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Abstract

Cluster algebras form an axiomatically defined class of commutative rings designed to serve
as an algebraic framework for the theory of total positivity and canonical bases in semisimple
groups and their quantum analogs. In this paper we introduce and study quantum deformations
of cluster algebras.
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1. Introduction

Cluster algebras were introduced by S. Fomin and A. Zeleviri8ky their study
continued in[10,2]. This is a family of commutative rings designed to serve as an
algebraic framework for the theory of total positivity and canonical bases in semisimple
groups and their quantum analogs. In this paper, we introduce and study quantum
deformations of cluster algebras.

Our immediate motivation for introducing quantum cluster algebras is to prepare the
ground for a general notion of the canonical basis in a cluster algebra. Remarkably,
cluster algebras and their quantizations appear to be relevant for the study of (higher)
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Teichmuller theory initiated if11,12,5,6] Our approach to quantization has much in
common with the one iifi5,6], but we develop it more systematically. In particular, we
show that practically all the structural results on cluster algebras obtainfg]1i@,2]
extend to the quantum setting. This includes the Laurent phenonm{&@2] and the
classification of cluster algebras of finite tyflO].

Our approach to quantum cluster algebras can be described as follows. Recall that a
cluster algebraA is a certain commutative ring generated by a (possibly infinite) set
of generators calledluster variablesinside an ambient field® isomorphic to the field
of rational functions irnm independent variables ovéd. The set of cluster variables is
the union of some distinguished transcendence bases célled (extendedglusters
The clusters are not given from the outset but are obtained from an initial cluster via
an iterative process ahutationswhich follows a set of canonical rules. According to
these rules, every clustéx;, ..., x,} is surrounded by: adjacent clusters (for some
n < m called therank of A) of the form{x, ..., x,} — {xx} U{x;}, wherek runs over
a givenn-element subset afxchangeabléndices, andy; € F is related tox; by the
exchange relation(see R.2)). The cluster algebra structure is completely determined
by anm x n integer matrix B that encodes all the exchange relations. (The precise
definitions of all these notions are given in Sect@h Now, the quantum deformation
of A is aQ(g)-algebra obtained by making each cluster intquasi-commutindamily
{X1,..., X}, this means thak;X; = qiifXle- for a skew-symmetric integen x m
matrix A = (4;;). In doing so, we have to modify the mutation process and the exchange
relations so that all the adjacent quantum clusters will also be quasi-commuting. This
imposes thecompatibility relation between the quasi-commutation mattixand the
exchange matrixB (Definition 3.1). In what follows, we develop a formalism that
allows us to show that any compatible matrix pél, B) gives rise to a well-defined
quantum cluster algebra.

The paper is organized as follows. In Sect@yrnwe present necessary definitions and
facts from the theory of cluster algebras in the form suitable for our current purposes.
In Section3, we introduce compatible matrix paitd\, B) and their mutations.

Section4 plays the central part in this paper. It introduces the main concepts needed
for the definition of quantum cluster algebras (Definitidri?): based quantum tori
(Definition 4.1) and their skew-fields of fractiongyric frames(Definition 4.3), quantum
seeds(Definition 4.5) and their mutations (Definitiod.8).

Section5 establishes the quantum version of the Laurent phenomenon (Corollary
5.2): any cluster variable is a Laurent polynomial in the elements of any given cluster.
The proof closely follows the argument jA] with necessary modifications. It is based
on the important concept of ampper cluster algebraand the fact that it is invariant
under mutations (Theorer®.1).

In Section6, we show that thexchange graplof a quantum cluster algebra remains
unchanged in the “classical limity = 1 (Theorem6.1). (Recall that the vertices of the
exchange graph correspond to (quantum) seeds, and the edges correspond to mutations.)
An important consequence of Theorel is that the classification of cluster algebras
of finite type achieved ifj10] applies verbatim to quantum cluster algebras.

An important ingredient of the proof of Theorefl is the bar-involution on the
quantum cluster algebra which is modeled on the Kazhdan—Lusztig involution, or the
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one used later by Lusztig in his definition of the canonical basis. We conclude Section
6 by including the bar-involution into a family afwisted bar-involutiongProposition

6.9. This construction is motivated by our hope that this family of involutions will
find applications to the future theory of canonical bases in (quantum) cluster algebras.

Section7 extends to the quantum setting another important result f&na sufficient
condition (“acyclicity”) guaranteeing that the cluster algebra coincides with the upper
one (Theorem?7.5). The proof in[2] is elementary but rather involved; we do not
reproduce it here in the quantum setting, just indicate necessary modifications.

Section8 presents our main source of examples of quantum cluster algebras: those
associated with double Bruhat cells in semisimple groups. The ordinary cluster algebra
structure associated with these cells was introduced and studj@gl ifhe main result
in Section8 (Theorem8.3) shows, in particular, that every matri& associated as in
[2] with a double Bruhat cell can be naturally included into a compatible matrix pair
(A, B). Not very surprisingly, the skew-symmetric matrixthat appears here is the one
describing the standard Poisson structure in the double cell in question; this matrix was
calculated in16,11] The statement and proof of Theoréh8 are purely combinatorial,

i.e., do not use the geometry of double cells; thus, without any additional difficulty,
we state and prove it in greater generality that allows us to produce a substantial class
of compatible matrix pairs associated with generalized Cartan matrices.

The study of quantum double Bruhat cells continues in Sectidn(For the conve-
nience of the reader, we collect necessary preliminaries on quantum groups in Section
9.) The goal is to relate the cluster algebra approach with that developed by De Concini
and Procesj4] (see alsd14,3]). Our results here are just the first step in this direction;
we merely prepare the ground for a conjecture (Conjectx&(Q that every quantum
double Bruhat cell is naturally isomorphic to the upper cluster algebra associated with
an appropriate matrix pair from TheoreBn3. The classical case of this conjecture was
proved in[2, Theorem 2.10Q]

For the convenience of the reader, some needed facts on Ore localizations are col-
lected with proofs in AppendiA.

2. Cluster algebras of geometric type

We start by recalling the definition of (skew-symmetrizable) cluster algebras of ge-
ometric type, in the form most convenient for our current purposes.

Let m andn be two positive integers witln > n. Let F be the field of rational
functions overQ in m independent (commuting) variables. The cluster algebra that we
are going to introduce will be a subring of the ambient figld To define it, we need
to introduce seeds and their mutations.

Definition 2.1. A (skew-symmetrizableyeedin F is a pair (X, B), where

Q) X ={x1, ..., Xm} is a transcendence basis B#f which generates-.
(2) B is anm xn integer matrix with rows labeled b, m] = {1, ..., m} and columns
labeled by am-element subset¢x C [1, m], such that the: x n submatrixB of B
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with rows labeled byex is skew-symmetrizable, i.eDB is skew-symmetric for
some diagonak x n matrix D with positive diagonal entries.

The seeds are defined up to a relabeling of elemenistogether with the correspond-
ing relabeling of rows and columns df.

Remark 2.2. The last condition in (1), namely th&t generatesF, was unfortunately
omitted in [10,2] although it was always meant to be there. (We thank E.B. Vinberg
for pointing this out to us.) In what follows, we refer to the subsets satisfying (1) as
free generating setsf F.

We denotex = {x; : j € ex} C X, andc = X — x. We refer to the indices frorax as
exchangeable indiceso x as thecluster of a seed(X, B), and to B as theprincipal
part of B .

Following [8, Definition 4.2] we say that a reah x n matrix B’ is obtained from
B by matrix mutationin directionk € ex, and write B’ = y,(B) if the entries of B’
are given by

—b

ij
bj; = b+ |bik|bi; ‘|2‘bik|bkj|

ifi=korj=k;
(2.1)

otherwise.

This operation has the following properties.

Proposition 2.3. (1) The principal part of B is equal tou (B).
(2) w, is involutive u, (B") = B.
(3) If B is integer and skew-symmetrizable then squiéB).
(4) The rank of B’ is equal to the rank of3.

Proof. Parts (1) and (2) are immediate from the definitions. To see (3), notice that
W, (B) has the same skew-symmetrizing matiix (see[8, Proposition 4.5] Finally,
Part (4) is proven iff2, Lemma 3.2] [

Definition 2.4. Let (%, B) be a seed inF. For any exchangeable index the seed
mutationin direction k transforms(X, B) into a seedu, (X, B) = (X', B"), where

o X' =X—{x}U{x;}, wherex; € F is determined by thexchange relation

bik —b;
Xk X = | | x;* | | x; kL (2.2)
i€[1l,m] i€[1l,m]
bj>0 bj <0

e The matrix B’ is obtained fromB by the matrix mutation in directio.

Note that(X', B') is indeed a seed, sinceé is obviously a free generating set for
F, and the principal part oB’ is skew-symmetrizable by parts (1) and (3) of Propo-
sition 2.3. As an easy consequence of part (2) of Proposifid® the seed mutation
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is involutive, i.e., (X', B’) = (X, B). Therefore, the following relation on seeds is an
equivalence relation: we say th&k, B) is mutation-equivalent tq%’, B’) and write
(%, B) ~ (X, B") if (X, B’) can be obtained froniX, B) by a sequence of seed muta-
tions. Note that all seed&’, B') mutation-equivalent to a given seex, B) share the
same set = X' — x'. Let Z[c*!] ¢ F be the ring of integer Laurent polynomials in
the elements ot.

Now everything is in place for defining cluster algebras.

Definition 2.5. Let S be a mutation-equivalence class of seed%ifThe cluster algebra
A(S) associated withs is the Z[c*1]-subalgebra of the ambient field, generated by
the union of clusters of all seeds &

Since S is uniquely determined by each of the see{d§l§) in it, we sometimes
denote A(S) as A(X, B), or even simply.A(B), becauseB determines this algebra
uniquely up to an automorphism of the ambient fi¢id

3. Compatible pairs

Definition 3.1. Let B be anm x n integer matrix with rows labeled byl, m] and
columns labeled by am-element subseex C [1,m]. Let A be a skew-symmetric
m x m integer matrix with rows and columns labeled [, m]. We say that a pair
(A, B) is compatibleif, for every j € ex andi € [1, m], we have

m
Zbkjiki = 9;;d;
=1

for some positive integerg; (j € ex). In other words, the: x m matrix D =BTA
consists of the two blocks: thex x ex diagonal matrixD with positive integer diagonal
entriesd;, and theex x ([1, m] — ex) zero block.

A large class of compatible pairs is constructed in Sec8dn Here is one specific
example of a pair from this class.

Example 3.2. Let B be an 8x 4 matrix given by

oo
I

O O O K
L
o
(BN
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where the columns are indexed by the eet= {3, 4, 5, 6} (note that the 4« 4 submatrix

of B on the rows{3,4,5,6} is skew-symmetric). (This matrix describes the cluster
algebra structure in the coordinate ring $f3 localized at the four minoraj 3, Az 1,
A1223, and Apz 12; it is obtained from the one if2, Fig. 2] by interchanging the first
two rows and changing the sign of all entries.) Let us define a skew-symmetri@ 8

matrix A by 00 1 -1 1 0 00

00 0 -1 -1 -1 00
10 0 0 -1 0 10
A= 11 0 O 0 1 1.
11 1 0 O 1 11
01 0 0 -1 0 01
00 -1 -1 -1 0 0O
00 0 -1 -1 -1 00

A direct check shows that the pain, B) is compatible: the producf) = BTA is

equal to

0 2 0 00

o

o O O o
o O

0 0 200
0 0 0 20
0 0 0 0 2

o O O

Proposition 3.3. If a pair (A, B) is compatible therB has full rankn, and its principal
part B is skew-symmetrizable

Proof. By the definition, then x n submatrix of BTA with rows and columns labeled
by ex is the diagonal matrixD with positive diagonal entried;. This implies at once

that rk(B) = n. To show thatB is skew-symmetrizable, note th@B = BTAB is
skew-symmetric. [

We will extend matrix mutations to those of compatible pairs. Fix an indexex
and a signe € {£1}. As shown in[2, (3.2)] the matrixB" = 1 (B) can be written as

B' = E.BF., (3.1)

where

e E. is them x m matrix with entries
0ij it j #k;
max(0, —eb;) if i #j=k.
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e F. is then x n matrix with rows and columns labeled k&, and entries given by
5,']' if i # k;
fij=9-1 ifi=j=k (3.3)
max(, eby;) if i =k # j.
Now suppose that a paifA, B) is compatible. We set
AN = EJAE,; (3.4)
thus, A’ is skew-symmetric.

Proposition 3.4. (1) The pair (A’, B') is compatible
(2) A’ is independent of the choice of a sign

Proof. To prove (1), we show that the pain\’, B') satisfies Definition3.1 with the
same matrixD. We start with an easy observation that

E2=1 F?=1 (3.5)
We also have
FID = DE.; (3.6)
indeed, one only has to check that
di max(0, —ebjr) = dr max(0, eby;)

for i € ex— {k}, which is true since, by PropositioB.3 D is a skew-symmetrizing
matrix for the principal part ofB. In view of (3.5 and (3.6), we have

(BYTA = F'DE. =D

finishing the proof.
(2) An easy calculation shows that the matrix entries of the produet E_E_ are
given by

1 if i =j;
8ij = {5jkbik if i £ 7. (3.7)



412 A. Berenstein, A. Zelevinsky/Advances in Mathematics 195 (2005) 405-455

A direct check now shows thatTAG = A. (For instance, ifj # k then the(k, j)
entry of GTAG is equal to

;ukj + Zb,’kﬂv,'j = /lkj,
ik

since the sumd_, , bi/ij is the (k, j)-entry of BTA and so is equal to 0.) We con-
clude thatET AE, = ETAE_ as claimed. O

Proposition3.4 justifies the following important definition.
Definition 3.5. Let (A, B) be a compatible pair, ande ex. We say that the compatible
pair given by 8.1) and @.4) is obtained from(A, B) by the mutationin directionk,
and write (A’, B') = i (A, B).

The following result extends part (2) of Propositi@8 to compatible pairs.

Proposition 3.6. The mutations of compatible pairs are involutifer any compatible
pair (A, B) and k € ex, we havey, (1, (A, B)) = (A, B).

Proof. Let y (A, B) = (A', B'), and letE. be given by 8.2 applied toB’ instead of

B. By the first case in4.1), the kth column of B’ is the negative of théth column
of B. It follows that:

E =E_,. (3.8)
In view of (3.5, we get
I \NT A’ 1/ TA/
(E)'NE, =ENE_=A,

which proves the desired claim. O

4. Quantum cluster algebras setup
4.1. Based quantum torus and ambient skew-field

Let L be a lattice of rankm, with a skew-symmetric bilinear formh : L x L — Z.
We also introduce a formal variabbg It will be convenient to work over the field of
rational functionsQ(¢?) as a ground field. LeZ[¢*Y2] c Q(¢¥/?) denote the ring
of integer Laurent polynomials in the variabjé’?.
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Definition 4.1. The based quantum torusssociated withL is the Z[¢*Y/?]-algebra

T = T(A) with a distinguishedZ[¢*1/?]-basis{X¢ : ¢ € L} and the multiplication
given by

xex/ = ghNeDNR2xerl (e, feL). (4.1)

Thus, 7 can be viewed as the group algebra lofover Z[¢*1/?] twisted by a
2-cocycle(e, f) > ¢MeN/2 1t is easy to see thaf is associative: we have

x°x )x¢ = xe(x’x8) = q(A(fyf)+/\(e,g)+/\(fyg))/2xf+f+g. (4.2)
The basis elements satisfy the commutation relations
xex! = gMeNxrxe, (4.3)
We also have
X'=1 x99 1=Xx"°(eel). (4.4)
It is well-known (see the appendix) thét is an Ore domain, i.e., is contained in its
skew-field of fractionsF. Note thatF is a Q(¢/?)-algebra. A quantum cluster algebra

to be defined below will be &[¢*12]-subalgebra ofF.

4.2. Some automorphisms &t

Unless otherwise stated, by amtomorphisrmof F we will always mean &l (q/?)-
algebra automorphism. An important class of automorphisms-ofan be given as
follows. For a lattice poinb € L —ker(A), let d(b) denote the minimal positive value
of A(b,e) for e € L. We associate witth the grading on7 such that everyX¢ is
homogeneous of degree

dp(X®) = dp(e) = A(b, €)/d (D). (4.5)

Proposition 4.2. For everyb € L — ker(A), and every sigre, there is a unique auto-
morphismp, . of 7 such that

e ) X© if A(b,e)=0;
Ppe(X) = {Xe + Xt if Ab, e) = —d(b). (4.6)
Proof. Since the elementX* that appear in4.6), together with their inverses generate
T as aZ[q*Y/?]-algebra, the uniqueness pf, . is clear. To show the existence, we
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introduce some notation. For every non-negative integere define an element, _ €
T by

r
Py, = [[@+ gt @ DIO2xeb), 4.7
p=1

We extend the action of, . given by @.6) to a Z[g*Y/?}-linear map7T — F such
that, for everye € L with |dy(e)| = r, we have

. Pl;EX" if dp(e) =—r,
Pep(X) = { (P, )X if dyle) =7 48)

(it is easy to see tha#(8) specializes t04.6) whend,(e) = 0, ord,(e) = —1; a more
general expression is given by.10). One checks easily with the help 04.8) that
this extended map is &[¢*Y?]-algebra homomorphisriir — F, and so it extends to
an algebra endomorphism ¢f. The fact that this is an automorphism follows from
the identity p_,, _.(p,, .(X¢)) = X¢, which is a direct consequence of.§). [

A direct check using 4.8) shows that the automorphisms, , have the following
properties:

plji =P—b,—e> Pb,—s = Th,e © P> (4.9
where1, . is an automorphism ofF acting by
Tpe(X9) = XY (e e ).

In the first case in4.8), i.e., whend,(e) = —r < 0, we have also the following
explicit expansion ofp, .(X¢) in terms of the distinguished basis

" r
X¢) = xeterb, 4.10
Pp.eX0) Z<P>qdw>/z ( )

p=0

where we use the notation

r__4=ry...(4r—p+l _ —r+p-1
<r> _ @ —t") (0 I )' (4.11)
t

P P —t=P) o (t =171
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This expansion follows from the first case iA.§ with the help of the well-known
“t-binomial formula”

r—1 r

[[a+rt2x=>" <r> xP. (4.12)
p=0 p=0 P/

4.3. Toric frames

Definition 4.3. A toric framein F is a mappingM : 7" — F — {0} of the form

M(c) = p(X"1)), (4.13)

where ¢ is an automorphism ofF, andy : Z" — L is an isomorphism of lattices.
Note that bothp and# are not uniquely determined by a toric frarive
By the definition, the elements/(c) form a Z[¢*1/?]-basis of an isomorphic copy

¢@(T) of the based quantum toruf; their multiplication and commutation relations
are given by

MM (d) = g™ D2y (e + ) (4.14)
and
MM(d) = g™ DM@y M(c), (4.15)

where the bilinear form\,, on Z™ is obtained by transferring the form from L by
means of the lattice isomorphism (Note that either 0f4.14 and @.15 establishes,
in particular, thatA,, is well defined, i.e., does not depend on the choice;.pfIn
view of (4.4), we have

MO =1 M) t=M(—c) (ce?™. (4.16)

We denote by the same symbdly, the correspondingsz x m integer matrix with
entries

/1,'} = AM(ei, e‘,'), (417)
where{es, ..., ey} is the standard basis of”.
Given a toric frame, we seX; = M(e;) for i € [1,m]. In view of (4.19, the

elementsX; quasi-commute

X,‘Xj =q/1"J'X.,~X,~. (4.18)
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In the “classical limit” ¢ = 1, the setX = {X1, ..., X,»} specializes to an (arbitrary)
free generating set of the ambient field, while the s (¢) : ¢ € 7} turns into the
set of all Laurent monomials in the elementsyof

Lemma 4.4. A toric frameM : 7™ — F — {0} is uniquely determined by the elements
Xi = M(e;) for i € [1, m].

Proof. In view of (4.14), (4.17), and 4.18, we get
M(a1,...,ay) = q% Lok ”k"‘}“"fX‘ll1 S Xom (4.19)

for any (a1, ..., a;y) € 7™, which implies our statement. [J

In spite of Lemma4.4, we still prefer to include the whole infinite family of elements
M(c) into Definition 4.3, since there seems to be no nice way to state the needed
conditions in terms of the finite seX.

4.4, Quantum seeds and their mutations
Now everything is ready for a quantum analog of DefinitA.

Definition 4.5. A quantum seeds a pair (M, B), where

e M is a toric frame inF.

e B is anm x n integer matrix with rows labeled bjl, m] and columns labeled by
an n-element subseg¢x C [1, m].

e The pair(Ay, B) is compatible in the sense of Definiti®l

As in Definition 2.1, quantum seeds are defined up to a permutation of the standard
basis inZ™ together with the corresponding relabeling of rows and columns.of

Remark 4.6. In the “classical limit” ¢ = 1, the quasi-commutation relationd.15

give rise to the Poisson structure on the cluster algebra introduced and studied in
[11]. In fact, the compatibility condition for the paitAy, B) appears in11, (1.7)]
Furthermore, fork € ex, let b* € 7™ denote thekth column of B. As a special case

of (4.15, for every j, k € ex, we get

MBHMGY) = g™ @D M@y M b7y,

where the exponem (b7, b¥) is the (j, k)-entry of the matrixBT Ay, B. Since the pair
(Ay, B) is compatible, this exponent is equal dgb;; = —dibi;, where the positive
integersd; for j e ex have the same meaning as in Definiti8rd. In the limit g = 1,
this agrees with the calculation of the Poisson structure fibly Theorem 1.4]n the
so-calledz-coordinates.



A. Berenstein, A. Zelevinsky/Advances in Mathematics 195 (2005) 405-455 417

Our next target is a quantum analog of Definit@d. Let (M, B) be a quantum seed.
Fix an indexk € ex and a signe € {+1}. We define a mapping/’ : 7" — F — {0}

by setting, forc = (c1, ..., cm) € Z™ with ¢ > 0,
Ck c
M) =) ( k) M(Eec+epbb),  M'(—=c) = M'(0)™%, (4.20)
=0 \P/qU%/?

where we use thé-binomial coefficients from4.11), the matrixE. is given by 8.2,
and the vecto* e 7™ is the kth column of B. Finally, let B’ = y,(B) be given by
(2.2.

Proposition 4.7. (1) The mappingM’ is a toric frame independent of the choice of a
sign ¢. y }

(2) The pair (A, B') is obtained from(A,;, B) by the mutation in direction ksee
Definition 3.5). 5

(3) The pair (M’, B’) is a quantum seed

Proof. (1) To see thatM’ is independent of the choice of notice that the summation
term in @.20 does not change if we replagewith —e, andp with ¢ — p (this is a
straightforward check). To show that’ is a toric frame, we expreddl according to
(4.13. Replacing the initial-based quantum torfiswith (7)), and usingy to identify
the latticeL with 7™, we may assume from the start that= 7", and M (c) = X¢ for
any ¢ € L. Note that the compatibility condition for the pain,,, B) can be simply
written as

AbY e;) = 6jd; (i e[l,m], jeex. (4.21)

It follows that, using the notation introduced in Sectidr?, we getd(b¥) = d for
k € ex, anddy (Esc) = —cx. Comparing 4.20 with (4.10, we now obtain

M'(c) = py (XF) (c e L); (4.22)

thus, M’ is of the form @.13), i.e., is a toric frame.

(2) In view of 4.17) and @.22, the matricesA,; and Ay, are related byA,, =
ESTAMEE, so the claim follows from 3.4).

(3) The statement follows from parts (1) and (2) in view of ProposiBoh O

Proposition4.7 justifies the following definition.
Definition 4.8. Let (M, B) be a quantum seed, arde ex. We say that the quantum

seed(M’, B') given by @.20 and @.1) is obtained from(M, B) by the mutationin
directionk, and write (M’, B') = (M, B).
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The following proposition demonstrates that Definitid8 is indeed a quantum
analog of Definition2.4.

Proposition 4.9. Let (M, B) be a quantum see@nd suppose the quantum se@d’,

B’) is obtained from(M, B) by the mutation in directiork € ex. For i € [1, m], let

X; = M(e;) and X, = M'(¢;). Then X! = X; for i # k, and X is given by the
following quantum analog of the exchange relati@h?):

Xp=M(—ex+ Y bixei) + M(—ex — ) bixe;). (4.23)
bi>0 bir<0

Proof. This follows at once by applyingd(20) to c = ¢; for i € [1, m]. O

Proposition 4.10. The mutation of quantum seeds is involutifeM’, B') = (M, B)
then p, (M, B') = (M, B).

Proof. As in the proof of Propositior}.7, we can assume without loss of generality
that L = 7™, and M(c) = X¢ for any ¢ € L. Then the toric frameM’ is given by
(4.22. Applying (4.22 once again, witte replaced by—e, we see that the toric frame
M” in the quantum seegd, (M’, B is given by

M"(c) = pyr op_ppr o (XFE=0),

where the matrixe’ , is given by @.2) applied toB’ instead ofB. Using an obvious
fact that E.b* = b* together with 8.8), (3.5, and @.9, we conclude thatM”(c) =
X¢ = M(c), as required. I

4.5. Quantum cluster algebras

In view of Propositiord.10, the following relation on quantum seeds is an equivalence
relation: we say that two quantum seeds mngation-equivalenif they can be obtained
from each other by a sequence of quantum seed mutations. For a quantutMsesq
we denote byX = {X1,..., X,,} the corresponding “free generating set” jfi given
by X; = M(e;). As for the ordinary seeds, we call the subXet {X; : j e ex} C X
the cluster of the quantum seedM, B), and setC = X — X. The following result is
an immediate consequence of Propositib8.

Proposition 4.11. The (m — n)-element seC = X — X depends only on the mutation-
equivalence class of a quantum se@d, B).

Now everything is in place for defining quantum cluster algebras.

Definition 4.12. Let S be a mutation-equivalence class of quantum seeds, iand let
C C F be the(m — n)-element set associated & as in Propositiord.11 The cluster
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algebra.A(S) associated withS is the Z[¢*1/?]-subalgebra of the ambient skew-field
F, generated by the union of clusters of all seedsSjrtogether with the elements of
C and their inverses.

SincesS is uniquely determined by each of its quantum se@ds B), we sometimes
denote A(S) as A(M, B), or even simplyA(Ay, B), because a compatible matrix
pair (A, B) determines this algebra uniquely up to an automorphism of the ambient
skew-field F. We denote byP the multiplicative group generated lay/? and C, and
treat the integer group ringP as theground ring for the cluster algebra. In other
words, ZP is the ring of Laurent polynomials in the elements ©@fwith coefficients
in Z[g*Y2.

5. Upper bounds and quantum Laurent phenomenon

Let (M, B) be a guantum seed iA, andX = {X4, ..., X} denote the corresponding
“free generating set” inF given by X; = M(e;). As in [2], we will associate with
(M, B) a subalgebrd{(M, B) c F called the (quantumupper cluster algebraor
simply theupper bound

Let ZP[X*1] denote the based quantum torus generatec pyhis is a Z[¢g*Y/?)-
subalgebra ofF with the basis{M(c) : ¢ € Z™}. For the sake of convenience,
this section, we assume thit is numbered so that its clust&¢ has the formX =
{X1, ..., Xn}. Thus, the complemer@ = X —X is given byC = {X, 41, ..., X;n}, and
the ground ringZP is the ring of integer Laurent polynomials in the (quasi-commuting)
variablesq/2, X,,41, ..., X,n. For k € [1,n], let (M, By) denote the quantum seed
obtained from(M, B) by the mutation in directiork, and letX; denote its cluster;
thus, we have

n

Xi = X — (Xi) U (X}), (5.1)

where X; is given by @.23.
Following [2, Definition 1.1] we denote by/(M, B) C F the ZP-subalgebra ofF
given by

UM, B) = ZPIXF nZPIX{H N - nzPxE. (5.2)

In other words/(M, B) is formed by the elements ¢f which are expressed as Laurent
polynomials overZP in the variables from each of the clustefs Xy, ..., X,,.
Our first main result is a quantum analog [@ Theorem 1.5]

Theorem 5.1. The algebral{(M, B) depends only on the mutation-equivalence class
of the quantum see@V, B).
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Theorem 5.1 justifies the notatiorn/ (M, B) = U(S), where S is the mutation-
equivalence class aofM, B); in fact, we have

usS) = (] zPix*i. (5.3)
(M,B)eS

In view of Propositions4.9 and 4.10 X C U(S) for every quantum seed, B) in
S. Therefore, Theorens.1 has the following important corollary that justifies calling
U(S) the upper boundfor the cluster algebra.

Corollary 5.2. The cluster algebrad(S) is contained in/(S). Equivalently A(S) is
contained in the quantum toru8P[X*1] for every quantum see@, B) € S with the
cluster X (we refer to this property as the quantum Laurent phenomgnon

Example 5.3. Let A(b, ¢) be the quantum cluster algebra associated with a compatible
pair (A, B) of the form

0o 1 - 0 b
A:<—1 0)’ BZB:(—C 0)

for some positive integers andc. Tracing the definitions, we see thdtb, ¢) can be
described as follows (cf8,20]). The ambient fieldF is the skew-field of fractions of
the quantum torus with generators and Y» satisfying the quasi-commutation relation
Y1Yo = qYoY1. Then A(b, ¢) is the Z[¢g*Y/?]-subalgebra ofF generated by a sequence
of cluster variablegY,, : m € Z} defined recursively from the relations

q"?v? +1 modd;

q?YS +1  meven. (64)

Ym—lYm+1 = {

The clusters are the paifg,,, Y,,.1} for all m € Z. One checks easily that
YiYimi1=qYpi1Ym (me ).

According to Corollarys.2, every cluster variabl&,, is a Laurent polynomial ir¥; and
Y» with coefficients inZ[¢*1/2]. A direct calculation gives these polynomials explicitly
in the finite typecases wherbc < 3 (cf. [20, (4.4)—(4.6)]. In accordance with4(19),

in the following formulas we use the notation:

Y@ = gmaa2/2yys2 (g a; € 7).
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Type Az: (b,c) = (1,1).

Y3 = yC1d 4 y10 0y, — yO-D 4 y(1-D 4 (=10

Ys =YL D4 y0-D  yo—y,, vr=7Vs (5.5)

Type By: (b, ¢) = (1, 2).

Y=y 12 4 yCLO y, =y @b 4 y LoD g y LD,
Ys = Y& 4 (g¥2 4 g~ Y2)y -2 | y(-1-2 | y(-10)
Yo=Yt D 4y0=D vy, —y, vg=1o. (5.6)

TypeGo: (b,c) = (1, 3).

Ya= Y13 4 yLO  y _ yO-D 4 p(-1-D) | p(-12)

V5= Y33 4 (g +1+¢HyO ™ 4 yCL0 4 yL3)
FYC2 4 (32 4 732y (20 | y(-2-3)

Yo = Y2 4 (q¥2 4 g~ Y2)y©-2 4 y(-1-2 | y(-1D)
Y7 = Y% 4 (g 4+ 144 HE ™ 4 y©@=9) 4 y1-9 4 y(-10)
Yo =YD 4yO-b  yo=v:, Yio="Yo. (5.7)

The rest of this section is devoted to the proof of Theokein The proof follows that
of [2, Theorem 1.5put we have to deal with some technical complications caused by
non-commutativity of a quantum torus. As a rule, the argumeni&]imvill require only
obvious changes if the quantum analogs of all participating elements quasi-commute
with each other. We shall provide more details when more serious changes will be
needed.

We start with an analog dP, Lemma 4.1]

Lemma 5.4. The algebral{(M, B) can be expressed as follows
n
UM, B) = (| ZPIXTH, ... Xi Xe, X X - X, (5.8)
k=1

where X; is given by(4.23.
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Proof. In view of (5.2), it is enough to show that
ZPIXE N ZPIXF = ZP(xy, X, x5 L xEL (5.9)

As in [2], (5.9 is a consequence of the following easily verified properties.

Lemma 5.5. (1) Every element’ € ZP[X*1] can be uniquely written in the form

Y = ZC"X&’ (510)
reZ
where each coefficient, belongs toZP[X3?, ..., Xx*1], and all but finitely many of

them are equal td.
(2) Every element € ZP[X*]N Z[P’[Xfl] can be uniquely written in the form

Y =cot ) (e X5+ ch (X)), (5.11)
r=1
where all coefficients, and ¢, belong toZlP[XiEl, e X,fl], and all but finitely many

of them are equal t®.

Our next target is an analog ¢2, Lemma 4.2] As in the proof of Proposition
4.7, in what follows, we will assume without loss of generality that= 7", and
the toric frame of the initial quantum se&d?, B) is given by M(c) = X¢ for any
¢ € L. In particular, we view the columna/ of B as elements of.. According to
(4.7), for every non-negative integerand every sigre, we have a well-defined element
P, € ZP[X3Y, ..., X1, Note that, in view of 4.3 and @.21), P, , belongs to
the center of the aIgebrEP[X;tl, ...,X,ﬂ,fl]. In particular, Pgl N and P;l _ commute

with each other; an easy check shows that their ratio is an invertible element of the
center ofZP[X51, ..., X;F1].

Lemma 5.6. An elementt’ € F belongs toZP[X1, X}, X5, ..., X;F1] if and only if
it has the form(5.10, and for eachr > 0, the coefficient_, is divisible by P, . in

the algebraZP[X37, ..., X;1.

Proof. In view of (4.22 and 4.8), we have

(XD = P (XY, (5.12)



A. Berenstein, A. Zelevinsky/Advances in Mathematics 195 (2005) 405-455 423

where

¢y =—e1— Y biei. (5.13)

bi1<0

Combining 6.12 with (5.11), we obtain the desired claim. O
Our next step is an analog ¢2, Proposition 4.3]
Proposition 5.7. Suppose that > 2. Then

n

UM, B) =) ZP[X1. X1. X3" ... X7 X X X7}

et T X (5.14)
j=2

Proof. As in the proof of[2, Proposition 4.3] we can assume that = 2, i.e., the
ground ringZP is the ring of Laurent polynomials i, X3, ..., X,,. Thus, it suffices
to show the following analog of2, (4.4)]:

ZP[X1, X1, X3 N ZPIXTY Xo, X5] = ZP[X1, X, X2, X5]. (5.15)

The proof of 6.15 breaks into two cases.

Case 1 b1 = bp1 = 0. In this case, the elemenv'?g1 and PS belong to the
center of ZP for all r,s > 0; furthermore, P’ commutes W|thX2, while PS
commutes withX1. Arguing as in[2], we reduce the proof to the following statement
if an element ofZP is divisible by each of theP bl N and P, 24 then it is divisible
by their product. By Propositiol\.2, it suffices to check thal 1:1,+ and P52,+ are

relatively prime in the center oZ P. This follows from the fact that has full rank
(see Proposition3.3), and so the columns® and5? are not proportional to each other.

Case 2 byob1 < 0. In this case, the proof goes through the same steps E4,in
with some obvious modifications taking into account non-commutativity. We leave the
details to the reader. [J

To finish the proof of Theoren®.1, it is enough to show that/(M, B) does not
change under the mutation in direction 1.xf= 1, there is nothing to prove, so we
assume thak > 2. Let X7 be the cluster variable that replac&s in the cluster
X1 under the mutation in direction 2. In view 06.04), Theorem5.1 becomes a
consequence of the following lemma.

Lemma 5.8. In the above notationwe have

ZP[X1, Xi. X2, X3] = ZP[X1, X}, X2, X3].
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Proof. By symmetry, it is enough to show that
Xy € ZP[X1, X}, X2, X5]. (5.16)

The following proof of 6.16 uses the same strategy as in the proofiaf Lemma
4.6], but one has to keep a careful eye on the non-commutativity effects.

We start by recalling the assumption thiat= 7™, and the initial toric frameM is
given by M(c) = X¢ for any ¢ € L. Then the toric frames of the adjacent quantum
seeds are given by4(22. For typographic reasons, we rename the quantum seed
(M1, By) = (M, B) to (M’, B') (so the entries of the matriB; = B’ are denoted
bj;), and also use the notatio!”, B") = pp(M', B'). Thus, X5 = M"(ez). Without
loss of generality, we assume that the matrix eritry of B is non-positive; and we
setr = —b1» > 0. Since the principal parts ab and B’ are skew-symmetrizable, it
follows thatb,; > 0, b}, =r, and by, < 0.

Applying (4.23 and @.22), we see that

Xy = M'(3) + M/ (e + (0)?) = ppa o (XEr¢% 4 x B (54009,
where

eh=—e2— Db (5.17)
i>2, bl,<0

(b)2 is the second column oB’, and E4 is given by 8.2) with k = 1. Note that
the summation in .17 does not include a multiple oé; becauseb), = r > 0;
this implies thatE ej, = ¢;. We also haveE (b")? = b? (to see this, use3(l) to
write B’ = E, B F,, and note that the second column BfF, is equal tob?, hence
(b')% = E,b?, and so our statement follows fror8.5)). Remembering4.8) and @.21),
we conclude that

X3 = X%+ Pl X5, (5.18)

On the other hand, setting

eh=—ea— Y bize;,

bi2<0
we have

" o 2
X/Z — XL2 + X62+b :
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applying @.1) and @.21), we obtain
q—A(ez.e/z)/ZX2X/2 — Xez+e/2 +q_d2/2X62+e/2+b2. (519)

Note that the second summarti= ¢—%/2x2+¢:+5* js an invertible element oZP;
thus, to prove the desired inclusioBf.16), it suffices to show that

X4F € ZP[X1, X}, X2, X5] .
Using 6.18 and 6.19, we write
XyF =g Me22)/25 _ §5 4 53,

where

S1= P, X X0X),

Sp = (P;1’+ _ 1)Xe%+h2Xe2+e'2,

S3= q—dz/ZXegXe2+e’2+b2 _ Xeg+b2Xez+e’2.
To complete the proof, we will show that

S1, S2 € ZP[X1, X7, X2, X5], S3=0.

First, we use §.12 to rewrite S1 as
S1 = (X)) (X~ X" X, x5, (5.20)

A direct check shows that the vecteire] + e + b2+ e has the first two components

equal to 0; it follows that the middle fact@’x1)~" X<+ X, in (5.20) is an invertible
element ofZP. Thus, S1 € ZP[X1, X}, X2, X5], as desired.

To show the same inclusion fdi, we notice thatPljl’+ — 1 is a polynomial inx®'
with coefficients inZ[¢*Y2] and zero constant term. ¥ = —b1» = 0 then S, = 0,
and there is nothing to prove. Otherwise, the desired inclusion follows from the fact
that the first two components dfl are (0, bp1) with bo1 > 0, while the first two
components ot} + b?+ e+ e, are (0, —1).

Finally, to show thatS3 = 0, in view of @4.1), we only need to check that

—dp + A(ely, e2 + €+ b?) = A(ey + b2, ez + €y,
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or, equivalently,
Ab?, ex + ey + ey) = —do,

which is a direct consequence @¢f.21). This completes the proof of Lemnta8 and
Theorem5.1 0

6. Exchange graphs, bar-involutions, and gradings

Recall that theexchange graphof the cluster algebrad(S) associated with a
mutation-equivalent class of seedshas the seeds fron§ as vertices, and the edges
corresponding to seed mutations (&, Section 7]or [10, Section 1.2} We define the
exchange graph of a quantum cluster algebra in exactly the same way: the vertices cor-
respond to its quantum seeds, and the edges to quantum seed mutations. As explained
in Section4.5, we can associate the quantum cluster algebra with a compatible matrix
pair (Ay, B), and denote itA(Ay, B). Let E(Ay, B) denote the exchange graph of
A(Aum, B), and E(B) denote the exchange graph of the cluster algebB) obtained
from A(Aum, B) by the specializatiog = 1. Then the grapt£ (A, B) naturally covers
E(B).

Theorem 6.1. The specializatioy = 1 identifies the quantum exchange grapliAy,
B) with the “classical exchange grapht(B).

The proof of Theorem6.1 will require a little preparation. For a quantum seed
(M, B), let Ty denote the corresponding based quantum torus hawng) : c € 7™}
as aZ[¢g*/?]-basis. This is the same algebra that was previously denot&Pipy(*1],
where X is the cluster of(M, B); thus, we can rewrite5(3) as

usS) = (\ Tu (6.1)
(M,B)eS

where S is the mutation-equivalence class @¥/, B). We associate withM, B) the
Z-linear bar-involution X — X on Ty, by setting

qPM(c) =q "?M(c) (reZ ceZM. (6.2)
Proposition 6.2. Let S be the mutation-equivalence class of a quantum q@¢dB).
Then the bar-involution associated witlV, B) preserves the subalgebtd(S) C Ty,

and its restriction tol/(S) depends only oi&.

Proof. It suffices to show the following: if two quantum seed¥, B) and (M’', B')
are obtained from each other by a mutation in some diredjdhen the corresponding



A. Berenstein, A. Zelevinsky/Advances in Mathematics 195 (2005) 405-455 427

bar-involutions have the same restriction gy N 7. Using 6.1, we see that each
element ofTy; N Ty is aZ[g*Y/?]-linear combination of the elementd (c) and M’(c)
for all ¢ € Z™ with ¢; > 0. It remains to observe that, in view 04.20, eachM’(c)
with ¢; > 0 is invariant under the bar-involution associated wit, B). O

Proof of Theorem 6.1 We need to show the following: if two quantum se€ds, B)
and(M’, B') are mutation-equivalent, and such tit= B and M'(c)|,=1 = M(c)|;=1
forall c € 7, thenM’ = M. (Recall that a quantum seed is defined up to a permutation
of the coordinates i@™ together with the corresponding relabeling of rows and columns
of B.) In view of Lemma4.4, it suffices to show that!’(c) = M(c) for ¢ being one

of the standard basis vectoes, . . ., ¢,.

By Corollary 5.2, M'(c) € Ty, i.e., M'(c) is a Z[¢g*/?]-linear combination of the
elementsM (d) for d € 7. Let N(c) denote theNewton polytopeof M’(c), i.e., the
convex hull inR™ of the set of alld € Z™ such thatM (d) occurs inM’(c) with a non-
zero coefficient. We claim tha¥ (c¢) does not shrink under the specializatige= 1, i.e.,
that none of the coefficients at vertices 8fc) vanish under this specialization. To see
this, note that, in view of4.20, M’'(c) is obtained from a family{M () : d € 7™}
by a sequence of subtraction-free rational transformations. This implies in particular
that, wheneved is a vertex of N(c), the coefficient ofM(d) in M'(c) is a Laurent
polynomial ing/2 which can also be written as a subtraction-free rational expression.
Therefore, this coefficient does not vanishgat= 1, as claimed. This allows us to
conclude that the assumptidd’(c)|,=1 = M (c)|4=1 implies thatM'(c) = p M(c) for
some p € Z[¢*/2]. Because of the symmetry betwedhand M’, the elementp is
invertible, so we conclude tha¥’(c) = ¢'/2 M(c) for somer € Z. Finally, the fact
thatr = 0 follows from Propositior6.2 since bothM (c) and M’(c) are invariant under
the bar-involution. [

Remark 6.3. An important consequence of Theorefrl is that the classification of
cluster algebras of finite type achieved [ib0] applies verbatim to quantum cluster
algebras.

Remark 6.4. Proposition6.2 has the following important corollary: all cluster variables
in A(S) are invariant under the bar-involution associatedStoA good illustration for
this is provided by Exampl&.3: indeed, the elements given by.9—(5.7) are obviously
invariant under the bar-involution.

We conclude this section by exhibiting a family of gradings of the upper cluster
algebras.

Definition 6.5. A graded quantum seei$ a triple (M, B, X), where

e (M, B) is a quantum seed ifF; )
e X is a symmetric integem x m matrix such thatB™X = 0.

As in Definitions2.1 and 4.5, graded quantum seeds are defined up to a permutation
of the standard basis i@™ together with the corresponding relabeling of rows and
columns of B and Z.
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We identify £ with the corresponding symmetric bilinear form aff'. Then the
condition BTE = 0 is equivalent to

b/ ekerX (jeex), (6.3)

whereb/ € 7™ is thejth column of B.

The choice of the term “graded” in Definitio®.5 is justified by the following
construction: every graded quantum se@d, B, X) gives rise to aZ-grading on the
Z[g*1/?]-module Ty, given by

deg:(M(c)) = Z(c,¢) (ceZ™) . (6.4)

(Note that this isnot an algebra grading.)

We will extend quantum seed mutations to graded quantum seeds. Fix an index
k € ex and a signe € {£1}. Let B’ be obtained fromB by the mutation in direction
k, and set

Y = EISE., (6.5)

where E, has the same meaning as 8.4). Clearly, ¥’ is symmetric. The following
proposition is an analog of Propositiéh4 and is proved by the same argument.

Proposition 6.6. (1) We have(B’)T ¥’ = 0.
(2) ¥’ is independent of the choice of a sign

Proposition6.6 justifies the following definition, which extends Definitiah8.

Definition 6.7. Let (M, B, %) be a graded quantum seed, ahds ex. We say that
the graded quantum seed/’, B’,Y') is obtained from(M, B, X) by the mutationin

directionk, and write (M, B',Y') = (M, B, X) if (M', B') = (M, B), andX’ is

given by 6.5).

Clearly, the mutations of graded quantum seeds are involutive (cf. Propo4ition
Therefore, we can define the mutation-equivalence for graded quantum seeds, and the
exchange grapl£ (S) for a mutation-equivalence class of graded quantum seeds in the
same way as for ordinary quantum seeds above.

Proposition 6.8. Let S be the mutation-equivalence class of a graded quantum seed
(M, B, %), and S be the mutation-equivalence class of the underlying quantum seed
(M, B).

(1) The upper cluster algebr&/(S) is a gradedZ[¢*/?]-submodule of(7y;, deg);
furthermore the restriction of the gradingleg: to ¢/(S) does not depend on the
choice of a representative .
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(2) The forgetful map(M, B, %) — (M, B) is a bijection betweer§ and S, i.e, it
identifies the exchange grapfi(S) with E(S).

Proof. As in the proof of Propositio.2, to prove (1) it suffices to show the following:
if two graded quantum seed®/, B, X) and (M’, B’,X') are obtained from each other
by a mutation in some directiok, then 73, N T3 is a gradedZ[¢*1/2]-submodule of
each of(Ty, degs) and (Ty, degy), and the restrictions of both gradings ey N Ty
are the same. By the same argument as in the proof of Propo§it®iit is enough
to show that, for everye € 7" with ¢ > 0, the elementM'(c) € Ty N Ty is
homogeneous with respect to gdegand deg(M'(c)) = X'(c, ¢). By (4.20, M'(c) is

a Z[g*Y?]-linear combination of the elementd (E.c + ¢pb*); to complete the proof
of (1), it remains to note that, in view o6 and 6.5, we have

S(Egc + epbF, Ezc + epb®) = Z(Epc, Esc) = X (¢, ¢)

as required.

To prove (2), suppose thaf contains two graded quantum setsf, B,X) and
(M, B,Y) with the same underlying quantum seed. By the already proven part (1),
the two gradings dsg and deg' agree with each other ot/(S). In particular, for
everyc € 7%, we have

X(c, c) = degs (M (c)) = degs (M (c)) = X/ (c, ¢).

It follows that ¥ = X', and we are done. [

Proposition6.8 allows us to include the bar-involution a#(S) into a family of
more general “twisted” bar-involutions defined as follows. &1, B, %) be a graded
quantum seed. We associate witM, B, ¥) the Z-linear twisted bar-involutionX

X* on Tu by the following formula generalizing6(2):

—
q’/zM(c)( )= g UTECN2 () (reZ, ce ™. (6.6)
The following proposition generalizes Propositiére.

Proposition 6.9. The twisted bar-involutiorX — Y(z)~ associated with a graded quan-
tum se~ed(M, B, X) preserves the subalgebi(M, B) of Ty, apd its restriction to
U(M, B) depends only on the mutation-equivalence classMf B, ).

Proof. Recall theZ-grading deg on 7, given by 6.4), and note that the twisted
bar-involution X — Y(E) on Ty can be written as follows:
v _

X o~ 0(X)), 6.7)
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where Q is a Z[¢g*Y/?]-linear map given byQ(X) = ¢%/*X for every homogeneous
elementX € Ty of degreed. By Part (1) of Propositior6.8, the mapQ preserves
the subalgebrd/(M, B) C Ty, ang its restriction td{(M, B) depends only on the

mutation-equivalence class éM, B, X¥). Therefore, the same is true for the twisted
bar-involution. [

7. Lower bounds and acyclicity

In this section, we state and prove quantum analogs of the resul®§ ooncerning
lower boundsWe retain all the notation and assumptions in SecBorn particular,
we assume (without loss of generality) that= 7", and the toric frameM of the
“initial” quantum seed (M, B) is given by M(c) = X¢ for ¢ € L. Furthermore, we
assume that the initial clustet is the set{Xy, ..., X,}, whereX; = X¢. By (4.23,
for k € [1, n], the mutation in directiork replacesX; with an elementX, given by

Xl/c — X*€k+zbik>obikei +X*€k*2bik<obik€i_ (71)

It follows thatX,’( quasi-commutes with alX; for i # k; and each of the producPSkX,/(
and X} X; is the sum of two monomials iX1, ..., X,,. The elementst], ..., X, also
satisfy the following (quasi-)commutation relations.

Proposition 7.1. Let j andk be two distinct indices frori, n]. ThenX}X,’(—q’/ZX,’(X}
= (¢*/* — q'/?)X* for some integers, s, 7, and some vectoe € 7%,

Proof. Without loss of generality, assume thag, < 0. We abbreviate

/ /
¢i=—ej+ Y bijei, e =—ex— Y biei,
bl‘j>0 bir <0

so that 7.1) can be rewritten as

e —b

X=X+ X957 X = x% 4 x4t

where the vector$/, b* € 7™ are thejth and kth columns of B. Using @.1) and
(4.21), we obtain

—A(e;—bl e +b*) /2 1 v —A(e,+bk e —bI) /2 1 1
g T XXy —q T X; X

_ (q—A(b-/,b")/Z _ q—A(hk,b-’)/Z)Xe}+€1’c_ (7.2)
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If bjx =0 thenA(b/, b*) = 0 by (4.21), and so the right-hand side o7.p) is equal to
0; we see that in this casé’,’j and X; quasi-commute. And ib;; < 0 (and sob;; > 0)
then the vectore = ef/ + ¢, belongs toZ’go, since its jth (resp.kth) component is
—bjx—1>0 (resp.by; —1>0). O

Following [2, Definition 1.10] we associate with a quantum se@d, B) the algebra

L(M, B) = ZP[X1, Xy, ..., Xn, X)1. (7.3)

n

We refer toL(M, B) as thelowgr boundasspciated with M, B); this name is justified
by the obvious inclusiorC(M, B) c A(M, B).
The following definition is an analog d&, Definition 1.15]

Definition 7.2. A standard monomialin X1, X/,..., X,, X, is an element of the
form X7'- - X;" (X’l)“i .- (X/)%, where all exponents are non-negative integers, and
ara;, =0 for k € [1, n].

Using the relations between the elements ..., X,, X7, ..., X, described above,
it is easy to see that

the standard monomials generatéM, B) as aZP-module. (7.4)

To state our first result on the lower bounds, we need to recall the definition of
acyclicity given in [2, Definition 1.14] We encode the sign pattern of matrix entries
of the exchange matri8 (i.e., the principal part of8) by the directed graph’(B)
with the vertices 1...,n and the directed edges, j) for b;; > 0. We say thaB (as
well as the corresponding quantum seedagyclic if I'(B) has no oriented cycles.
The following result is an analog 42, Theorem 1.16]

Theorem 7.3. The standard monomials iK1, X7, ..., X,, X,, are linearly independent
over ZP (that is they form aZP-basis of £L(M, B)) if and only if B is acyclic

Proof. The proof goes along the same lines as tha{2pfTheorem 1.16] The only
place where one has to be a little careful[®& Lemma 5.2]which is modified as
follows.

Lemma 7.4. Let ug,...,uy and vy, ..., v, be some elements of an associative ring
and leti — i be a cyclic permutation ofl, £]. For every subsef C [1, £] such that
JNJT =0, and for everyi € [1, £], we set

u; if i elJ,
ti(J) =1 v if ieJt.
u; +v; otherwise
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Then

D )Yy (D) = a4 vre v (7.5)
JcC[1,¢]
JNJ+t=0

The proof of [2, Lemma 5.2]applies verbatim, and the rest of the proof [@f
Theorem 1.16holds with obvious modifications. [

Our next result is an analog d2, Theorem 1.18]it shows that the acyclicity
condition closes the gap between the upper and lower bounds.

Theorem 7.5.1f a quantum seedM, B) is acyclic thenL(M, B) = A(S) = U(S),
where S is the mutation-equivalence class @, B).

Proof. The proof of [2, Theorem 1.18]extends to the quantum setting, again with
some modifications caused by non-commutativity. The most non-trivial of these modi-
fications is the following: in[2, Lemma 6.7] we have to replace’; with an element

P;l’ 4 for an arbitrary positive integer; the proof of the modified claim then follows
from PropositiorA.2 in the same way as in Case 1 in the proof of Proposifioh [

We conclude this section with an analog [@f Theorem 1.2Q]which is proved in
the same way as its prototype.

Theorem 7.6. The condition that a quantum seed, B) is acyclig is necessary and
sufficient for the equalityC(M, B) = A(S).

8. Matrix triples associated with Cartan matrices

In this section, we construct a class of matrix triplés B, X) satisfying conditions
in Definitions 2.1, 3.1and#6.5, i.e., giving rise to graded quantum seeds in the sense of
Definition 6.5. These triples are associated with (generalized) Cartan matrices; in the
case of finite type Cartan matrices, the matridggsvere introduced inf2, Definition
2.3]. Our terminology on Cartan matrices and related notions will basically folldi

8.1. Cartan data

Definition 8.1. A (generalized)Cartan matrix is anr x r integer matrixA = (a;;)
such that

o a;; =2 for all i.
e q;j <O foris#j.
e ¢;; =0 if and only ifa;; =0.
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Recall thatA is symmetrizabléf d;a;; = dja;; for some positive integerd,, ..., d,.
In what follows, we fix a symmetrizable Cartan matAxand the numberg;.

Definition 8.2. A realizationof A is a triple (b, IT, IT), where}) is a C-vector space,
andIl = {oq, ..., o} C b*, andI1¥ = {a}, ..., o’} C b are two subsets satisfying the
following conditions:

e both IT and ITY are linearly independent.
° O(](O(lv) = ajj for all i,J.
e dim b+ rkA =2r.

In what follows, we fix a realization oA; as shown in[15, Proposition 1.1]it is
unique up to an isomorphism. The elementgresp.o.’) are calledsimple roots(resp.
simple corooty associated ta\.

For eachi € [1, r], the simple reflections; is an involutive linear transformation of
b* acting by

si() =7 — ().
The Weyl groupW is the group generated by all. We fix a family {ws, ..., o} C h*
such thatw; (o) = d;;; the elementsw; are calledfundamental weightsThus, we

have

wj—o; ifi=j;

Note that eachy; is defined up to a translation by\&-invariant vector fromh*. Note
also the following useful property:

for every j € [1,r], the vector Z ajjw; — o is W-invariant (8.2)
ie[l,r]

As shown in[15, Chapter 2] there exists aN-invariant non-degenerate symmetric
bilinear form (y|6) on h* such that

(i|p) = dip(o)  (y € h). (8.3)

8.2. Double words and associated matrix triples

By a double wordwe will mean a sequencé = (ig,...,i,) of indices from
+[1,r] = —[1, r]u [, r]. For everyi € [1, r], we denote

e(di) =41, |+i|=i.
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We adopt the convention that; is the identity transformation df* for i € [1, r]. For
anya < b in [1,m], and any sigre, we set

nela, b] = nfg[a, bl = Sgi, -+ - Seiy-

Iterating @.1), we obtain the following properties which will be used many times
below:

Tela, blo; = wela, clw; if a <c < b, andei; #i for c <t < b,

nela, bloj = mela, b— (@) — o)) if eip = j. (8.4)

For k € [1, m], we denote byk* = kiJr the smallest indeX such thatk < £ < m
and |ig] = ligl; if |ix] # lie| for k < € < m, then we setk™ =m + 1. Letk™ = ki~
denote the index such that¢*™ = k; if such an¢ does not exist, we sét~ = 0. We
say that an index e [1, m] is i-exchangeabléf both k~ andk™ belong to[1, m], and
denote byex=ex c [1, m] the subset of-exchangeable indices.

We will associate to a double woida triple (A(i), B(i), X(i)), whereA(i) and (i)
are integenn x m matrices (respectively, skew-symmetric and symmetric), whi®
is a rectangular integer matrix with rows labeled [y m] and columns labeled by
ex.

We define the matrix entries of(i) and (i) by

Akt =My g+ — N grs Okt = N o+ + Mg gt (8.5)

for k, ¢ € [1, m], where
Nke = Mee (D) = (_[L, klwyiy| — T4 L€, kKlwyiyfloyi) (8.6)

(with the convention thaty,, = 0 unless 1< ¢ < k < m). Note thaty,, and so both
matricesA(i) and Z(i) are independent of the choice of fundamental weights. Indeed,
a simple calculation shows thaj, does not change if we replacey;,| by o, + 7,
and wy;,| by wji,| + 7', where bothy andy” are W-invariant.

Following [2, Definitions 2.2, 2.3](which in turn were based of21]), we define
the matrix entries,; of B(i) for p €[1, m] andk € ex as follows:

—e&(ix) it p=k=;
_S(ik)a\i,,l,likl if p<k< p+ < kT, e(iy) = S(ip+)
or p<k <kt < pt, e(iy) =—e(i+);
bpk = bpi(i) = elpai, il If k<p <kt <pt, e, =el) (8.7)
ork <p<pt <kt ei,) =—eip);
e(ip) if p=kt:
0 otherwise
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(For technical reasons, the matri(i) given by 8.7) differs by sign from the one

in [2, Definitions 2.2, 2.3]but this does not affect the corresponding cluster algebra
structure.)

Theorem 8.3. Suppose that a double woidsatisfies the following condition

for every pe [1, m] with p~ = 0, there are no

i-exchangeable indicek € [1, p — 1] with i, lig] < 0. (8.8)

Then the matrix entries given H.5 and (8.7) satisfy

prkipz = 20ked)iy)s prkﬁpe =0 (8.9)
p=1 p=1

for £ € [1,m] and k € ex T~hus the pair(A(i), B(i)) is compatible in the sense of
Definition 3.1, and the pair(B(i), X(i)) satisfies Definitior6.5.

(5 0)

be the Cartan matrix of typd,, with d1 = d> = 1. Taking

Example 8.4. Let

i=(1,2121-1,-2,-1)

it is easy to check that the corresponding matriggs and A(i) are those in Example
3.2 The first equality in 8.9 was shown there. As foL(i), it is a symmetric matrix
whose entries on and below the main diagonal are equal to thogg(inf The last
equality in 8.9 can be seen by a direct inspection.

Proof of Theorem 8.3.We will use 8.7) to defineb,; for all k, p € [1,m] (with k
not necessarily-exchangeable). In view oB(5), to verify (8.9) it suffices to show the
following.

Lemma 8.5. For an arbitrary double wordi, we have

m
Y bpklpe = it iy (8.10)
p=1
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for all &, ¢ € [1, m] such thatk™ < m. If i satisfies(8.8) then we also have

m
prk'n,p+ = —Oked)iy| (8.11)
p=1

for all ¢ € [1,m] and k € ex.

The rest of this section is dedicated to the proof of Len8ra First, we get 8.11)
out of the way by showing that it follows fron8(10. To see this, consider thepposite
double wordi° = (i, ..., i1). We abbreviaté&® = m +1—k, so thati® can be written
asi® = (i, ..., iye). Examining 8.6) and @.7), we obtain

Mee(D) = Mo 4o (1) (k, £ € [1, m]),
bpi(i) = —b,o 4o (i) (KT, pT € [1,m]). (8.12)

Turning to @.11), we note that the summation there can be restricted to the values of
p such thatp* < m (becausey, ,+ = 0 unlessp™ < ¢). Substituting the expressions
given by .12 into (8.11), we obtain

m
Y bpte == bpre e (0150 o (0°). (8.13)
p=1 pr<m

Comparing this with the counterpart 08.00 for the double wordi°, we see that it
remains to show the following:

D b e o (i°) = 0,

(P =m+1

wheneverk is i-exchangeable. To complete the proof 8f1(), it remains to observe
that condition 8.8) guarantees tha . ;+-(i°) = 0 for all p such that(p")it =m+1
(which is equivalent top~ = 0).

We now concentrate on the proof d.10. We will need to consider several cases
of the relative position ok and ¢. As a warm-up, we note thdt,, =0 for p > k*,
andn,, = 0 for p < ¢; therefore, the sum in8(10 is equal to 0 if¢ > k*. For
¢ = kT, the sum in question reduces to just one term witk= £ = k*; using 8.6),
(8.7), and 8.1)—(8.3), we see that this term is equal to

bpitpe = €(ip)(s—i, W)i,| = Si, Oji,| | Oi,)) = (@i — S)i | Djig| | Dyig))

= (| | i) = djiy

in accordance withg.10.
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For the rest of the proof, we assume thfak k™, and (for typographical reasons)
abbreviate|iy| = j and |ig] = h. To show that the sum in8(10 is equal to 0, we
compute, for every € [1, r], the contribution to this sum from the values pfsuch
that |i,| = i. We denote this contribution by; = S;(k, £; i).

Lemma 8.6. We have

(U)j — ﬂ:g(ik+)[‘€, k+]wj | wpn) if k<?< k+;
(e L€, kl(wj — o)

Ty 6 kTl | p) if €<k, eix) = e(ix+);
Sj = (nmk)[ﬁ, k](Dj (814)
—TL’S(,'H)[@, k+]a)j | wp) if k= <<k, e(ip) = —e(iy+);

(e (i) 1€, k12w — o) )
~ (i) [0 kT 1QRoj —aj)leop) if € <k™, (i) = —e(ix+)

and for i # j,
Cl,'j(a),‘ — TCE(,'H)[K, k+]60,' | wh) if k<t < k+;
=1 o L - (8.15)
a;j (e [, k]w; — né‘(lk+)[£a kMo | wp) if £ <k,

Proof. By (8.7), the only possible values g contributing toS; are p = k* and
p =k~ (the latter value appears only whén< k7). Let us do the last case i18.(19)
(the other cases are similam):< k™, (ix) = —e(ix+) = . Applying (8.7) and §.6),
and using 8.4), we get

bt il ¢ = (el kTl — n_g[€, kT ]w; | wp)

= (me[£, ko — n—s[ﬁ,k+]wj | wp)
and

by M- = (mell, kT Jwj —m_[€, kT Jw; | wp)

= (Ml kl(w)j — o)) — n_e [0, kT1(@; — o)) | wp)

which implies our claim.

Turning to .15, we will also consider only the latter cage< k, the former one
being similar and simpler. The indicgs with |i,| = i, which may have a non-zero
contribution tosS;, fall into the following types:

Type Ll < p <k <kT <pt, e(ix) =—e(ip+), 0r L < p<k<pt <k™, eip) =
e(i,+). Using @.6), (8.7), and 8.4), we see that the corresponding contributionSto
is given by

bk pe = aij (Te(ipy [, kloi — T—e i) [4, ki | wp). (8.16)



438 A. Berenstein, A. Zelevinsky/Advances in Mathematics 195 (2005) 405-455

Type 2:k < p < pt <k*, e(ip) = —¢e(ipt), Ork < p <kt < pt, e(ip) = e(ix+).
The corresponding contribution t§ is given by

bpit e = aij(T—e(i )€, Plo — Teqi,)[€, pli | wp). (8.17)

Note that there is at most one index of type 1, but there could be several indices of
type 2. We need to show that all contributior&1@ and 8.17) add up to

Si = aij (e [€, Klwi — Tei 1€ ko | op). (8.18)

First, suppose that there are no indigeswith |i,| = i betweenk and k*; in
particular, there are no indicgsof type 2. In view of 8.4), the sum in 8.18 can be
rewritten as

aij (e (i) [€, kKl — Te(i o) [€, klwi | wp).

This expression is easily seen to vanish unle§g) = —e(i;+), and there exists a
(unique) indexp of type 1; furthermore, in the latter case, it agrees watL).

Next, consider the case when there are some indicesth |i,| =i betweenk and
k*, but none of them are of type 2. In other words, all these valuep béve the
same sign, say, of i,, and we also have(i;+) = —e. In this case, the sum ir8(18
can be rewritten as

ajj (Teip [, klw; — e[, k]w; | wp).

Again, this expression vanishes unlesg,) = ¢, and there exists a (unique) indgx
of type 1; and again, in the latter case, it agrees witii ).

It remains to treat the case when there are some ingiceStype 2. Letp(l) <
.-+ < p(t) be all such indices. By the definition, we has@ () = —e(ipi+1)) for s =
1,...,t—1, ande(i,)) = e(ix+). Furthermore, §.4) yields Mg (ips 1)) [ P(s+D)]0; =
Te(i o) L€, P($)]e; fors =1,...,r—1. This shows that the sum of all expressio84.()
allows telescoping, and so is equal to

aij (T (i 0 [0 K@i = Toei ) [€, K i | o). (8.19)

An easy inspection shows tha8.19 agrees with .18 if there are no indicep of
type 1. In the latter case, we must hau@) = (i,(1)), and so the sum of expressions
in (8.19 and B.16 is equal to that in&§.18, as desired. This completes the proof of
Lemmas8.6. (]
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To finish the proof of 8.10, we need to show that

S:=Sj+ZSi=O
i#]

in all the cases in Lemm@&.6. Combining 8.14) and @8.15 with (8.2), we get

(2j — o,

—T[E(iﬁ)[@, k+](oc.,~ — wj) | (Uh) if k<l < k+,

(e (i) 1L, k] (—wj)

S =1 —Te(i )€, k1o — ) | op) if €<k, e(ix) = e(ix+); (8.20)
(e 1€, k](aj — )

e [ KT 1o = @)) | ap) i k™ < €<k, e(i) = —s(igs);

0 if ¢ <k, e(ix) =—e(ip+).

It remains to show thas = 0 in each of the first three cases i8.Z0. In case 1,
we haveng(,-k+)[£,k+](ocj —wj;) = —wj, and soS = («; | wy) = 0. In case 2 (resp.
3), we haver., .\ [€, kT1(aj — @)) = Teqiy[L, kI(—w)) (resp. meqy [, kl(ej — 0)) =
—j = Te(i )L, k*1(aj — wj)), which again yieldsS = 0. This completes the proof
of (8.10 and hence those of Lemn@&5 and TheorenB.3, O

Remark 8.7. Inspecting the above proof, we see that conditi®i)(was used only to
ensure thab . ;+-(i°) = 0 for all i-exchangeable indicels and all p with p~ = 0. It
follows that 8.8) can be replaced, for instance, by the following weaker restriction:

For everyp € [1,m] and j € [1, r] such thatp™ =0, aji,,j <0,

and{ke[l,p—1l:lixl=jl={k1 < - <k} with r > 2,

we havee(ix,) = - - - = €(i,); if k; is i-exchangeable then also

e(ix,) = —€(ip). (8.21)
However, the simpler conditiorB(8) is good enough for our applications. For instance,

it is satisfied whenever the firstterms ofi are £1, ..., £r arranged in any order;
this covers the class of double wordsonsidered if2, Section 2]and in SectionlO.

Remark 8.8. Because of the fundamental role played by the mafiin the theory

of cluster algebras, it would be desirable to find an alternative expressioB.7p (
involving fewer special cases. One such expression was givej2,ilRemark 2.4]

Here, we present another expression that seems to be more manageable. Namely we
claim that, forp € [1,m] andk € ex, (8.7) is equivalent to

bpk = Spk = Sppt — Sptk + Spt kts (8.22)
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where

S —k i) + (i
oot = gn(p )(Z(lp) e:“(lk))%l"l_k| (8.23)

and we use the following convention: jf™ = m + 1 then the last two terms irB(22
are given by 8.23 with i, 11 = +i, (the choice of a sign does not matter). The proof
of (8.22 is straightforward, and we leave it to the reader.

9. Preliminaries on quantum groups

9.1. Quantized enveloping algebras

Our standard reference in this section will [8. We start by recalling the defini-
tion of the quantized enveloping algebra associated with a symmetrizable (generalized)
Cartan matrixA = (a;;). We fix a realization(h, IT, IT") of A as in Definition8.2 Let
(y|6) be the inner product oh* defined by 8.3). Define the weight latticd® by

P={leb*: M) e Zforalliellr]}.

The quantized enveloping algebra 13 a ((¢)-algebra generated by the elemeifts
and F; fori € [1,r], and K, for A € P, subject to the following relations:

K;Ky=Kjry Ko=1
for A, u e P;
K;Ei =q"VEK;, KFi=q ""FK,
fori e[l,r] and i € P;

Ky — Ky,

d; d;

E:Fi —F:Ei =96::
il JEi gl — g

for i, j € [1, r]; and thequantum Serre relations

1—a,’j

[1-a;j—p;il Hi
S yrE T E EPT <0,
p=0

l—u,-j

[1—aij—p:i] i
Z(_l)pFi aij—pst FjF,’[plI -0
p=0
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for i # j, where the notatiorX!”?! stands for thedivided power

Xp qkd,' _ qfkd,'
= o k = T g g
TR

x!piil (9.1)
g —q =i

The algebral is a g-deformation of the universal enveloping algebra of the Kac—
Moody algebrag associated toA, so it is commonly denoted by = U,(g). It has
a natural structure of a bialgebra with the comultiplicatidn U — U ® U and the
counit homomorphisnz : U — Q(g) given by

ANE)=E ®1+ Ky, QE;, A(F,)=F,®K_,, +1®F;, AK),)=K,®K,, (9.2)
e(E;) =¢(F;) =0, e(K;) =1 (9.3)

In fact, U is a Hopf algebra with the antipode antihomomorphiSmU — U given
by

S(Ei) = —K 5 Ei, S(F)=—-FKy, SK;)=K_

but we will not need this structure.

Let U~ (resp.U°%; U™") be theQ(q)-subalgebra ofJ generated by, . .., F, (resp.
by K; (. € P); by E1, ..., E,). Itis well-known thatU = U~-U°.U* (more precisely,
the multiplication map induces an isomorphigimt @ U° @ U+ — U).

The algebral is graded by the root lattic®:

U=@Us Us=f{ueU:KuKk_;=q"" uforieP). (9.4)
aeQ

Thus, we have
degE; = «;, degF; = —u;, degk,;=0.

9.2. The quantized coordinate ring of G

Our next target is the quantized coordinate rifig(G) (also known as thguantum
group) of the groupG associated to the Cartan matix Since most of the literature
on quantum groups deals only with the case whers of finite type, we will also
restrict our attention to this case (even though we have little doubt that all the results
extend to Kac—Moody groups). That is, from now on we assume Ahat of finite
type, i.e., it corresponds to a semisimple Lie algefprdet G be the simply connected
semisimple group with the Lie algebr@a Following [3, Chapter 1.8] the quantized
coordinate algebraO,(G) can be defined as follows.
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First note thatU* = Homg, (U, Q(g)) has a natural algebra structure: fgrg <
U*, the productfg is defined by

feu) = (f ® )(Aw) =Y fu)guz) (9.5)

for all u € U, where we use the Sweedler summation notat\én) = > u1 ® uy (cf.
e.g., [3, Section 1.9.2). The algebraU* has the standard/ — U-bimodule structure
given by

(Yo feX)u) = f(XuY)

for f e U* andu, X,Y € U. In view of (9.5, we have
Ye(fg)eX=> (YrefeX1)(YaegeXo). (9.6)
Let U° be theHopf dual of U defined by
U°={feU*: f(I) =0 for some ideall c U of finite codimension}.

Then U° is a subalgebra and & — U-sub-bimodule ofU*.
Slightly modifying the definition in[3, Section 1.8.6] for everyy, é € P, we set

USs={f €U’ KyofoK;= gU+Wo) ¢ for A e PY. 9.7)

Finally, we defineO,(G) as theP x P-graded subalgebra df° given by

0,0)= @ v,

y,0€P
(from now on, we will denote the homogeneous component®oiG) by O,(G), s
instead ofU; s)-
It is well-known (see e.g.[3, Theorem 1.8.9] that O, (G) is a domain.

The algebra0, (G) is aU — U-sub-bimodule ofU°: according to[3, Lemma 1.8.7]
we have

Y ¢ 04(G)y 50X COy(G)yysip for X e Uy, Y € Up.
We now give a more explicit description @, (G). Let

Pt ={leP:Ma)>0foralliec(lr]}
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be the semigroup of dominant weights. Thi#s, is a free additive semigroup generated
by fundamental weighte, ..., ®,. (SinceA is of finite type, the setup in Sectidhl

simplifies so that simple coroots (resp. simple roots) form a basis (iresp.h*), and
the fundamental weights are uniquely determined by the conditipfx) = d;;.) To

every dominant weighf. € P* we associate an element' € U* given by
ANFKLE) = e(F)g"We(E) (9.8)

for FeU , EcU" andue P. Let&, =U e A* e U be theU — U-sub-bimodule
of U* generated b)A)‘. The following presentation o), (G) was essentially given in
[3, Section 1.7]

Proposition 9.1. Each elemenn\* belongs toO,(G); ;, each subspac€; is a finite-
dimensional simplé/ — U-bimodule and O, (G) has the direct sum decomposition

0,G) = P €.

LePt

The reason for our choice of the x P-grading inO,(G) is the following: we can
view O, (G) as aU x U-module via

(X,Y)f=YefeX',
where X — X7 is the transpose antiautomorphism of tB¢q)-algebraU given by

El=F, F'=E, K=K,

1 1

The specializationy = 1 transformsQ, (G) into a g x g-module, andO,(G), s be-
comes the weight subspace of weight ) under this action. In particular, under the
specializationg = 1, the spacef; becomes a simplg x g-module generated by the
highest vectorA” of weight (4, 4).

Comparing 9.7) with (9.4), we obtain the following useful property:

If the pairing O, (G), 5 x Uy — Q(g) is non-zero them =y — 4. (9.9

9.3. Quantum double Bruhat cells

For eachi € [1, r], we adopt the notational convention

E_i=F, s;=1
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(the latter was already used in Secti8®). Fori € £[1,r] = —[1,r]u[1,r], we
denote byU; the subalgebra ot) generated byU° and E;. For every double word
i =(1,...,in) (i.e., a word in the alphabet[1, r]), we set

Ui=U,--- U, CU.
Denote

Ji:={f € 04(G): f(Uj) =0},

l.e., Ji is the orthogonal complement @&f; in O,(G).
Clearly, eachU; satisfiesA(Ui) C Ui ® Ui, henceJ; is a two-sided ideal ir0, (G).
In fact, J is prime, i.e.,0,(G)/J; is a domain (see, e.gl14, Corollary 10.1.10]
Recall that areduced wordfor (1, v) € W x W is a shortest possible double word
i =(i1,...,i») such that

S*il e s*im =1u, Sil e Sim =v;
thus,m = £(u) + £(v), wherel : W — Z>q is the length function oW.

Proposition 9.2. If i andi’ are reduced words for the same eleméntv) € W x W,
then U; = Uj.

Proof. By the well-known Tits’ lemma, it suffices to check the statement in the fol-
lowing two special cases:

@Qi=daji..ni"=(,ij, ..., wherei, j € [1r], and the length of each df
andi’ is equal to the order aof;s; in W,
2)i=(—j),i"=(—j, i), wherei, j € [1,r].

Case (1) is treated if19], while Case (2) follows easily from the commutation relation
betweenE; and F; in U. [

In view of Proposition9.2, for everyu,v € W, we setU, , = Uj, and J,, = J;,
wherei is any reduced word fo(u, v). The algebraQ,(G)/J,, has the following
geometric meaning. LeH be the maximal torus irG with Lie algebral, and let
B (resp. B_) be the Borel subgroup i generated byH and the root subgroups
corresponding to simple roots, ..., «, (resp.—a1, ..., —a,). Recall that the Weyl
groupW is naturally identified with Nora(H)/H. Foru,v € W, let G*V denote the
double Bruhat cellBuB N B_vB_ in G (for their properties sef7]). Let G* denote
the Zariski closure olG*-* in G. As shown in[4], the specialization 00, (G)/J,,, at
g = 1 is the coordinate ring 0&G* . Thus, we will denoteD,(G)/J,, by O,(G*V)
and refer to it as @uantum closed double Bruhat cell

In order to define the “non-closed” quantum double Bruhat cells, we introduce the
guantum analogs of generalized minors frf#th Fix a dominant weight. € P*, a pair



A. Berenstein, A. Zelevinsky/Advances in Mathematics 195 (2005) 405-455 445

(u,v) € Wx W, areduced wordiy, ..., ig) for u, and a reduced wordji, . ... jew))
for v. For k € [1, £(u)] (resp.k € [1, £(v)]), we define the corool, (resp. C,f) by
setting = si, -+ i1 %, (€SP = sy -+ 8jia})- It is well-known that the
corootsny ...,nev(u) (resp.CZ,...,CZ(U)) are positive and distinct; in particular, we
have /() = 0 and A({}) > 0. Then we define an element,; ,;, € £, C O, (G) by

L0 iic) LAy
(FE@nJﬂ”,FD@aﬂfuﬂ),Az,(E’Wa>”“ N R W R 10

Aoy = ; :
u}.,UA Je(v) Le(u) 1

(see 0.1)); in view of the quantum Verma relatio$8, Proposition 39.3.7he element
A,,.; indeed depends only on the weight$ and v/, not on the choices af, v and
their reduced words. It is also immediate that each quantum mMgr belongs to
the graded componer®,(G), s, and that it spans the one-dimensional weight space
&, N O4(G), s- This implies that

E; .A“/ﬁ =0 if (¢ | 6) >0,

Fie AV’(S =0 if (o | 0) <O, (9.11)

A,seF; =0 if (o | y) >0,
A, s0E =0 if (o | ) <O. (9.12)

The generalized minors have the following multiplicative property:

Aui,leuu,v,u = Azt(/l+u),v().+u) (Aypue P+, u,vew). (9.13)

For u = v = 1, this follows at once from9Q.8); for generalu and v, (9.13 follows
by a repeated application of the following useful lemma which is proved by a direct
calculation using .2) and 0.6).

Lemma 9.3. Let f € 0,(G), s andg € Oq(G)y/’&/. For a giveni € [1, r], suppose that
a=4()) (resp b = d&'())) is the maximal non-negative integer such ttite f 0
(resp F} e g # 0). Then

(o ) - (5" e g) = F{*™"" e (f). (9.14)

Similarly, if ¢ = y(aY) (resp d = y'(«)) is the maximal non-negative integer such
that f e E€ # 0 (resp g e E¢ # 0), then

(f ¢ EI) - (g 0 By = (fg) @ E[HH). (9.15)
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The following fact can be deduced from the proof of Proposition 11.4.23in

Proposition 9.4. For any dominant weight. € P*, a pair of Weyl group elements
u,v e W, and a homogeneous elemefitc O,(G), 5, we have

ol D) -1
f . A;”Ufl;L — q(’ | =@ )“)A;”vfl;L . f (S Ju,vv (916)
Ay f—q @M= CIOf A 5 € Ty (9.17)

Let m,, denote the projectiorO,(G) — O,(G*V). It is not hard to check that
Tuw(Ayy ;) #0 andm, (A, ,-1;) # 0. We can rewrite .16 and @.17) as

Fomun(A yo1y) = q0IA=CV D (A ) (9.18)

TuwAuzn) - f = g1 A=CD £ (M) (9.19)

(for f € O4(G*"?), 5).
In view of (9.18—(9.19 and 0.13, for eachu,v € W the set

Dy = {q" My (D)) - (D 1) sk € Z, 0, e PTY

is an Ore set in the Ore domaif,(G*v) (see the appendix). This motivates the
following definition.

Definition 9.5. The quantum double Bruhat celD,(G"?) is the localization ofQ,
(G*?) by the Ore setD, ,, that is, 0,(G"") = O, (G*V)[D;1].

Definition 9.5 is easily seen to coincide with the definition [, Section 11.4.4]

10. Cluster algebra setup in quantum double Bruhat cells
10.1. Clusters associated with double reduced words

Fix a pair (u,v) € W x W, and letm = r + £(u) + £(v) = dimG*". Leti =
(i1, ...,in) be a double word such that, 1, ...,i,) is a reduced word foKu, v),

and (i1, ...,i,) is a permutation ofl,r]. Fork = 1,...,m, we define the weights
Yk, Ok € P as follows:

Vi = S—ipS—i Oligls Ok = Siy, " Sip 11 Dl
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(with our usual convention that ; = 1 for i € [1,r]). Let Ayk,(;k € 0,(G) be the
corresponding quantum minor. Note that

{A Ay s =1A

71,610 = By,.0,

w1.v twyr Aw,,vflo),}

and Ayk,(;k = Aukahwuu wheneverk™ = m 41 (see Sectio.2); thus, the only minors
A,, s, that depend on the choice ofare those for whiclk is i-exchangeable.

Theorem 10.1. The quantum minorsx),k,,;k pairwise quasi-commute id,(G). More
precisely for 1 < ¢ < k < m, we have

Vi | 70)— Ok | 0 . .
A}'k’(sk 'AW,(S/ — q(/H ) —(0k | ‘)Aym 'A)’k,bk' (10.1)
Proof. Identity (10.]) is a special case of the following identity:

Ax’si,t’/l ) As’u,t’tu = q(ﬂvl“)_(Alm)As’u,t’tu ’ As/s).,t//l (10-2)
for any 4, u € P*, ands, s’,t,t' € W such that

0(s's) = £(s") + £(s), £(t't) = £(t') + £(0).

Indeed, 10.1) is obtained from 10.2 by setting

/
A=), H=)) S =Sy Sy S = Seigy S
Si, S if r <k
t/ = Sim e Sima>((k r)+1° t= { 'k tmax(¢,r)+1 .,
' 1 otherwise.

To prove (0.2, we first consider its special case with=t" = 1:
Agj g Ay = g @HO=CIOAL A 5 (10.3)

for any 2, u € PT ands,t € W. In view of (9.11) and ©.12, the minors in 10.3
satisfy

EieAg ) =AueFi=0 (el[lr])
or equivalently,
EeA ) =¢E)A;; (E€UY), ApyoF =eF)Auyu (FeU).

Thus, 0.3 is a consequence of the following lemma.
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Lemma 10.2. Suppose the elemenfse O,(G), s and g € 04(G)y g satisfy
Eef=¢(E)Yf (EcU"), geF=c¢(F)g (FeU).
Then
fg =qWhH-0l 6/)gf. (10.4)
Proof. It suffices to show that both sides df(.4) take the same value at each element
FK;E € U, whereF (resp.E) is some monomial inFy, ..., F,. (resp.Eq,..., E}).

Using 0.6) together with 9.2—(9.3) and 0.7), we obtain

(f&)(FK;E) = (Ee fge F)(K;) =Y (E1e f e F1)(K)) - (E20 g ® F2)(K})
= (Kdegz @ f @ F)(K}) - (E o g ® Kgegr)(K)

= ¢ @CEOTESD £(FK) - g(KZE):
similarly,
(NFKLE) = f(FK)) - g(K,E).

In view of (9.9, f(FK;) # 0 (resp.g(K,;E) # 0) implies that ded” = y — o (resp.
degE =y — &'). We conclude that

fg = q(v/—5’|5)+('/—5|?/)gf - q(mf”)—@lé’)gf
as claimed. I
To finish the proof of Theoreni0.], it remains to deducel(Q.2 from (10.3. Re-
membering definition .10, we see that this implication is obtained by a repeated

application of the following lemma, which is immediate from Lem®a.

Lemma 10.3. In the situation of Lemm®.3, suppose the elements and g quasi-
commutei.e., fg = g*gf for some integek. Then

(E[a;l'] . f) . (Fi[b;i] . g) — qk(Fi[bii] . g) . (Fi[aii] ° f), (105)

(f o EI) - (g 0 EF) = g* (g o EI) - (f 0 EIT). (10.6)

This completes the proof of Theoreh®.1 O

Remark 10.4. Under the specializatiog = 1, Theorem10.1 evaluates the standard
Poisson-Lie brackets between the ordinary generalized minors. This answer agrees with
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the one given in[16, Theorem 2.6]in view of [11, Theorem 3.%1]in fact, Theorem
10.1allows one to deduce each of these two results from another on¢l@&eRemark
2.8)). (Unfortunately, the Poisson bracket used[16] and borrowed from17] is the
opposite of the one ifi3].)

10.2. The dual Lusztig bar-involution

Following Lusztig, we denote by — u the involutive ring automorphism df such
that

G=q ' E =E, F =F, Ky=K_,.

Clearly, this involution preserves grading.4). Define thedual bar-involution f +— f
on O, (G) by

fw =f@ @el). (10.7)

This is an involutive automorphism ad,(G) as aQ-vector space, satisfyin@ f =
Q f for 0 € Q(g), where Q(g) = Q(¢g~1). The definitions imply at once that

YefeX=YefeX (X, YeU, feO,G)). (10.8)
It follows that
Oq(G)y,(B = Oq (G)“/,O‘

for anyy, 0 € P.
The dual bar-involution has the following useful multiplicative property.

Proposition 10.5. For any f € 0,;(G), s and g € Oq(G)y/,(;/, we have
T g= q<6|6’)—<v|v’>§ T (10.9)

Proof. We start with some preparation concerning “twisted” comultiplicationsUin
For a ring homomorphisnD : U — U ® U and a ring automorphisnp of U, we
define the twisted ring homomorphisfiD : U — U ® U by

’D=(p®¢@)oDogp L (10.10)

In particular, we have a well-defined ring homomorphisth: U — U ® U corre-
sponding toD = A and ¢(u) = u. Clearly, A is Q(g)-linear.
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Let o : U — U denote all(¢)-linear automorphism o) given by
(@]2)
ou)=q 2 uk,

for u € U, (an easy check shows thatis a ring automorphism ot)). As an easy
consequence 0f9(9), we see that

X Q=019
foo=q 2

(10.112)
for any f € O,4(G), 5.

Let ’A°? : U — U ® U be the Q(g)-algebra homomorphism defined as 0(10
with ¢ = ¢ and D = A°P, the opposite comultiplicatiorgiven by A°? = P o A, where
P(X®Y)=Y ® X. We claim that

“A = A%, (10.12)

indeed, both sides ar@(g)-algebra homomorphism& — U ® U, so it suffices to
show that they take the same value at each of the gener&toig;, and K;, which is
done by a straightforward calculation.

Now everything is ready for the proof oflQ.9, which we prefer to prove in an
equivalent form:f - g = ¢©®19)-01")g . Indeed, combining the definitions withq.19
and (@0.11), we obtain

72w = (f @ CAW) = (f ® )A®w)) = (g0 0) - (f 00)) 0 ™ H)(u)

GIN=613+G" 17)="18) =G+ [y+7)+0+8 | 5+")
2 (&f) )

= @I~ (g f)(w),
as claimed. O

Proposition 10.6. Every quantum minoA, ; is invariant under the dual bar-involution

Proof. First, we note tha\” = A”: this is a direct consequence &.§). The general
statementA, 5 = A, 5 follows from (9.10 together with {0.§ and the observation
that all divided powers of the elemeni& and F; in U are invariant under the Lusztig
involution. [

Leti and the corresponding quantum mindrs 5 for k =1,...,m be as in Section
10.1 Generalizing Propositiod0.6 we now prove the following.

Proposition 10.7. Every monomialAffi 51 S A 5. Is invariant under the dual bar-
/1 /m-Ym
involution
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Proof. Using Propositionsl0.9 10.6 and Theorenl0.1, we obtain

ar A% qZ(<Av akag(Ox 100=r 7D AGm AL AGL . AGm
}'1761 }’mx()m Vm+Om 71»01 Vla()l ")"m-émi

as claimed. O
Note that the projectiom, , : O,(G) — O,(G*V) gives rise to a well-defined dual

bar-involution onO, (G*-*) given by, ,(f) = .0 (f) (indeed, the Lusztig involution
preservedJ, , so its dual preserves, , = ker m, ).

Proposition 10.8. The monomialst, (A, 5,)% -+ T v (4, 5, are linearly inde-

pendent overQ(g), and each of them is invariant under the dual bar-involution in
Oy (G*:Y).

Proof. The linear independence is clear because it holds under the specializatidn
The invariance under the dual bar-involution is immediate from Propositbd [

10.3. Connections with cluster algebras

As in Section10.], leti = (i1, ..., i) be a double word such th&t. 1, ...,i,) is
a reduced word foru, v), and (i1, ..., i,) is a permutation ofl, r]. Let A(i) (resp.
>(i)) be the skew-symmetric (resp. symmetric) integex m matrix defined by §.5).
We identify A(i) with the corresponding skew-symmetric bilinear form on= 7",
and consider the based quantum tofligA(i)) associated witHh. and A(i) according
to Definition 4.1 For k = 1,...,m, we denoteX; = X%, where{e1,...,e,} is
the standard basis i@™. Let F be the skew-field of fractions of (A(i)), and let
M : 7" — F — {0} be the toric frame such tha¥(e;) = X; for k € [1, m] (see
Definition 4.3 and Lemma4.4).

On the other hand, Iqul/z(GL””) denote the algebra obtained frof?, (G*") by
extending the scalars frof(¢) to Q(¢%?). Let Ti C O,12(G*") denote the quantum
subtorus Oqul/Z(Gu’v) generated by the elemen@,v(Ah’gl), '--’nu,v(Aym,ém) (see
Proposition10.8).

Proposition 10.9. (1) The correspondenc& ”u,v(Ayk,ék) (k € [1,m]) extends
uniquely to aQ(¢/?)-algebra isomorphismp : T(A(i)) — T;. ‘

(2) The isomorphisnp transforms the twisted bar-involutioki — Y(Z(')) on 7T (A(i))
(see(6.6)) into the dual bar-involution ory; (see Sectiori0.2).

Proof. (1) Comparing 4.18 with (10.1), and using Propositiori0.8 we see that it
suffices to prove the following:

ke (D) = (1 70) — Ok | ) (10.13)
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for 1 < ¢ < k < m. Remembering§.5 and @.6), we obtain (for¢ < k):

(Ve 17e) — Ok 10g) = (5—iy -+ - S—iy iy | | S—iy - =+ S—iy D}iy])
=iy Si1 Ol | Sig *+* Sig1 D))
= (S—igya =i Olig| | Oig]) — (@i | [Sig *+ * Sig 1 Dig])

= (n_[€", k], — mel€h, Koy | @) = Mer = Ake (@)

as required.
(2) This is a direct consequence &.§), (4.19 and the last statement in Proposition
108 O

In view of Proposition10.9 the isomorphismp : T (A(i)) — 7i extends uniquely
to an injective homomorphism of skew-fields of fractiahs— F(O,1,2(G*")), which

we will denote by the same symbai. Let (M, B(i)) c F be the upper cluster
algebra associated according @2 with the toric frameM and the matrixB(i) given
by (8.7). We can now state the following conjecture whose classical counterpgt is
Theorem 2.1Q]

Conjecture 10.10. The homomorphismp : F — F(Oy12(G"7)) is an isomorphism of

skew fieldsfurthermore it restricts to an isomorphism df(¢/2)-algebrasi/(M, B(i))
— (’)ql/z(G”’v).

For instance, ifG = SL3, and G*'V is the open double Bruhat cell i (i.e.,
u = v = wo) then we conjecture thab,2(G"") identifies with the quantum upper

cluster algebra associated with the compatible pAirB) in Examples3.2 and 8.4
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Appendix A. Ore domains and skew fields of fractions

Let R be adomain i.e., an associative ring with unit having no zero-divisors. As
in [14, A.2], we say thatR is an Ore domain if is satisfies the (left) Ore condition:
aR N bR # {0} for any non-zeraz, b € R. Let F(R) denote the set ofight fractions
ab=! with a,b € R, andb # 0; two such fractionsib~ and cd~1 are identified if
af = cg andbf = dg for some non-zerd, g € R. The ringR is embedded int¢-(R)
via a — a - 171 It is well known that ifR is an Ore domain then the addition and
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multiplication in R extend toF(R) so thatF(R) becomes a skew-field. (Indeed, we
can define

ab ™+ cd ! = (ae + cf)gil,

where non-zero elements f, andg of R are chosen so thdte = df = g; similarly,
ab ™t cd ™t =ae- (df)71,

where non-zer@, f € R are chosen so thatf = be.)

A subsetD c R — {0} is called an Ore set iD is a multiplicative monoid with unit
satisfyingd R = Rd for all d € D. One checks easily that D is an Ore set, then the
set of right fractionsR[D~1] = {ad~1 : a € R, d € D} is a subring of F(R), called
the localization ofR by D.

We now present a helpful sufficient condition for a domain to be an Ore domain.
Suppose thaR is an algebra over a fiel# with an increasing filtrationk ¢ Rg C
R1 C ---), where eachr; is a finite-dimensionak-vector spaceR;R; C R;y;, and
R = UR;. We say thaR has polynomial growth if dink, < P(n) for all n > 0, where
P(x) is some polynomial. The following proposition is well known (see, §413));
for the convenience of the reader, we will provide a proof.

Proposition A.1. Any domain of polynomial growth is an Ore domain

Proof. Assume, on the contrary, thatR N bR = {0} for some non-zera:,b € R.
Choosei > 0 such thata, b € R;. Then, for everyn > 0, the k-subspaces:R,, and
bR, of R;y, are disjoint, hence

dim R;1, > dim aR, +dim bR, > 2dim R,,.

Iterating this inequality, we see that diRy,; > 2" for m > 0, which contradicts the
assumption thaR has polynomial growth. [

As a corollary, we obtain that any based quantum tof¢a) (see Definitiond.1) is
an Ore domain, as well as the quotient of the quantized coordinate(tjig) (see
Section9.2) by any prime ideall. Indeed, both7 (A) and O,(G)/J are easily seen
to have polynomial growth (e.g., faR = O,(G)/J, take R, as theQ(g)-linear span
of all products of at mosh factors, each of which is the projection of one of the
generatorsE;, F;, or K;).

We conclude with a description of the two-sided ideals/ir= 7 (A). The following
proposition is well known to the experts; it was shown to us by Maria Gorelik.

Proposition A.2. (1) The centerZ of T = T(A) is a free Z[¢*/?]-module with the
basis {X/ : f € kerA}. Thus Z is the Laurent polynomial ring oveZ[¢*/?] in r
independent commuting variablesherer = rk(kerA).
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(2) The correspondencé — [ =7 J = JT gives a bijection between the ideals in
Z and the two-sided ideals iff. The inverse map is given by J =1 Z.

(3) The correspondencé — I in (2) sends intersections to intersections. In partic-
ular, if z1 and zo are relatively prime inZ, then7z1 N Tz2 = T z122.

Proof. We start with a little preparation. Let* = Hom(L, Z) be the dual lattice. For
Ee L*, we set

Te={XeT: XXX ¢=q"“X foreelL). (A1)

This makes7 into a L*-graded algebra: the decompositign = @®¢.+7: is clear
since, in view of 4.3,

T: is a Z[g*Y/?]-module with the basigX/ : ¢, = &}, (A.2)
where s (e) = Ale, f). It follows that
the multiplication byX/ gives an isomorphisny: — 7'5+§f. (A.3)

In view of (A.1), we haveZ = Tp. Thus, assertion (1) is a special case A2]. To
prove (2), it is enough to note that every two-sided ideaf 7 is L*-graded, and,
in view of (A.3), the multiplication by anyX/ restricts to an isomorphism (1) 7z —
1ﬂ7’5+5f. Finally, (3) is immediate from (2): since the correspondetice> J =
I Z sends intersections to intersections, the same is true for the inverse correspon-
dence. O

References

[1] A. Berenstein, Group-like elements in quantum groups and Feigin’s conjecture, J. Algebra, to appear.

[2] A. Berenstein, S. Fomin, A. Zelevinsky, Cluster algebras Ill: upper bounds and double Bruhat cells,
Duke Math. J., to appear.

[3] K. Brown, K. Goodearl, Lectures on Algebraic Quantum Groups, Birkhduser, Basel, 2002.

[4] C. De Concini, C. Procesi Quantum Schubert cells and representations at roots of 1, in: Algebraic
Groups and Lie Groups, Australian Mathematical Society Lecture Series, vol. 9, Cambridge University
Press, Cambridge, 1997, pp. 127-160.

[5] V.V. Fock, A.B. Goncharov, Moduli spaces of local systems and higher Teichmuller theory,
math.AG/0311149

[6] V.V. Fock, A.B. Goncharov, Cluster ensembles, quantizaton and the dilogarithm,
math.AG/0311245

[7] S. Fomin, A. Zelevinsky, Double Bruhat cells and total positivity, J. Amer. Math. Soc. 12 (1999)
335-380.

[8] S. Fomin, A. Zelevinsky, Cluster algebras I: foundations, J. Amer. Math. Soc. 15 (2002) 497-529.

[9] S. Fomin, A. Zelevinsky, The Laurent phenomenon, Adv. Appl. Math. 28 (2002) 119-144.

[10] S. Fomin, A. Zelevinsky, Cluster algebras IlI: finite type classification, Invent. Math. 154 (2003)
63-121.



A. Berenstein, A. Zelevinsky/Advances in Mathematics 195 (2005) 405-455 455

[11] M. Gekhtman, M. Shapiro, A. Vainshtein, Cluster algebras and Poisson geometry, Moscow Math. J.
3 (3) (2003).

[12] M. Gekhtman, M. Shapiro, A. Vainshtein, Cluster algebras and Weil-Petersson forms,
math.QA/0309138

[13] K. lohara, F. Malikov, Rings of skew polynomials and Gel'fand—Kirillov conjecture for quantum
groups, Comm. Math. Phys. 164 (1994) 217-238.

[14] A. Joseph, Quantum Groups and their Primitive Ideals, Ergebnisse der Math. (3), vol. 29, Springer,
Berlin, 1995.

[15] V. Kac, Infinite Dimensional Lie Algebras, third ed., Cambridge University Press, Cambridge, 1990.

[16] M. Kogan, A. Zelevinsky, On symplectic leaves and integrable systems in standard complex
semisimple Poisson-Lie groups, Internat. Math. Res. Notices 32 (2002) 1685-1702.

[17] L. Korogodski, Y. Soibelman, Algebras of Functions on Quantum Groups, Part |. Mathematical
Surveys and Monographs, vol. 56, American Mathematical Society, Providence, RI, 1998.

[18] G. Lusztig, Introduction to Quantum Groups, Progress in Mathematics, vol. 110, Birkhduser Boston,
1993.

[19] G. Lusztig, Problems on canonical bases, in: W.J. Haboush, B.J. Parshall (Eds.), Algebraic groups
and their generalizations: quantum and infinite-dimensional methods (University Park, PA, 1991),
Proceedings of the Symposium on Pure Math., vol. 56, Part 2, American Mathematical Society,
Providence, RI, 1994, pp. 169-176.

[20] P. Sherman, A. Zelevinsky, Positivity and canonical bases in rank 2 cluster algebras of finite and
affine types, Moscow Math. J., to appear.

[21] A. Zelevinsky, Connected components of real double Bruhat cells, Internat. Math. Res. Notices 21
(2000) 1131-1153.



	Quantum cluster algebras62626262
	Introduction
	Cluster algebras of geometric type
	Compatible pairs
	Quantum cluster algebras setup
	Based quantum torus and ambient skew-field
	Some automorphisms of F
	Toric frames
	Quantum seeds and their mutations
	Quantum cluster algebras

	Upper bounds and quantum Laurent phenomenon
	Exchange graphs, bar-involutions, and gradings
	Lower bounds and acyclicity
	Matrix triples associated with Cartan matrices
	Cartan data
	Double words and associated matrix triples

	Preliminaries on quantum groups
	Quantized enveloping algebras
	The quantized coordinate ring of =G
	Quantum double Bruhat cells

	Cluster algebra setup in quantum double Bruhat cells
	Clusters associated with double reduced words
	The dual Lusztig bar-involution
	Connections with cluster algebras

	Acknowledgements
	. Ore domains and skew fields of fractions
	References


