicate how we would 
decompose T(E) for various values of c, where T, is the following matrix, 
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essentially in Jordan canonical form: 
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1.001 
0 100 

0 
0 

_ 1 

(blanks and 0 both denote zero entries). This decomposition tells us several 
things: that To has four distinct eigenvalues at 1.001, 1, 0, and - 1, that each 
nonzero eigenvalue has a one dimensional invariant subspace (i.e. an eigen- 
vector) associated with it, and that associated with 0 are one two dimensional 
and one one dimensional invariant subspace. 

Let us ask if this information remains valid for all matrices in T(e) as c 
increases from 0. As soon as c becomes nonzero, it is no longer true that all 
matrices in T(r) have a triple eigenvalue at 0, nor two invariant subspaces 
associated with eigenvahres near 0. For example, 

1.001 
0 
6 

100 
0 

0 

has three simple eigenvalues at 0, 106, and - lo&, each with its own 
eigenvector, and 

has one triple eigenvahre at 0 with just one three dimensional invariant 
subspace associated with it. Thus, all that we can say that is true of all 
matrices in T(C) (for c small enough) is that there are three eigenvalues, all of 
which could simultaneously equal 0, which together have a three dimensional 
invariant subspace associated with them. 
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In fact, we can draw four nonintersecting simple closed curves in the 
complex plane-one around 1.001, one around 1, one around 0, and one 
around - I-such that any T E T(r) (for e small enough) will have one 
eigenvalue strictly inside each of the curves round 1.001, 1, and - 1, and 
three inside the curve around 0. Furthermore, it is impossible to draw any 
larger number of such curves such that each will contain a constant number 
of eigenvalues in its interior for all T E T(e). 

As e increases to 0.00071, we find matrices in T(e) which no longer have 
two simple eigenvalues around 1 and 1.001: 

T3 = 

1.0005 q 
1.0005 

0 100 
0 

0 
-1 

All we can say about T3 is that it has two eigenvalues at 1.0005 associated 
with a two dimensional invariant subspace, since for n # 0 but arbitrarily 
small this subspace cannot be split into two one dimensional subspaces. Thus, 
when e is a little larger than 0.00071, all we can say about T(e) is that there is 
one three dimensional invariant subspace with three eigenvalues indis- 
tinguishable from 0, one two dimensional subspace with two eigenvalues 
indistinguishable from 1.0005, and one simple eigenvalue at - 1. 

In particular, one may draw three simple disjoint simple closed curves in 
the complex plane-one around 0, one around 1.0005, and one around 
- l-such that any T E T(0.00071) will have three eigenvalues inside the 
first curve, two inside the second, and one inside the third. As before, it is 
impossible to draw any larger number of such curves such that each one will 
strictly contain a fixed number of eigenvalues of each T E T(0.00071). 

For values of e exceeding 0.01, the clustering of eigenvalues changes 
again. The matrix 

1 
1.001 

T4 = 0 
0.01 

has simple eigenvalues at 1.001 and 0, and double eigenvalues at 1 and - 1. 
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Looking at the eigenvalues as functions of the entry containing 0.01 (the 4,3 
entry), we see that T4 has a pair of eigenvalues at _+ 1OG = k 1 when 
I;,,:, = 0.01. Thus, if one tries to draw a family of simple disjoint curves in the 
complex plane separating the eigenvalues of all T E T(C), one finds that all 
can draw is one curve enclosing all eigenvalues. The eigenvalues “near 0” can 
no longer be separated from the eigenvalues near - 1 nor 1, and neither can 
the eigenvalue at 1.001 be separated from 1. 

When we were previously unable to draw a curve surrounding exactly one 
eigenvalue (around 1.0005 and around 0), we could find a matrix T E T(C) 

which indeed contained exactly one multiple eigenvalue within each circle (a 
double at 1.0005 and a triple at 0). Is it possible to find a matrix with a 
sextuple eigenvalue in T(O.Ol)? The answer is no, although we will not prove 
this here. 

This example motivates the following definition of stable eigendecmposi- 

tion: the entries of S and Bi in (1.1) must be continuous functions of the 
entries of T as long as T E T(E). In particular, we insist that dim(8,) = lzi 
remain constant for T E T(e). This will in general only be possible if the a( ej) 
are disjoint and remain so for all T in T(e). Thus, the approach we take is to 
estimate, given a possible partitioning u =U~zlui of T’s spectrum into 
disjoint subsets, the norm of the smallest perturbation of T that makes some 
hi E ui coalesce with some h j E uj ( j # i) (we make this more precise in the 
next section). It will turn out that it suffices to consider partitioning u(T) into 
only two disjoint sets u(T) = u1 U a,. 

In this case we call the norm of the smallest perturbation that makes some 
A, E u, coalesce with some A, E u2 the dissociation of ui and u,, denoted 
diss(u,, us). We present new inclusion theorems, i.e. upper and lower bounds 
on diss(u,, a,), or the norm of the smallest 6T that causes an eigenvalue of ui 
to coalesce with one from a,. 

Thus, an algorithm for deciding if u =lJf=iui is a stable decomposition 
will be to test whether the lower bound on diss(u,, u - ui) exceeds c for all i 
(see Theorem 7.10). 

In addition to requiring stability of a decomposition as defined above, we 
are also interested in demanding another property of our decomposition, 
namely that the invariant subspaces (spaces spanned by the columns of S 
corresponding to each ei) not change very much as T varies inside T(r). 
Equivalently, we may ask that the condition number of S in (1.1) not exceed 
some threshold for any T E T(C). Numerically, this means limiting the 
precision lost in computing S or B to a given number of bits (specified by the 
user). Thus the user may ask given a matrix TO, an uncertainty e, and a 
tolerance TOL to compute a stable decomposition (1.1) of T(e) such that 
K(S) -c TOL for all T E T(C). (Here TOL equals 2*, where B is the number of 
bits of precision the user is willing to lose.) Theorem 7.10 provides a criterion 
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for deciding if a given partitioning a(T) =l_lF_ rui satisfies these constraints. 
In Section 2 we define basic notation. Section 3 defines stable decomposi- 

tion precisely. Section 4 defines projections, sep and sep,, which are basic 
quantities on which our bounds on diss(a,, a,) depend. Section 5 presents a 
lower bound on diss(u,, a,) and compares it with previous ones in the 
literature. Section 6 presents an upper bound on diss(u,, a,) and compares it 
with previous results also. In Section 7 we present bounds on the condition 
number of S in our decomposition (1.1) of T E T(r). 

In a later paper we intend to extend these results to matrix pencils, 
including new inclusion theorems on generalized eigenvalues and deflating 
subspaces analogous to those results presented here. The results in this paper 
are largely part of the author’s Ph.D. dissertation [3]. For existing software for 
computing the Jordan canonical form see [9]. 

2. NOTATION 

IM 11411~ and Il4I, will denote the Euclidean length of the n-vector X, 
the one-norm of X, and the infinity-norm of x: 

I n \ l/2 

llxlI E C lxi12 7 
\ i i==l 

IIT]], ]]T]]r, ]]T]],, and (lTI(, will denote the matrix norms: 

IITII, s ma ClT,jl> 
j i 

IlTll, s ma CITjl> i i 
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We will use the following well-known inequalities: 

II4 G II AlIE Q 6. II4 

IIA~II G ll4l. II~IL 

IPIt, G IIAII~~II~II~ 

IIWI, G IIAII~II~II~~ 

The condition number of T is K(T)= ((T(I-(IT-‘I(; and K~(T), K,(T), and 
~~(7’) denote the condition numbers computed using the other norms of T. 
The symbol u,,,,(T) will denote the smallest singular value of the matrix T. 

A@ B will denote the Kronecker product of two matrices: A@ B = [A i j. B]. 
Finally, co1 A will denote the column vector formed by taking the columns of 
A and stacking them atop one another from left to right. Thus if A is m by n, 
co1 A is mn by 1 with its first m entries being column 1 of A, its second m 
entries being column 2 of A, and so on. 

3. STABLE DECOMPOSITIONS 

In this section we define our criterion for being able to stably decompose 
T = S diag( B,, 0,) S- ’ into two pieces for T in T(E), and show how to use this 
criterion to decompose T = S diag(B,, . . . , 8,) S-’ into as fine a partition as 
possible. Let T(e) be defined by a norm ]]I. [(I: 

The following definitions depend on this choice of norm. As T’ varies 
continuously inside T(e), its eigenvalues will also vary continuously. Let 
ui = a(e,), i = 1,2, be a partition of T’s spectrum into disjoint pieces. 

DEFINITION 3.1. The dissociation diss(a,, us, T, ~~~~~~[) of uI and us (a1 n 
a, =0) [or just diss(u,, us) if T and ]]].]]] are clear from context] is the 
smallest perturbation T + E of T ( measured as ]]]E]]]) that makes an eigen- 
value h 1 E cri coalesce with h, E us. 

To understand this definition, think of X, and X, as continuous functions 
of E, where X,(E) is an eigenvalue of A + E and Xi(O)= Xi. As JJJE]JJ is 
allowed to increase, the Ai(E can sweep out larger and larger but initially 
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disjoint regions of the complex plane. The smallest lllEl]l such that X,(E) = 
h,(E) is diss(a,, as). 

In particular, if we can show that the two regions swept out by X r( E) and 
X,(E) are disjoint for lllElll < x, then we will have the lower bound x < 
diss(a,, as). This is how we will obtain a lower bound on diss(u,, a,) later. 
However, the meeting of these two regions does not guarantee that two 
eigenvalues from ui and us can be made to meet, since they needn’t occupy 
the same region of the plane for the same E. Indeed, by choosing the norm 
I]]. ]]I to have a sufficiently elongated unit ball, it is easy to find an example 
where the regions swept out by X,(E) and h,(E) meet for an e arbitrarily 
smaller than that required to cause a double eigenvalue. [Consider T = 
diag(l,2), and let the unit ball of I](. ]I( be highly elongated in the direction of 
the identity matrix.] 

For the norms ]I. )I and ]I* ]lE we do not know if the regions containing ur 
and u2 can overlap before a multiple eigenvalue appears. To get an upper 
bound, then, we need to exhibit a perturbation that causes T to have a 
multiple eigenvalue formed from one eigenvalue from each ui. This is how we 
will obtain an upper bound on diss(u,, us) later. 

We can use the dissociation to partition u(T) into arbitrarily many pieces 
by noting that if diss(u,, a,) > E and diss(u;, ah) > e, then the dissociations of 
the intersections of the ui and a,! also exceed z: 

diss( ui n ai, u - ui n a;) > c. 

This holds because if no perturbation of size e can make an eigenvalue from 
ui coalesce with an eigenvalue from uj nor an eigenvalue from ai coalesce 
with one from al, then no perturbation of that size can make an eigenvalue 
from ui n ui coalesce with one in its complement. 

This immediately yields 

LEMMA 3.2. The decomposition u =U~Clui is stable if and only if 
diss(u,,u-ui)>e fori=l,..., b. 

Henceforth diss(u,, us) will be measured with respect to the (I. ]IE norm. 

4. PROJECTIONS, sep, AND sep, 

In this section we summarize the properties of projections, sep, and sepx 
we will need for our bounds. We will refer to the literature for most proofs. 

By Schur’s lemma [7] we can put any matrix into upper or lower 
triangular form by a unitary similarity: A = QUQ* where QQ* = I and U is 
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upper (or lower) triangular. Furthermore we may select the order in which 
the eigenvalues of A appear on the diagonal of U [12]. Such a unitary change 
of coordinates changes neither distances between matrices (measured with 
)I. 1) or 1) * I( E) nor angles between subspaces, so we may assume given any T 
that it is in the block upper triangular form 

TzA c [ 1 0 B (4.1) 

where a(A) = ui, a(B) = us, and A and B may themselves be either upper 
or lower triangular. We assume u1 n us = 0 as above, with dim(A) = n, and 
dim(B) = n2. 

The projection P corresponding to u1 is the matrix satisfying P2 = P, 
TP = PT, and which projects onto the invariant subspace of A. We exhibit it 
by solving 

(4.2) 

for R, yielding AR - RB = C, a set of n1n2 linear equations in as many 
unknowns. We can rewrite AR - RB = C as 

&@A - B%Z,,)col R = colC. (4.3) 

By choosing A upper triangular and B lower triangular as described above, 
we see that Z_@A - BT@I,, will be upper triangular with eigenvalues 
Xi(A) - X j( B) for all pairs of eigenvalues of A and B. Therefore Equation 
(4.3) is solvable for arbitrary C if and only if ui f~ ua = 0 as we assumed. 

Given R, we can express the projection P associated with ui as 

p= I R 
[ 1 0 0’ 

The projection associated with u2 is Z - P. Clearly l/Pll = I/Z - PII. The left 
and right invariant subspaces of T belonging to A are spanned by the rows of 
[Z(R] and columns of [Z]O]r respectively. The left and right invariant 
subspaces of T belonging to B are spanned by the rows of [O(Z] and columns 
of [ - RTIZ] ’ respectively. 

In (4.2) we see that 

s=[; -;I=[; ;I-’ 
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is a block diagonalizing similarity of T which transforms T into a matrix 
S- ‘TS whose invariant subspaces corresponding to c~i and us are orthogonal. 
In [2] the author proved 

THEOREM 4.1. lf S is a block diagonalizing similarity of T as described 
above, then 

It is easy to prove 

LEMMA 4.2. Let 

s= o 
[ 

I - ~/ll~ll 1 ~/II~II . 

Then S is a block diagonulizing similarity of T whose condition number K(S) 
attains the lower bound in Theorem 4.1. 

We can now define sep(A, B): 

DEFINITION 4.3. 

sep( A, B) = omin( Zn2@A - BT@I,,) 

= inf 
IIAR - RBII, 

R#O IIRII, ’ 

NOTE. Stewart in [14] defines sep as the smallest singular values for the 
slightly different operator A8 I_ - I,,@ BT, but it is easy to show that by 
reordering rows and columns this last matrix is orthogonally similar to the 
transpose of the matrix in the Definition 4.3, so the definitions are equivalent. 

A simple consequence of Definition 4.3 and Equation (4.3) is 

LEMMA 4.4. 
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Some simple properties of sep, proven in [14], are 

LEMMA 4.5 (Stewart). 

sep(A, g> 

4+4Q) 

G sep(SAS-‘,QBQ-‘) < sep(A, B)K(S)K(Q). 

By choosing S and Q unitary in this lemma, we see that given T, 
sep(A, B) depends only on ui and uz, not the choice of basis. Thus if T is 
known from context, we may write sep(a,, us), or even just sep if u1 and us 
are known as well. 

LEMMA 4.6 (Stewart). ZfA = diag(A, ,..., Ak) and B = diag(B, ,..., Bi) 
are block diagonal, then 

sep(A, B) = minsep(A,, ‘i). 
i,j 

Lemmas 4.5 and 4.6 show how to reduce the problem of computing sep to 
solving a sequence of smaller subproblems. In particular, if A and B are 
diagonal, sep(A, B) = mini,j]xi(A) - hj(B)], an expression which is clearly 
also an upper bound on sep( A, B). 

Now we define 

DEFINITION 4.7. sep,(A, B) = infxmax(u,&A - AZ), u,,,(B - AZ)). 

NOTE. Varah [16] defines seph( A, B) as the sum of the two singular 
values rather than the max, so his version of sep, differs from ours be at most 
a factor of 2. Our version allows sharper versions of the bounds on diss( ui, a,) 
later. 

In words, sep,(A, B) is the size of the smallest perturbations E and F 
that make A + E and B + F have a common eigenvalue. We may relate sep 
and sep, with the following lemma [16]: 

LEMMA 4.8. 

sepA(A, B) G 
inf IIAR - -11, 

R#O IIRIIE 
Q 2sepA(A, B). 

rank(R)=1 
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Comparing this with the definition of sep we immediately see: 

COROLLARY 4.9. sep(A, B) < 2sepx(A, B). Zf in addition n, = dim(A) 
= 1 or n2 = dim(B) = 1 (i.e. R is a row vector or column vector), then 

sep,(A, B) < sep(A, B) < 2sep,(A, B). (4.4 

Proof. The first inequality follows from Lemma 4.8 and Definition 4.3 of 
sep. The inequality (4.4) holds because if n1 = 1 or n, = 1 then R is 
necessarily of rank one. n 

In general, sep may be much smaller than sep,; this will be important 
later. One may easily prove the following lemmas, which are analogous to 
Lemmas 4.5 and 4.6. 

LEMMA 4.10. 

=rh(AT B) 
max(k(S), k(Q)) 

< sepx(SAS-‘,QBQ-‘) < sep,(A, B)max(K(S),k(Q)). 

As for sep, Lemma 4.10 implies that given T, ui, and us, sep,(A, B) is 
determined independently of the choice of basis that makes T block upper 
triangular. Thus we may write sepx(ul, a,) if T is known from context or sep, 
if ur and u2 are known as well. 

LEMMA 4.11. ZfA=diag(A,,..., A,)a~ZB=diag(B,,...,B~)areblock 
diagonal, then 

sep,(A, B) = minsep,(Ai, Bj). 
i,j 

Thus, if A and B are diagonal, sep^(A, B) = mini, jIX,(A) - h j(B)1/2, an 
expression which is clearly also an upper bound on sep,(A, B). 

A third characterization of sep&(A, B) is as a “structured singular value” 
of the matrix Z,+@A - BT@Z,,. Recall that this last matrix is singular if and 
only if A and B have a common eigenvalue. If we allow arbitrary perturba- 
tions of Z,,*@A - BT@Z,,, the distance to the nearest singular matrix is 
sep(A, B). If we only allow perturbations of the form I,+@ SA - 6BT@ZI,I, the 
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distance is sepx(A, B). Perturbations of this form have the same zero struc- 
ture as Znz@A - Br@Z,, and generally [unless dim(A) = 1 or dim(B) = l] 

cannot have the same structure as the perturbation whose size is sep( A, B). 
Thus, sep will generally be smaller than seph, which is why, as we will see in 
the next section, our lower bound on diss(a,, a,) is larger than previous ones. 
The concept of structured singular values is also discussed in [4]. 

5. LOWER BOUNDS ON diss(a,, a,) 

We give a brief history of lower bounds on diss(u,, us) to compare them 
with ours. These earlier bounds are by-products of inclusion theorems on the 
eigenvalues of a perturbed matrix. 

The three earliest theorems, due to Gershgorin, to Dunford and Schwartz, 
and to Bauer and Fike, all assume T is completely diagonalizable: STS- ’ = A, 
where A = diag( X i ). 

THEOREM 5.1 [l]. Zf A’ is an eigenvalue of T + E, then A’ is contained 
in one of the circles 

]h’- h] d i;fK(S)=]]E]], 

where the infimum is over all S such that STSpl = A. 

NOTE. The Bauer-Fike result with lIEI replaced by lIEIll or l[Ejl, and 
K(S) replaced by K~(S) or K,(S) may be derived by applying Gershgorin’s 
theorem to S(T + E)S-‘. The Dunford-Schwartz result [5] replaces inf, K(S) 

with 4max,]]P,]], where Pi is the one dimensional projection corresponding to 
Xi. In [2] the author showed that 

max]]P,]] < i:fK(S) < dim(T)m~ll~ilL 
i i 

so the Dunford-Schwartz result is equivalent to the Bauer-Fike except for a 
constant depending on dimensionality. 

By insisting that the circles around eigenvalues in u1 do not intersect with 
circles around eigenvalues in us, we easily derive the following lower bound 
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on diss( ur, us): 

COROLLARY 5.2. 

min ]A, - A,] 

diss( ul, u2) a 
4 fE 0, 

2i?fK(S) ’ 

Amp0 IAl- AA 
diss(u,,u,) >, ’ ’ 

~yWY1 ’ 

The disadvantage of this result is that K(S) (or equivalently max ,]]Pi]]) may 
be very large because the matrix may be nearly nondiagonalizable even if the 
eigenvalues are well separated. For example, consider 

(J1= {O}, u2= {1,1+r}. (5.1) 

The lower bounds in Corollary 5.2 approach 0 as E does, even though (as 
implied by Theorem 5.4 below) diss(u,, a,) is at least 0.3 for small 6. 

Stewart gives another lower bound: 

THEOREM 5.3 [14]. Zf T is as in Equation (4.1) and P is the projection 
corresponding to either A or B, then 

diss( ur, us) > 
w(u,, 4 

4llPII . 

[This theorem will be proven in Section 7 in the course of bounding the 
condition number of S in (l.l).] Stewart’s bound does not suffer from the 
problem illustrated by the example in (5.1) in which case the lower bound of 
Theorem 5.3 is approximately 0.154 for small E. One can, however, construct 
examples where the lower bound in Corollary 5.2 is stronger (larger) than the 
one in Theorem 5.3: 

1 , u1= {I}, a,= {1+c,l+2c}. 

(5.2) 
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For small E, the Bauer-Fike lower bound is easily shown to be about e’/3/Jls, 
whereas Stewart’s is approximately e4, smaller by a factor of me. In 
practice, of course, one would not likely want to split the cluster of three 
eigenvalues in T anyway. 

Finally, we present our new bound, which is similar in spirit to results in 
[17] and [ll]. 

THEOREM 5.4. Let T be as in Theorem 5.3. Then 

diss( ui, u2) a 
seP,(% es) 

II~II-t (11~112 - 1Y2. 

Proof. If h is an eigenvalue of T + E but not of T, then we may write 

O=det(XZ-T-E)=det([hZ-T][Z-(AZ-T))’E]) 

= det(Z - [XI-T] -‘E). 

Therefore, choosing S according to Lemma 4.2, we get 

where we have used the value of K(S) from Lemma 4.2 and the fact that 
IIx-‘ll-l = q&X). Therefore, the eigenvalues of T + E lie in one of two 
regions, one where 

IIEII a 
Umin(h’ - A) 

11~11+(11~112 - v2 
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and one where 

177 

Wll 2 
umin(xz - B, 

llpll+ (llpl12 - v2 * 

In order for an eigenvalue from A(o,) and eigenvalue from B(o,) to coalesce, 
these regions must overlap at some A, yielding 

IIEII, a IIEII 2 
ma( a,,,,(XZ - A), umi,( AZ - B)) 

llpll+ wl12 - lY2 * 

Taking the infimum of the right hand side over all X yields the result. n 

Now we compare this new bound with the bounds discussed earlier. From 
Corollary 4.9 we see that our bound is stronger (larger) than Stewart’s bound: 

LEMMA 5.5. 

sedu,, u2) sepdol,u2) 
4. IIPII G IIPII+ ( llPl(2 - 1)1’2 ’ 

When n, = dim(A) = 1 or n2 = dim(B) = 1, the inequality (4.4) shows the 
two bounds are almost equivalent: 

LEMMA 5.6. When nl = dim(A) = 1 or n2 = dim(B) = 1, then 

1 s4ulT u2) seph u2) seduly u2> -. 
4 4llPIl G llPll+(llP\p 1)1’2 G 4llPll . 

How much better (larger) can the lower bound in Theorem 5.4 be than 
the one in Theorem 5.3? We give an example here, and return to the question 
in the next section. If 

A= and B=-A, (5.3) 
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then a simple calculation shows sep( A, B) is proportional to ezn-r and 
sep,,,(A, B) is proportional to e” for small e. Thus, sep(A, B) is almost the 
square of sep,(A, B). 

We present three more examples to show when the lower bound on 
diss(a,, us) in Theorem 5.4 is sharp. 

LEMMA 5.7. If T is a 2 by 2 matrix, diss(a,, uz) equals its lower bound 

in Theorem 5.4. 

Proof. Let 

There is a unitary matrix 0 such that 

where p = 11 PII and y is complicated and unimportant. Setting the (2,l) entry 
of this matrix to zero (a perturbation of the desired minimal size) results in an 
upper triangular matrix with a double eigenvalue at (a + b)/2. n 

COROLLARY 5.8. Zf T is rwrmal, then diss(u,,~,)=min~,~~,lX~-A~l/2, 

Proof. This follows from Lemmas 5.7 and 4.11. n 

The last example is when n1 = 1 and B is diagonal, in which case we can 
show the lower bound in Theorem 5.4 can only be too small, by a factor 
depending on nS. 

LEMMA 5.9. If T is in the fm of (4.1) with A = [a], B = 

diag(b,,..., b,,), and C = [c,. . . , c,,], then 

diss( ur, us) < 4(1+ a)& 
sepi(aIY u2> 

llpll+ (llw - v * 
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Sketch of proof. Let s minimize ]a - b,]; then sep,(a,, a,) = ]a - b,(/2. 
Let i maximize pi = ]ci/(bi - u)]; then l/P]] is not too far in value from pi. 
There are several cases. If s = i, the result follows from Lemma 5.7. If s f i 
and pi < 1, then the result follows by perturbing the submatrix 

to have a double eigenvalue at (a + b,)/2. If s # i and pi > 1, then the result 
follows by perturbing the submatrix 

to move the eigenvalue a to b,. n 

6. UPPER BOUNDS ON diss(a,, aa) 

As in the last section, we discuss previous upper bounds before presenting 
ours and comparing. We also discuss how far apart our upper and lower 
bounds can be. 

It is convenient to assume ]]I’]], = 1, so that our bounds are for the 
relative change in T needed to make eigenvalues coalesce. We assume as 
before that T is in the form (4.1) with ui = u(A), u2 = u(B), n, = dim(A), 
and n2 = dim(B). P will denote the projection corresponding either to ui or 

02. 
Previous upper bounds are due to Kahan [lo], Wilkinson [19], and Ruhe 

[131. 

THEOREM 6.1 (Kahan). Zf \IP(l > (nz + 1)1/2 then 

1.22 
diss( ur, u2) G 

((]P(]2- 1)1’2n, . 

Kahan’s proof yields the further insight that if the singular values of the R 
attaining the infimum in Definition 4.3 of sep(A, B) are well separated (i.e., 
some near ]]R]( and the rest near 0), then the exponent 1/2n, in this bound 
can be replaced by $, so his upper bound behaves like l/ (1 P 1) for large I) P I(. 
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Wilkinson’s result is only for the case ns = 1, but removes the 1.22 in the 
numerator of Kahan’s result. 

Ruhe’s bound is not precisely on diss(o,, a,), but rather on the distance 
from T to the nearest matrix with any double eigenvalue (mini diss({ Xi }, 

(J - {A,))): 

THEOREM 6.2 [Ruhe]. Let T be completely diagonalizable with eigenval- 

ues Xi andprojection.sP,, i=l,..., n. Then the distance from T to the nearest 

matrix with a double eigenvalue is at most 

nmaxlh, -Xi] 
i#j 

4 
i 

m~~~Pi~~2~(“-‘) - 1) ’ 

Kahan’s bound immediately yields the following bound on the distance 
from T to the nearest matrix with a double eigenvalue: 

1.22 
mmdiss({Xi},o- {A,})< 

( m”llpil12 - Ill’2 

which is sometimes better than Ruhe’s bound and sometimes worse. 
Our upper bound is a trivial consequence of the definition of sep,: 

LEMMA 6.3. fisepx( ui, a%) >, diss( ui, u2). 

Combining this with Theorem 5.4 we get 

COROLLARY 6.4. 

&sepx(ul, u2) >, diss(u,, us> > 
Sepi(ul, u2> 

IvYI+ (llPl12 - v. 

If T = diag( A, B), i.e. block diagonal, then 1) PII = 1 and we know 
diss(a,, a,) to within a factor of a: 

COROLLARY 6.5. Zf T = diag(A, B) then &sep,(A, B) > diss(u,, a,) > 
sep*(A, B). 

If we were measuring diss(u,, us) with respect to the 11. II norm instead of 
the 1). IJE norm, we would have diss(u,, a,) = sep,(A, B), although we will not 
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prove this here. In this case one could furthermore choose the smallest 
perturbation to have the same block diagonal structure as T. 

To compare our upper and lower bounds, we need 

THEOREM 6.6. Zf (IT(J, = 1 and m = min(n,, n,), then 

2sep,(A, B) > sep(A, B) > m-‘/2.21~“‘sep~(A, B). 

Proof. The left hand inequality is just Corollary 4.9, and when m = 1, 

Equation (4.4). Now we assume without loss of generality that m = n2 < rtl 
and B is lower triangular. From Definition 4.3 of sep we know 

When n, = 2, for example, 

(A - ZLZ,,) -i - &,(A - Z&Z,,) -‘(A- Z&Z,,) -i = 

0 (A-B,aZJi 1. 

We will bound the norm of this matrix from above (thus bounding sep 
from below) using the norm lllXl/ = maxiCjllXijll, where X contains n”, 
square subblocks Xi j. It is not hard to show 

IlXll G +GlllXlll. 

Now consider the ni by n, block entries of (Z_@A - BT@Zn,)-l. They 
consist of sums of products whose factors are scalars Bij (which all satisfy 
IBijj < 1, since lITlIE = 1) an d matrices (A - BiiZn,)-‘. Clearly u,,,&A - Bij. 
Z,,) is an upper bound on sep,(A, B), so 

(I(A-Bii’zn~)-l[l= u ) ’ sepA(i B)’ 
> 

Using these estimates, it is not hard to show by induction that block (i, j) 
(j > i) is bounded in I[.(1 norm by 
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n2 - 2 

< n2 
r( 

seph’(A,B)+ c sep,2(A,B).[sep,‘(A,B)+l]i 
i=O 

B~~seph’(A,B).[l+sep,‘(A,B)]n2-1 

<&.2”2-rsep~“z(A, B) 

[since ljTljE = 1 implies sep,(A, 8) G 11. Thus 

sep(A, B) > $ 1/2~21VnZsep~(A, B), 

as desired. n 

Since our upper bound is derived by only considering possible perturba- 
tions to the A and B blocks of T, we would not expect it to be very strong. 
Nonetheless, we now show it to be at least approximately as strong as Kahan’s 
and Wilkinson’s results (and sometimes much stronger). From Theorem 6.6 
and Lemma 4.4 we have (where we assume without loss of generality that 

n2 G a,> 

&s( gI, u2) Q &sep,( A, B) Q nk’2”2 .2: - l”’ sed’“2(A, B) 

239 g/2y 

G (,,p,,2 _ 1)1/2nz (since IlCllE G 1) 

2317 &i/2) l/l1 

d (J(q)2 - 1yz 

2.97 
< 

(JIP112 - 1y2”z ’ 



COMPUTING STABLE EIGENDECOMPOSITIONS 183 

which is within a constant factor of 2.97 of Kahan’s and Wilkinson’s results. 
The point is that sep,( A, B) can be small even when I( PI] = 1, so our result 
can be much stronger. 

In the example in (5.3) sep,(A, B) behaved like e” and sep(A, B) like 
ezn- ‘, or almost the square. Experience in constructing examples led us to 
believe this situation is worst case: 

CONJECTURE. If ]]T]lE = 1, then there is a constant K such that 

Ksept(A, B) G sep(A, B). 

As it is, we can only show that for this relation to be violated, both A and 
B must nearly have a common triple derogatory eigenvalue, a rare situation 
indeed. 

We can also use Theorem 6.6 and Lemma 4.4 to compare our upper 
bound and lower bound in Corollary 6.4. Abbreviating the upper bound 
~sep,(a,,a,)byu.b.andthelowerboundsep~(ul,u,)/[(~P~~+(~~P~~2-1)’~2] 
by l.b., we can prove 

THEOREM 6.7. Zf m = min(n,, n,), then 

u.b. > 1.b. > (6 .23(m+1)/2) - ‘(uh.)” +l. 

(Note that ]]T]lE = 1, so that u.b. d 1.) 

Proof. From Lemma 4.4 and the facts that ]]C]J, < 1 and sep(A, B) < 2 
(since ]]T]lE = l), we see 

((PI(+(llP112-1)1’2~l+ se;;C]‘;, 6 4 
sep(A, B) ’ 

From Theorem 6.6 then 

(]P]]+(](P]]2 - 1)1’2 G (fi.2m+1)sep;m(A, B), 
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1.b. = 
sep,(A, B) 

VY+ Wl12 - P2 
>, (&-23(m+1)/2) P1(u.b.)nr+l, 

as desired. n 

Therefore, although the upper and lower bounds can be quite far apart, 
they cannot be arbitrarily far apart. In the last section we saw that the lower 
bound was a good estimator of diss(a,, u2) in a number of interesting cases. 
We close with an example where the upper and lower bound are almost as far 
apart as permitted by the last theorem and where the upper bound is a better 
estimator of diss(a,, e2) than the lower bound: 

It is easy to see that sepx(A, B) is near ~“2 and l[Z’ll is near e~“z for small e, 
so our upper bound on diss(a,, u2) is near ~“2 and our lower bound is near 
~~“2. We claim that diss(u,, a,) is near e”2+‘, so while neither upper nor lower 
bound is asymptotically correct, the upper bound is a better approximation of 
diss(u,, u2). We just sketch the proof of this claim. To show diss(ui, u2) is no 
larger than en,+ ‘, perturb the matrix in the ( n2 + 1,l) entry; a perturbation of 
size proportional to en2+l causes the eigenvalue at 0 and an eigenvalue 
initially at e to coalesce at e/(n2 + 1). To show that the perturbation must be 
at least this big, consider a general perturbation E of T each of whose entries 
is bounded by a constant times ex, where x > n2 + 1. Computing the char- 
acteristic polynomial of T -t E yields (where we change variables to A = eu) 

where p(u) is a polynomial of degree at most n2 + 1 with bounded coeffi- 
cients. If x > n2 + 1, we see that the eigenvalues of T + E remain in a cluster 
near u = 1 (X = e) and u = 0 (A = 0). Therefore, if x > n, + 1, the eigenvalue 
at 0 cannot coalesce with the eigenvalue at e. 
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7. BOUNDS ON INVARIANT SUBSPACES AND CONDITION 
NUMBERS OF BLOCK DIAGONALIZING SIMILARITIES 

Insisting for a stable decomposition T = S diag(8,, . . . , 8,)Se1 that S and 
Bi be continuous functions of T for T E T(e) puts no constraint on the 
condition number of S, or equivalently, the smallness of the angles between 
invariant subspaces of T which are spanned by the columns of S acted on by 
each Bi. [The first dim( 0,) columns of S span the right invariant subspace of T 
belonging to ur, the next dim(&) columns of S span the right invariant 
subspace of T belonging to us, and so on.] For example, if 

thena(T,)={+fi, -&}anddiss({+&},{ -&})=rbyLemma5.7.As 
we decrease x to 0, JIP(1 = l/\r x -+ 00, so the condition number of the best 
diagonalizing similarity (I\PII + ( l\P112 - 1)‘/2) from Lemma 4.2 goes to infin- 
ity, and the angle between the invariant subspaces corresponding to fi and 
-\r x goes to zero. It thus becomes numerically difficult to compute S 
accurately [2,8,14,18]. Thus a further condition we might impose on a stable 
decomposition is a bound on K(S) for all T E T(c), or a bound on how far the 
invariant subspaces spanned by the columns of S may vary. 

To compute such a decomposition we use the approach of Stewart [14], 
which only works when (JEll, < sep(a,, u,)/4]]P]]. For completeness, we 
review some basic definitions and lemmas in [14] first. 

DEFINITION 7.1. The largest angle between two subspaces X and Y, 
written &,,,(X,Y), is the largest (acute) angle 0(x, y) between any two 
nonzero vectors x E X and y E Y: 

e,,,(x,Y) = SUP inf e(r, y). 
xsx y=Y 
x+0 y+o 

The smallest angle between X and Y, written O,i,(X,Y), is the smallest angle 
8(x, y) between any two nonzero vectors x E X and y E Y: 

e,,(x,Y) = inf inf e(2,y). 
x=x y=Y 
xi0 yio 
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We may compute t?,,(X,Y) and fl,,(X,Y) as follows: 

LEMMA 7.2 [14]. Let X be spanned by the columns of [Z(O]*, and Y by 
the columns of [ZlZ]*. Suppose that dim(X) = dim(Y). Then 

B,,,(X, Y) = arctan ((Z/l = arcsec[ (l+ ](2((2)“2]. 

LEMMA 7.3 [2]. Let X be spanned by the columns of I I IO] T, and Y by 
the columns of [ZlZ]? Suppose that dim(X) = dim(Y). Then 

0,,(X,Y) = arccot])Z/) = arccsc[ (1 + JjZJJ”)l”]. 

Recalling the discussion in Section 4, where for 

T=A c i 1 0 B 

the left and right invariant subspaces corresponding to A were spanned by 
[ZIR] and [IlO]* respectively, and the left and right subspaces corresponding 
to B were spanned by [O(Z] and [ - RT(ZIT respectively, we have 

COROLLARY 7.4. The smullest angle between right (or .le@) subspaces 
corresponding to A and B is arccot I I R I ] = arccsc]]P]], where P is a projection. 
The largest angle between left and right subspaces corresponding to A (or to 
B) is arctan))R)) = arcsec])P)). 

Thus, as ]lP]] gets large, the smallest angle between subspaces of A and B 
gets small, and the largest angle between left and right subspaces of A (or of 
B) gets large (close to r/2). 

We will also need to relate norms of projections to condition numbers of 
block diagonalizing similarities: 

THEOREM 7.5 [2]. Let a(T) be partitioned into disjoint sets o(T) = 
Uf= rui, where the projection P, corresponds to a,. Let S be a block diagonaliz- 
ing similarity as in (1.1). T&n 
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where the infimum .is over all block diagonulizing S such that ~(0~) = ui. 

Furthermore, if S’ is chosen so that the dim(Oi) columns spanning the 

invariant subspaces corresponding to ui are orthonormul, K(S’) also satisfies 
the bounds in (7.1). 

Slight improvements of this theorem may be found in [6] and [15]. 
The approach taken by Stewart and slightly generalized here is to look for 

a similarity of the form 

S= 
[ 

-2 (I-ZQ)_’ IQ I 11 O 
0 (I-QW 

s-l= [; :] 

(7.2) 

such that 

S-lA’ C's 
[ 1 D’ B’ 

is block diagonal. (Stewart chooses Z = - Q in his approach and seeks block 
upper triangularity.) Writing out this last matrix product, we get that 

A’ + ZD’ - C’Q - ZB’Q - A’Z - ZD’Z + C’ + ZB’ 

QA’ + D’- QC’Q - B’Q - QA’Z - D’Z + QC’ + B’ 1 
(I-ZQ)-’ O- 

0 (I-QZ)-’ 1 
(7.3) 

should be block diagonal, implying 

QA’ - B’Q = - D’ + QC’Q and A’Z - ZB’ = C’ - ZD’Z. (7.4) 

Stewart gives a sufficient condition for the existence of a solution of (7.4): 

THEOREM 7.6 [ 141. Suppose (1 D’ll E. IIC’I\ E < sep2( A’, B’)/4. Then both 

equations in (7.4) are solvable with 

IlQllE G 
2.IlD’ll, 

sep( A’, B’) 
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Sketch of proof. Stewart shows that if the conditions of the theorem are 
satisfied, then the iterations 

Qi+rA’- Z?‘QI+r = - D’+ QiC’Qi and A’Zi+r - ZI+rB’= - C’+ Z,D’Z, 

are contractions and converge to solutions bounded as above. 
The equations (7.4) let us rewrite (7.3) as 

(7.5) 

which is block diagonal as desired. Thus A' C' 
[ 1 

subspaces spanned by the columns of [I] - Q;’ 
B’ 

has right invariant 

and [ - ZT(ZIT as long as 
I - ZQ and Z - QZ are invertible, which we must check. 

Finally, we need 

LEMMA 7.7 [14]. sep(A + E, B + F) > sep(A, B) - IIEIIE: - IIFIIE. 

We are now is a position to prove the following theorem, which is a slight 
extension of Theorem 4.11 in [14]: 

LEMMA 7.8. Let 

TEA c [ 1 0 B 

with u1 = a(A) and a2 = a(B) disjoint. Suppose E satisfaes lIElIE < 
sep(u,, u,)/(4]]P]]). Let x = 411Pll.llEllE/sep(u,, ua) < 1. Then the largest 
angle S,,, between the right (or lej3) invariant subspaces of T and T + E 
corresponding to u1 is bounded by 

e .,,garctan(r~[I~PJ~+(IIPJ12-1)“2]) <G, 

where 8 = arccsc( ]I PII) is the largest angle between left and right subspaces of 
T belonging to u1 (or uz). 
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Proof. Choose S, as in Lemma 4.2, so that S;‘TS, = diag(A, B). Thus 

S,‘(T + E)S, = 
[:: :I+[;: i;:]. (7.6) 

where IIF\IF: < ((PIJ.(JEII,. In order to apply Theorem 7.6 to the matrix in 
(7.6), we need 

which will be satisfied if 

ll~Il~IIEIIE~ $[sedA, B) - W’lI~IIEIIE1~ 

or 

=p(A, B) 
IIEIIEG 4,,p,, T 

which we have assumed. Furthermore, 

IIQIIE G 
wIl~llElI, 

sep(A, B) - 2ll~II~llEll~ 

W’II. II-WE 

’ sep(A, B) - W’llsep(A, B)/4lIPll 

=x<l, 

and similarly 1) Z 1) E < x < 1, implying Z - QZ and I - ZQ are invertible. 
Thus T + E is block diagonalized by the similarity SOS, where S and S, are 
given in Equation (7.2) and Lemma 4.2. 

Thus, T + E has a right invariant subspaces spanned by the first dim(A) 
columns of SOS: 
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Postmultiplying these columns by (I - ZQ)( Z - RQ/ (1 PII) - ’ yields the 
equivalent, basis 

By Lemma 7.2, the largest angle O,,,,, between this last subspace and the 
unperturbed spaces spanned by [I IO] ’ is 

< arctan 
IIQII 

(1 - IlRll. IIQII/II~II) . IVY i 

< arctan 
(1 - lI&lI) . IlPll i 

as claimed. Since x < 1 

This completes the proof for the right invariant subspaces corresponding to 
(I~. The other cases are analogous. n 

We may also use this technique to estimate the condition number of the 
similarity which block diagonalizes T + E: 

LEMMA 7.9. Let T, E, and x be as in Theorem 7.8. Then if P*: is the 
projection corresponding to ul for T + E, we have 
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Let S, = SOS be the diagonalizing similarity of Lemma 7.8. Then 

1+x 
K( S,) < - ’ l_x K(So) 

Proof. We begin by estimating K(S~:). Using (7.2), we see 

K(s,) = K(s,s) < K(So)K(S) 

=G K(%) 
1l+m~OlZll~ llQll>l” 
1 - [max(llZIl, 11911)12 

1+x 
~6)~~) 

as claimed. The inequality for llPEll follows from Theorem 7.5: 

We may now summarize our results on computing stable decompositions: 

THEOREM 7.10. Let a(T,) =Uf=,aj be a disjoint partitioning of TO’s 

spectrum. Let Pi denote the projection corresponding to ui. Then if 

411pill 

XEC max 
l<i<b Sep(U,,U-Ui) 

< 1, (7.7) 

Uf= Iui is a stable decomposition of T(c), and the block diagonaliaing 

similarity S in (1.1) can be chosen such that 

1+x 
‘C(S) G 2bK(So)l_x 

j%r a11 T E T(c). (Here S, is any block diagonalizing similarity of TO.) 

lf instead of (7.7) the weaker condition 

(7.8) 

c max 
lIpill+ ( lIpill - 1)1’2 < 1 

(7.9) 
l<i<b Sep,(Ui,U - ‘i> 
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holds, then Uf=,o, is also a stable decomposition of T(e), but no bound on 
K( S ) can be asserted. 

Proof. That the decomposition Uiu, is stable if either condition (7.7) or 
(7.9) holds is just a simple consequence of Theorems 5.3 and 5.4 and Lemma 
3.2. It remains to prove (7.8). This follows from the inequality (7.1) and 
Lemma 7.9. Letting PEi denote the projection for T + E corresponding to ui, 
we have 

1+X 1+x 
IC(S,) G bmaxllPfi;:ill < 2b. l_x .li<II G 2b. - 

1-X 
‘k(S,). 

i 

as desired. 
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