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Abstract

Cluster algebras form an axiomatically defined class of commutative rings designed to serve
as an algebraic framework for the theory of total positivity and canonical bases in semisimple
groups and their quantum analogs. In this paper we introduce and study quantum deformations
of cluster algebras.
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1. Introduction

Cluster algebras were introduced by S. Fomin and A. Zelevinsky[8]; their study
continued in[10,2]. This is a family of commutative rings designed to serve as an
algebraic framework for the theory of total positivity and canonical bases in semisimple
groups and their quantum analogs. In this paper, we introduce and study quantum
deformations of cluster algebras.
Our immediate motivation for introducing quantum cluster algebras is to prepare the

ground for a general notion of the canonical basis in a cluster algebra. Remarkably,
cluster algebras and their quantizations appear to be relevant for the study of (higher)
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Teichmuller theory initiated in[11,12,5,6]. Our approach to quantization has much in
common with the one in[5,6], but we develop it more systematically. In particular, we
show that practically all the structural results on cluster algebras obtained in[8,10,2]
extend to the quantum setting. This includes the Laurent phenomenon[8,9,2] and the
classification of cluster algebras of finite type[10].
Our approach to quantum cluster algebras can be described as follows. Recall that a

cluster algebraA is a certain commutative ring generated by a (possibly infinite) set
of generators calledcluster variablesinside an ambient fieldF isomorphic to the field
of rational functions inm independent variables overQ. The set of cluster variables is
the union of some distinguished transcendence bases ofF called (extended)clusters.
The clusters are not given from the outset but are obtained from an initial cluster via
an iterative process ofmutationswhich follows a set of canonical rules. According to
these rules, every cluster{x1, . . . , xm} is surrounded byn adjacent clusters (for some
n � m called therank of A) of the form {x1, . . . , xm}− {xk}∪ {x′

k}, wherek runs over
a givenn-element subset ofexchangeableindices, andx′

k ∈ F is related toxk by the
exchange relation(see (2.2)). The cluster algebra structure is completely determined
by an m × n integer matrixB̃ that encodes all the exchange relations. (The precise
definitions of all these notions are given in Section2.) Now, the quantum deformation
of A is aQ(q)-algebra obtained by making each cluster into aquasi-commutingfamily
{X1, . . . , Xm}; this means thatXiXj = q�ij Xj Xi for a skew-symmetric integerm × m

matrix� = (�ij ). In doing so, we have to modify the mutation process and the exchange
relations so that all the adjacent quantum clusters will also be quasi-commuting. This
imposes thecompatibility relation between the quasi-commutation matrix� and the
exchange matrixB̃ (Definition 3.1). In what follows, we develop a formalism that
allows us to show that any compatible matrix pair(�, B̃) gives rise to a well-defined
quantum cluster algebra.
The paper is organized as follows. In Section2, we present necessary definitions and

facts from the theory of cluster algebras in the form suitable for our current purposes.
In Section3, we introduce compatible matrix pairs(�, B̃) and their mutations.
Section4 plays the central part in this paper. It introduces the main concepts needed

for the definition of quantum cluster algebras (Definition4.12): based quantum tori
(Definition 4.1) and their skew-fields of fractions,toric frames(Definition 4.3), quantum
seeds(Definition 4.5) and their mutations (Definition4.8).
Section 5 establishes the quantum version of the Laurent phenomenon (Corollary

5.2): any cluster variable is a Laurent polynomial in the elements of any given cluster.
The proof closely follows the argument in[2] with necessary modifications. It is based
on the important concept of anupper cluster algebraand the fact that it is invariant
under mutations (Theorem5.1).
In Section6, we show that theexchange graphof a quantum cluster algebra remains

unchanged in the “classical limit’’q = 1 (Theorem6.1). (Recall that the vertices of the
exchange graph correspond to (quantum) seeds, and the edges correspond to mutations.)
An important consequence of Theorem6.1 is that the classification of cluster algebras
of finite type achieved in[10] applies verbatim to quantum cluster algebras.
An important ingredient of the proof of Theorem6.1 is the bar-involution on the

quantum cluster algebra which is modeled on the Kazhdan–Lusztig involution, or the
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one used later by Lusztig in his definition of the canonical basis. We conclude Section
6 by including the bar-involution into a family oftwisted bar-involutions(Proposition
6.9). This construction is motivated by our hope that this family of involutions will
find applications to the future theory of canonical bases in (quantum) cluster algebras.
Section7 extends to the quantum setting another important result from[2]: a sufficient

condition (“acyclicity’’) guaranteeing that the cluster algebra coincides with the upper
one (Theorem7.5). The proof in [2] is elementary but rather involved; we do not
reproduce it here in the quantum setting, just indicate necessary modifications.
Section8 presents our main source of examples of quantum cluster algebras: those

associated with double Bruhat cells in semisimple groups. The ordinary cluster algebra
structure associated with these cells was introduced and studied in[2]. The main result
in Section8 (Theorem8.3) shows, in particular, that every matrix̃B associated as in
[2] with a double Bruhat cell can be naturally included into a compatible matrix pair
(�, B̃). Not very surprisingly, the skew-symmetric matrix� that appears here is the one
describing the standard Poisson structure in the double cell in question; this matrix was
calculated in[16,11]. The statement and proof of Theorem8.3 are purely combinatorial,
i.e., do not use the geometry of double cells; thus, without any additional difficulty,
we state and prove it in greater generality that allows us to produce a substantial class
of compatible matrix pairs associated with generalized Cartan matrices.
The study of quantum double Bruhat cells continues in Section10. (For the conve-

nience of the reader, we collect necessary preliminaries on quantum groups in Section
9.) The goal is to relate the cluster algebra approach with that developed by De Concini
and Procesi[4] (see also[14,3]). Our results here are just the first step in this direction;
we merely prepare the ground for a conjecture (Conjecture10.10) that every quantum
double Bruhat cell is naturally isomorphic to the upper cluster algebra associated with
an appropriate matrix pair from Theorem8.3. The classical case of this conjecture was
proved in [2, Theorem 2.10].
For the convenience of the reader, some needed facts on Ore localizations are col-

lected with proofs in AppendixA.

2. Cluster algebras of geometric type

We start by recalling the definition of (skew-symmetrizable) cluster algebras of ge-
ometric type, in the form most convenient for our current purposes.
Let m and n be two positive integers withm � n. Let F be the field of rational

functions overQ in m independent (commuting) variables. The cluster algebra that we
are going to introduce will be a subring of the ambient fieldF . To define it, we need
to introduce seeds and their mutations.

Definition 2.1. A (skew-symmetrizable)seedin F is a pair (x̃, B̃), where

(1) x̃ = {x1, . . . , xm} is a transcendence basis ofF , which generatesF .
(2) B̃ is anm×n integer matrix with rows labeled by[1, m] = {1, . . . , m} and columns

labeled by ann-element subsetex⊂ [1, m], such that then × n submatrixB of B̃
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with rows labeled byex is skew-symmetrizable, i.e.,DB is skew-symmetric for
some diagonaln × n matrix D with positive diagonal entries.

The seeds are defined up to a relabeling of elements ofx̃ together with the correspond-
ing relabeling of rows and columns of̃B.

Remark 2.2. The last condition in (1), namely thatx̃ generatesF , was unfortunately
omitted in [10,2] although it was always meant to be there. (We thank E.B. Vinberg
for pointing this out to us.) In what follows, we refer to the subsets satisfying (1) as
free generating setsof F .

We denotex = {xj : j ∈ ex} ⊂ x̃, andc = x̃ − x. We refer to the indices fromex as
exchangeable indices, to x as thecluster of a seed(x̃, B̃), and toB as theprincipal
part of B̃ .
Following [8, Definition 4.2], we say that a realm × n matrix B̃ ′ is obtained from

B̃ by matrix mutationin direction k ∈ ex, and write B̃ ′ = �k(B̃) if the entries ofB̃ ′
are given by

b′
ij =

{−bij if i = k or j = k;

bij + |bik|bkj + bik|bkj |
2

otherwise.
(2.1)

This operation has the following properties.

Proposition 2.3. (1) The principal part ofB̃ ′ is equal to�k(B).
(2) �k is involutive: �k(B̃ ′) = B̃.
(3) If B is integer and skew-symmetrizable then so is�k(B).
(4) The rank ofB̃ ′ is equal to the rank ofB̃.

Proof. Parts (1) and (2) are immediate from the definitions. To see (3), notice that
�k(B) has the same skew-symmetrizing matrixD (see [8, Proposition 4.5]). Finally,
Part (4) is proven in[2, Lemma 3.2]. �

Definition 2.4. Let (x̃, B̃) be a seed inF . For any exchangeable indexk, the seed
mutation in direction k transforms(x̃, B̃) into a seed�k(x̃, B̃) = (x̃′, B̃ ′), where

• x̃′ = x̃ − {xk} ∪ {x′
k}, wherex′

k ∈ F is determined by theexchange relation

xk x′
k =

∏
i∈[1,m]
bik>0

x
bik

i +
∏

i∈[1,m]
bik<0

x
−bik

i . (2.2)

• The matrix B̃ ′ is obtained fromB̃ by the matrix mutation in directionk.

Note that (x̃′, B̃ ′) is indeed a seed, sincẽx′ is obviously a free generating set for
F , and the principal part of̃B ′ is skew-symmetrizable by parts (1) and (3) of Propo-
sition 2.3. As an easy consequence of part (2) of Proposition2.3, the seed mutation
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is involutive, i.e.,�k(x̃′, B̃ ′) = (x̃, B̃). Therefore, the following relation on seeds is an
equivalence relation: we say that(x̃, B̃) is mutation-equivalent to(x̃′, B̃ ′) and write
(x̃, B̃) ∼ (x̃′, B̃ ′) if (x̃′, B̃ ′) can be obtained from(x̃, B̃) by a sequence of seed muta-
tions. Note that all seeds(x̃′, B̃ ′) mutation-equivalent to a given seed(x̃, B̃) share the
same setc = x̃′ − x′. Let Z[c±1] ⊂ F be the ring of integer Laurent polynomials in
the elements ofc.
Now everything is in place for defining cluster algebras.

Definition 2.5. Let S be a mutation-equivalence class of seeds inF . The cluster algebra
A(S) associated withS is theZ[c±1]-subalgebra of the ambient fieldF , generated by
the union of clusters of all seeds inS.
Since S is uniquely determined by each of the seeds(x̃, B̃) in it, we sometimes

denoteA(S) as A(x̃, B̃), or even simplyA(B̃), becauseB̃ determines this algebra
uniquely up to an automorphism of the ambient fieldF .

3. Compatible pairs

Definition 3.1. Let B̃ be anm × n integer matrix with rows labeled by[1, m] and
columns labeled by ann-element subsetex ⊂ [1, m]. Let � be a skew-symmetric
m × m integer matrix with rows and columns labeled by[1, m]. We say that a pair
(�, B̃) is compatibleif, for every j ∈ ex and i ∈ [1, m], we have

m∑
k=1

bkj�ki = �ij dj

for some positive integersdj (j ∈ ex). In other words, then × m matrix D̃ = B̃T�
consists of the two blocks: theex×ex diagonal matrixD with positive integer diagonal
entriesdj , and theex× ([1, m] − ex) zero block.

A large class of compatible pairs is constructed in Section8.1. Here is one specific
example of a pair from this class.

Example 3.2. Let B̃ be an 8× 4 matrix given by

B̃ =




−1 0 0 0

1 −1 0 0

0 1 −1 0

−1 0 1 −1

1 −1 0 1

0 1 −1 0

0 −1 0 1

0 0 0 −1




,
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where the columns are indexed by the setex= {3,4,5,6} (note that the 4×4 submatrix
of B̃ on the rows{3,4,5,6} is skew-symmetric). (This matrix describes the cluster
algebra structure in the coordinate ring ofSL3 localized at the four minors�1,3, �3,1,
�12,23, and�23,12; it is obtained from the one in[2, Fig. 2] by interchanging the first
two rows and changing the sign of all entries.) Let us define a skew-symmetric 8× 8
matrix � by

� =




0 0 −1 −1 −1 0 0 0

0 0 0 −1 −1 −1 0 0

1 0 0 0 −1 0 1 0

1 1 0 0 0 0 1 1

1 1 1 0 0 1 1 1

0 1 0 0 −1 0 0 1

0 0 −1 −1 −1 0 0 0

0 0 0 −1 −1 −1 0 0




.

A direct check shows that the pair(�, B̃) is compatible: the product̃D = B̃T� is
equal to 


0 0 2 0 0 0 0 0

0 0 0 2 0 0 0 0

0 0 0 0 2 0 0 0

0 0 0 0 0 2 0 0


 .

Proposition 3.3. If a pair (�, B̃) is compatible theñB has full rankn, and its principal
part B is skew-symmetrizable.

Proof. By the definition, then × n submatrix ofB̃T� with rows and columns labeled
by ex is the diagonal matrixD with positive diagonal entriesdj . This implies at once
that rk(B̃) = n. To show thatB is skew-symmetrizable, note thatDB = B̃T�B̃ is
skew-symmetric. �

We will extend matrix mutations to those of compatible pairs. Fix an indexk ∈ ex
and a signε ∈ {±1}. As shown in[2, (3.2)], the matrixB̃ ′ = �k(B̃) can be written as

B̃ ′ = Eε B̃ Fε, (3.1)

where

• Eε is them × m matrix with entries

eij =



�ij if j �= k;
−1 if i = j = k;
max(0, −εbik) if i �= j = k.

(3.2)
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• Fε is the n × n matrix with rows and columns labeled byex, and entries given by

fij =



�ij if i �= k;
−1 if i = j = k;
max(0, εbkj ) if i = k �= j .

(3.3)

Now suppose that a pair(�, B̃) is compatible. We set

�′ = ET
ε �Eε; (3.4)

thus,�′ is skew-symmetric.

Proposition 3.4. (1) The pair (�′, B̃ ′) is compatible.
(2) �′ is independent of the choice of a signε.

Proof. To prove (1), we show that the pair(�′, B̃ ′) satisfies Definition3.1 with the
same matrixD̃. We start with an easy observation that

E2
ε = 1, F 2

ε = 1. (3.5)

We also have

F T
ε D̃ = D̃Eε; (3.6)

indeed, one only has to check that

di max(0, −εbik) = dk max(0, εbki)

for i ∈ ex− {k}, which is true since, by Proposition3.3, D is a skew-symmetrizing
matrix for the principal part ofB̃. In view of (3.5) and (3.6), we have

(B̃ ′)T�′ = F T
ε D̃Eε = D̃

finishing the proof.
(2) An easy calculation shows that the matrix entries of the productG = E−E+ are

given by

gij =
{
1 if i = j ;
�jkbik if i �= j . (3.7)
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A direct check now shows thatGT�G = �. (For instance, ifj �= k then the(k, j)

entry of GT�G is equal to

�kj +
∑
i �=k

bik�ij = �kj ,

since the sum
∑

i �=k bik�ij is the (k, j)-entry of B̃T� and so is equal to 0.) We con-

clude thatET+�E+ = ET−�E− as claimed. �

Proposition3.4 justifies the following important definition.

Definition 3.5. Let (�, B̃) be a compatible pair, andk ∈ ex. We say that the compatible
pair given by (3.1) and (3.4) is obtained from(�, B̃) by themutation in direction k,
and write (�′, B̃ ′) = �k(�, B̃).

The following result extends part (2) of Proposition2.3 to compatible pairs.

Proposition 3.6. The mutations of compatible pairs are involutive: for any compatible
pair (�, B̃) and k ∈ ex, we have�k(�k(�, B̃)) = (�, B̃).

Proof. Let �k(�, B̃) = (�′, B̃ ′), and letE′
ε be given by (3.2) applied toB̃ ′ instead of

B̃. By the first case in (2.1), the kth column of B̃ ′ is the negative of thekth column
of B̃. It follows that:

E′
ε = E−ε. (3.8)

In view of (3.5), we get

(E′+)T�′E′+ = ET−�′E− = �,

which proves the desired claim. �

4. Quantum cluster algebras setup

4.1. Based quantum torus and ambient skew-field

Let L be a lattice of rankm, with a skew-symmetric bilinear form� : L × L → Z.
We also introduce a formal variableq. It will be convenient to work over the field of
rational functionsQ(q1/2) as a ground field. LetZ[q±1/2] ⊂ Q(q1/2) denote the ring
of integer Laurent polynomials in the variableq1/2.
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Definition 4.1. The based quantum torusassociated withL is the Z[q±1/2]-algebra
T = T (�) with a distinguishedZ[q±1/2]-basis {Xe : e ∈ L} and the multiplication
given by

XeXf = q�(e,f )/2Xe+f (e, f ∈ L). (4.1)

Thus, T can be viewed as the group algebra ofL over Z[q±1/2] twisted by a
2-cocycle(e, f ) �→ q�(e,f )/2. It is easy to see thatT is associative: we have

(XeXf )Xg = Xe(Xf Xg) = q(�(e,f )+�(e,g)+�(f,g))/2Xe+f +g. (4.2)

The basis elements satisfy the commutation relations

XeXf = q�(e,f )Xf Xe. (4.3)

We also have

X0 = 1, (Xe)−1 = X−e (e ∈ L). (4.4)

It is well-known (see the appendix) thatT is an Ore domain, i.e., is contained in its
skew-field of fractionsF . Note thatF is aQ(q1/2)-algebra. A quantum cluster algebra
to be defined below will be aZ[q±1/2]-subalgebra ofF .

4.2. Some automorphisms ofF

Unless otherwise stated, by anautomorphismof F we will always mean aQ(q1/2)-
algebra automorphism. An important class of automorphisms ofF can be given as
follows. For a lattice pointb ∈ L − ker(�), let d(b) denote the minimal positive value
of �(b, e) for e ∈ L. We associate withb the grading onT such that everyXe is
homogeneous of degree

db(Xe) = db(e) = �(b, e)/d(b). (4.5)

Proposition 4.2. For everyb ∈ L − ker(�), and every signε, there is a unique auto-
morphism�b,ε of F such that

�b,ε(Xe) =
{

Xe if �(b, e) = 0;
Xe + Xe+εb if �(b, e) = −d(b).

(4.6)

Proof. Since the elementsXe that appear in (4.6), together with their inverses generate
T as aZ[q±1/2]-algebra, the uniqueness of�b,ε is clear. To show the existence, we
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introduce some notation. For every non-negative integerr, we define an elementP r
b,ε ∈

T by

P r
b,ε =

r∏
p=1

(1+ qε(2p−1)d(b)/2Xεb). (4.7)

We extend the action of�b,ε given by (4.6) to a Z[q±1/2]-linear mapT → F such
that, for everye ∈ L with |db(e)| = r, we have

�ε,b(Xe) =
{

P r
b,εXe if db(e) = −r,

(P r−b,−ε)−1Xe if db(e) = r
(4.8)

(it is easy to see that (4.8) specializes to (4.6) whendb(e) = 0, or db(e) = −1; a more
general expression is given by (4.10)). One checks easily with the help of (4.3) that
this extended map is aZ[q±1/2]-algebra homomorphismT → F , and so it extends to
an algebra endomorphism ofF . The fact that this is an automorphism follows from
the identity�−b,−ε(�b,ε(Xe)) = Xe, which is a direct consequence of (4.8). �

A direct check using (4.8) shows that the automorphisms�b,ε have the following
properties:

�−1
b,ε = �−b,−ε, �b,−ε = �b,ε ◦ �b,ε, (4.9)

where�b,ε is an automorphism ofF acting by

�b,ε(Xe) = Xe−εdb(e)b (e ∈ L).

In the first case in (4.8), i.e., whendb(e) = −r � 0, we have also the following
explicit expansion of�b,ε(Xe) in terms of the distinguished basis inT :

�b,ε(Xe) =
r∑

p=0

(
r

p

)
qd(b)/2

Xe+εpb, (4.10)

where we use the notation

(
r

p

)
t

= (tr − t−r ) · · · (tr−p+1 − t−r+p−1)

(tp − t−p) · · · (t − t−1)
. (4.11)
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This expansion follows from the first case in (4.8) with the help of the well-known
“ t-binomial formula’’

r−1∏
p=0

(1+ t r−1−2px) =
r∑

p=0

(
r

p

)
t

xp. (4.12)

4.3. Toric frames

Definition 4.3. A toric frame in F is a mappingM : Zm → F − {0} of the form

M(c) = �(X�(c)), (4.13)

where� is an automorphism ofF , and� : Zm → L is an isomorphism of lattices.

Note that both� and � are not uniquely determined by a toric frameM.
By the definition, the elementsM(c) form a Z[q±1/2]-basis of an isomorphic copy

�(T ) of the based quantum torusT ; their multiplication and commutation relations
are given by

M(c)M(d) = q�M (c,d)/2M(c + d) (4.14)

and

M(c)M(d) = q�M (c,d)M(d)M(c), (4.15)

where the bilinear form�M on Zm is obtained by transferring the form� from L by
means of the lattice isomorphism�. (Note that either of (4.14) and (4.15) establishes,
in particular, that�M is well defined, i.e., does not depend on the choice of�.) In
view of (4.4), we have

M(0) = 1, M(c)−1 = M(−c) (c ∈ Zm). (4.16)

We denote by the same symbol�M the correspondingm × m integer matrix with
entries

�ij = �M(ei, ej ), (4.17)

where {e1, . . . , em} is the standard basis ofZm.
Given a toric frame, we setXi = M(ei) for i ∈ [1, m]. In view of (4.15), the

elementsXi quasi-commute:

XiXj = q�ij Xj Xi. (4.18)
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In the “classical limit’’ q = 1, the setX̃ = {X1, . . . , Xm} specializes to an (arbitrary)
free generating set̃x of the ambient field, while the set{M(c) : c ∈ Zm} turns into the
set of all Laurent monomials in the elements ofx̃.

Lemma 4.4. A toric frameM : Zm → F −{0} is uniquely determined by the elements
Xi = M(ei) for i ∈ [1, m].

Proof. In view of (4.14), (4.17), and (4.18), we get

M(a1, . . . , am) = q
1
2

∑
$<k aka$�k$X

a1
1 · · · Xam

m (4.19)

for any (a1, . . . , am) ∈ Zm, which implies our statement. �

In spite of Lemma4.4, we still prefer to include the whole infinite family of elements
M(c) into Definition 4.3, since there seems to be no nice way to state the needed
conditions in terms of the finite set̃X.

4.4. Quantum seeds and their mutations

Now everything is ready for a quantum analog of Definition2.1.

Definition 4.5. A quantum seedis a pair (M, B̃), where

• M is a toric frame inF .
• B̃ is anm × n integer matrix with rows labeled by[1, m] and columns labeled by
an n-element subsetex⊂ [1, m].

• The pair (�M, B̃) is compatible in the sense of Definition3.1.

As in Definition 2.1, quantum seeds are defined up to a permutation of the standard
basis inZm together with the corresponding relabeling of rows and columns ofB̃.

Remark 4.6. In the “classical limit’’ q = 1, the quasi-commutation relations (4.15)
give rise to the Poisson structure on the cluster algebra introduced and studied in
[11]. In fact, the compatibility condition for the pair(�M, B̃) appears in[11, (1.7)].
Furthermore, fork ∈ ex, let bk ∈ Zm denote thekth column of B̃. As a special case
of (4.15), for every j, k ∈ ex, we get

M(bj )M(bk) = q�M (bj ,bk)M(bk)M(bj ),

where the exponent�M(bj , bk) is the(j, k)-entry of the matrixB̃T�MB̃. Since the pair
(�M, B̃) is compatible, this exponent is equal todj bjk = −dkbkj , where the positive
integersdj for j ∈ ex have the same meaning as in Definition3.1. In the limit q = 1,
this agrees with the calculation of the Poisson structure from[11, Theorem 1.4]in the
so-called�-coordinates.
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Our next target is a quantum analog of Definition2.4. Let (M, B̃) be a quantum seed.
Fix an indexk ∈ ex and a signε ∈ {±1}. We define a mappingM ′ : Zm → F − {0}
by setting, forc = (c1, . . . , cm) ∈ Zm with ck � 0,

M ′(c) =
ck∑

p=0

(
ck

p

)
qdk/2

M(Eεc + εpbk), M ′(−c) = M ′(c)−1, (4.20)

where we use thet-binomial coefficients from (4.11), the matrixEε is given by (3.2),
and the vectorbk ∈ Zm is the kth column of B̃. Finally, let B̃ ′ = �k(B̃) be given by
(2.1).

Proposition 4.7. (1) The mappingM ′ is a toric frame independent of the choice of a
sign ε.
(2) The pair (�M ′ , B̃ ′) is obtained from(�M, B̃) by the mutation in direction k(see

Definition 3.5).
(3) The pair (M ′, B̃ ′) is a quantum seed.

Proof. (1) To see thatM ′ is independent of the choice ofε, notice that the summation
term in (4.20) does not change if we replaceε with −ε, andp with ck − p (this is a
straightforward check). To show thatM ′ is a toric frame, we expressM according to
(4.13). Replacing the initial-based quantum torusT with �(T ), and using� to identify
the latticeL with Zm, we may assume from the start thatL = Zm, andM(c) = Xc for
any c ∈ L. Note that the compatibility condition for the pair(�M, B̃) can be simply
written as

�(bj , ei) = �ij dj (i ∈ [1, m], j ∈ ex). (4.21)

It follows that, using the notation introduced in Section4.2, we get d(bk) = dk for
k ∈ ex, anddbk (Eεc) = −ck. Comparing (4.20) with (4.10), we now obtain

M ′(c) = �bk,ε(XEεc) (c ∈ L); (4.22)

thus,M ′ is of the form (4.13), i.e., is a toric frame.
(2) In view of (4.17) and (4.22), the matrices�M ′ and�M are related by�M ′ =

ET
ε �MEε, so the claim follows from (3.4).
(3) The statement follows from parts (1) and (2) in view of Proposition3.4. �

Proposition4.7 justifies the following definition.

Definition 4.8. Let (M, B̃) be a quantum seed, andk ∈ ex. We say that the quantum
seed(M ′, B̃ ′) given by (4.20) and (2.1) is obtained from(M, B̃) by themutation in
direction k, and write(M ′, B̃ ′) = �k(M, B̃).
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The following proposition demonstrates that Definition4.8 is indeed a quantum
analog of Definition2.4.

Proposition 4.9. Let (M, B̃) be a quantum seed, and suppose the quantum seed(M ′,
B̃ ′) is obtained from(M, B̃) by the mutation in directionk ∈ ex. For i ∈ [1, m], let
Xi = M(ei) and X′

i = M ′(ei). ThenX′
i = Xi for i �= k, and X′

k is given by the
following quantum analog of the exchange relation(2.2):

X′
k = M(−ek +

∑
bik>0

bikei) + M(−ek −
∑

bik<0

bikei). (4.23)

Proof. This follows at once by applying (4.20) to c = ei for i ∈ [1, m]. �

Proposition 4.10. The mutation of quantum seeds is involutive: if (M ′, B̃ ′) = �k(M, B̃)

then �k(M ′, B̃ ′) = (M, B̃).

Proof. As in the proof of Proposition4.7, we can assume without loss of generality
that L = Zm, andM(c) = Xc for any c ∈ L. Then the toric frameM ′ is given by
(4.22). Applying (4.22) once again, withε replaced by−ε, we see that the toric frame
M ′′ in the quantum seed�k(M ′, B̃ ′) is given by

M ′′(c) = �bk,ε�−Eεbk,−ε(XEεE′−εc),

where the matrixE′−ε is given by (3.2) applied toB̃ ′ instead ofB̃. Using an obvious
fact thatEεbk = bk together with (3.8), (3.5), and (4.9), we conclude thatM ′′(c) =
Xc = M(c), as required. �

4.5. Quantum cluster algebras

In view of Proposition4.10, the following relation on quantum seeds is an equivalence
relation: we say that two quantum seeds aremutation-equivalentif they can be obtained
from each other by a sequence of quantum seed mutations. For a quantum seed(M, B̃),
we denote byX̃ = {X1, . . . , Xm} the corresponding “free generating set’’ inF given
by Xi = M(ei). As for the ordinary seeds, we call the subsetX = {Xj : j ∈ ex} ⊂ X̃
the cluster of the quantum seed(M, B̃), and setC = X̃ − X. The following result is
an immediate consequence of Proposition4.9.

Proposition 4.11. The (m − n)-element setC = X̃ −X depends only on the mutation-
equivalence class of a quantum seed(M, B̃).

Now everything is in place for defining quantum cluster algebras.

Definition 4.12. Let S be a mutation-equivalence class of quantum seeds inF , and let
C ⊂ F be the(m − n)-element set associated toS as in Proposition4.11. The cluster
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algebraA(S) associated withS is theZ[q±1/2]-subalgebra of the ambient skew-field
F , generated by the union of clusters of all seeds inS, together with the elements of
C and their inverses.

SinceS is uniquely determined by each of its quantum seeds(M, B̃), we sometimes
denoteA(S) as A(M, B̃), or even simplyA(�M, B̃), because a compatible matrix
pair (�M, B̃) determines this algebra uniquely up to an automorphism of the ambient
skew-fieldF . We denote byP the multiplicative group generated byq1/2 andC, and
treat the integer group ringZP as theground ring for the cluster algebra. In other
words,ZP is the ring of Laurent polynomials in the elements ofC with coefficients
in Z[q±1/2].

5. Upper bounds and quantum Laurent phenomenon

Let (M, B̃) be a quantum seed inF , andX̃ = {X1, . . . , Xm} denote the corresponding
“free generating set’’ inF given by Xi = M(ei). As in [2], we will associate with
(M, B̃) a subalgebraU(M, B̃) ⊂ F called the (quantum)upper cluster algebra, or
simply theupper bound.
Let ZP[X±1] denote the based quantum torus generated byX̃; this is aZ[q±1/2]-

subalgebra ofF with the basis{M(c) : c ∈ Zm}. For the sake of convenience, in
this section, we assume thatX̃ is numbered so that its clusterX has the formX =
{X1, . . . , Xn}. Thus, the complementC = X̃−X is given byC = {Xn+1, . . . , Xm}, and
the ground ringZP is the ring of integer Laurent polynomials in the (quasi-commuting)
variablesq1/2, Xn+1, . . . , Xm. For k ∈ [1, n], let (Mk, B̃k) denote the quantum seed
obtained from(M, B̃) by the mutation in directionk, and letXk denote its cluster;
thus, we have

Xk = X − {Xk} ∪ {X′
k}, (5.1)

whereX′
k is given by (4.23).

Following [2, Definition 1.1], we denote byU(M, B̃) ⊂ F the ZP-subalgebra ofF
given by

U(M, B̃) = ZP[X±1] ∩ ZP[X±1
1 ] ∩ · · · ∩ ZP[X±1

n ]. (5.2)

In other words,U(M, B̃) is formed by the elements ofF which are expressed as Laurent
polynomials overZP in the variables from each of the clustersX,X1, . . . ,Xn.
Our first main result is a quantum analog of[2, Theorem 1.5].

Theorem 5.1. The algebraU(M, B̃) depends only on the mutation-equivalence class
of the quantum seed(M, B̃).
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Theorem5.1 justifies the notationU(M, B̃) = U(S), where S is the mutation-
equivalence class of(M, B̃); in fact, we have

U(S) =
⋂

(M,B̃)∈S
ZP[X±1]. (5.3)

In view of Propositions4.9 and 4.10, X̃ ⊂ U(S) for every quantum seed(M, B̃) in
S. Therefore, Theorem5.1 has the following important corollary that justifies calling
U(S) the upper boundfor the cluster algebra.

Corollary 5.2. The cluster algebraA(S) is contained inU(S). Equivalently, A(S) is
contained in the quantum torusZP[X±1] for every quantum seed(M, B̃) ∈ S with the
clusterX (we refer to this property as the quantum Laurent phenomenon).

Example 5.3. Let A(b, c) be the quantum cluster algebra associated with a compatible
pair (�, B̃) of the form

� =
(
0 1

−1 0

)
, B̃ = B =

(
0 b

−c 0

)

for some positive integersb and c. Tracing the definitions, we see thatA(b, c) can be
described as follows (cf.[8,20]). The ambient fieldF is the skew-field of fractions of
the quantum torus with generatorsY1 andY2 satisfying the quasi-commutation relation
Y1Y2 = qY2Y1. ThenA(b, c) is theZ[q±1/2]-subalgebra ofF generated by a sequence
of cluster variables{Ym : m ∈ Z} defined recursively from the relations

Ym−1Ym+1 =
{

qb/2Y b
m + 1 m odd;

qc/2Y c
m + 1 m even.

(5.4)

The clusters are the pairs{Ym, Ym+1} for all m ∈ Z. One checks easily that

YmYm+1 = qYm+1Ym (m ∈ Z).

According to Corollary5.2, every cluster variableYm is a Laurent polynomial inY1 and
Y2 with coefficients inZ[q±1/2]. A direct calculation gives these polynomials explicitly
in the finite typecases whenbc � 3 (cf. [20, (4.4)–(4.6)]). In accordance with (4.19),
in the following formulas we use the notation:

Y (a1,a2) = q−a1a2/2Y
a1
1 Y

a2
2 (a1, a2 ∈ Z).



A. Berenstein, A. Zelevinsky /Advances in Mathematics 195 (2005) 405–455 421

TypeA2: (b, c) = (1,1).

Y3 = Y (−1,1) + Y (−1,0), Y4 = Y (0,−1) + Y (−1,−1) + Y (−1,0),

Y5 = Y (1,−1) + Y (0,−1), Y6 = Y1, Y7 = Y2. (5.5)

TypeB2: (b, c) = (1,2).

Y3 = Y (−1,2) + Y (−1,0), Y4 = Y (0,−1) + Y (−1,−1) + Y (−1,1),

Y5 = Y (1,−2) + (q1/2 + q−1/2)Y (0,−2) + Y (−1,−2) + Y (−1,0),

Y6 = Y (1,−1) + Y (0,−1), Y7 = Y1, Y8 = Y2. (5.6)

TypeG2: (b, c) = (1,3).

Y3 = Y (−1,3) + Y (−1,0), Y4 = Y (0,−1) + Y (−1,−1) + Y (−1,2),

Y5 = Y (1,−3) + (q + 1+ q−1)(Y (0,−3) + Y (−1,0) + Y (−1,−3))

+Y (−2,3) + (q3/2 + q−3/2)Y (−2,0) + Y (−2,−3),

Y6 = Y (1,−2) + (q1/2 + q−1/2)Y (0,−2) + Y (−1,−2) + Y (−1,1),

Y7 = Y (2,−3) + (q + 1+ q−1)(Y (1,−3) + Y (0,−3)) + Y (−1,−3) + Y (−1,0),

Y8 = Y (1,−1) + Y (0,−1), Y9 = Y1, Y10 = Y2. (5.7)

The rest of this section is devoted to the proof of Theorem5.1. The proof follows that
of [2, Theorem 1.5]but we have to deal with some technical complications caused by
non-commutativity of a quantum torus. As a rule, the arguments in[2] will require only
obvious changes if the quantum analogs of all participating elements quasi-commute
with each other. We shall provide more details when more serious changes will be
needed.
We start with an analog of[2, Lemma 4.1].

Lemma 5.4. The algebraU(M, B̃) can be expressed as follows:

U(M, B̃) =
n⋂

k=1

ZP[X±1
1 , . . . , X±1

k−1, Xk, X′
k, X±1

k+1, . . . , X±1
n ], (5.8)

whereX′
k is given by(4.23).
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Proof. In view of (5.2), it is enough to show that

ZP[X±1] ∩ ZP[X±1
1 ] = ZP[X1, X′

1, X±1
2 , . . . , X±1

n ]. (5.9)

As in [2], (5.9) is a consequence of the following easily verified properties.

Lemma 5.5. (1) Every elementY ∈ ZP[X±1] can be uniquely written in the form

Y =
∑
r∈Z

crXr
1, (5.10)

where each coefficientcr belongs toZP[X±1
2 , . . . , X±1

n ], and all but finitely many of
them are equal to0.
(2) Every elementY ∈ ZP[X±1] ∩ ZP[X±1

1 ] can be uniquely written in the form

Y = c0 +
∑
r�1

(crXr
1 + c′

r (X′
1)

r ), (5.11)

where all coefficientscr and c′
r belong toZP[X±1

2 , . . . , X±1
n ], and all but finitely many

of them are equal to0.

Our next target is an analog of[2, Lemma 4.2]. As in the proof of Proposition
4.7, in what follows, we will assume without loss of generality thatL = Zm, and
the toric frame of the initial quantum seed(M, B̃) is given byM(c) = Xc for any
c ∈ L. In particular, we view the columnsbj of B̃ as elements ofL. According to
(4.7), for every non-negative integerr and every signε, we have a well-defined element
P r

b1,ε
∈ ZP[X±1

2 , . . . , X±1
m ]. Note that, in view of (4.3) and (4.21), P r

b1,ε
belongs to

the center of the algebraZP[X±1
2 , . . . , X±1

m ]. In particular,P r
b1,+ andP r

b1,− commute
with each other; an easy check shows that their ratio is an invertible element of the
center ofZP[X±1

2 , . . . , X±1
m ].

Lemma 5.6. An elementY ∈ F belongs toZP[X1, X′
1, X±1

2 , . . . , X±1
n ] if and only if

it has the form(5.10), and for eachr > 0, the coefficientc−r is divisible byP r
b1,+ in

the algebraZP[X±1
2 , . . . , X±1

n ].

Proof. In view of (4.22) and (4.8), we have

(X′
1)

r = P r
b1,+(Xe′

1)r , (5.12)



A. Berenstein, A. Zelevinsky /Advances in Mathematics 195 (2005) 405–455 423

where

e′
1 = −e1 −

∑
bi1<0

bi1ei . (5.13)

Combining (5.12) with (5.11), we obtain the desired claim. �

Our next step is an analog of[2, Proposition 4.3].

Proposition 5.7. Suppose thatn � 2. Then

U(M, B̃) =
n⋂

j=2

ZP[X1, X′
1, X±1

2 , . . . , X±1
j−1, Xj , X′

j , X±1
j+1, . . . , X±1

n ]. (5.14)

Proof. As in the proof of [2, Proposition 4.3], we can assume thatn = 2, i.e., the
ground ringZP is the ring of Laurent polynomials inq, X3, . . . , Xm. Thus, it suffices
to show the following analog of[2, (4.4)]:

ZP[X1, X′
1, X±1

2 ] ∩ ZP[X±1
1 , X2, X′

2] = ZP[X1, X′
1, X2, X′

2]. (5.15)

The proof of (5.15) breaks into two cases.
Case 1: b12 = b21 = 0. In this case, the elementsP r

b1,+ and P s
b2,+ belong to the

center ofZP for all r, s > 0; furthermore,P r
b1,+ commutes withX2, while P s

b2,+
commutes withX1. Arguing as in[2], we reduce the proof to the following statement:
if an element ofZP is divisible by each of theP r

b1,+ and P s
b2,+ then it is divisible

by their product. By PropositionA.2, it suffices to check thatP r
b1,+ and P s

b2,+ are

relatively prime in the center ofZP. This follows from the fact thatB̃ has full rank
(see Proposition3.3), and so the columnsb1 andb2 are not proportional to each other.
Case 2: b12b21 < 0. In this case, the proof goes through the same steps as in[2],

with some obvious modifications taking into account non-commutativity. We leave the
details to the reader. �

To finish the proof of Theorem5.1, it is enough to show thatU(M, B̃) does not
change under the mutation in direction 1. Ifn = 1, there is nothing to prove, so we
assume thatn � 2. Let X′′

2 be the cluster variable that replacesX2 in the cluster
X1 under the mutation in direction 2. In view of (5.14), Theorem5.1 becomes a
consequence of the following lemma.

Lemma 5.8. In the above notation, we have

ZP[X1, X′
1, X2, X′

2] = ZP[X1, X′
1, X2, X′′

2].
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Proof. By symmetry, it is enough to show that

X′′
2 ∈ ZP[X1, X′

1, X2, X′
2]. (5.16)

The following proof of (5.16) uses the same strategy as in the proof of[2, Lemma
4.6], but one has to keep a careful eye on the non-commutativity effects.
We start by recalling the assumption thatL = Zm, and the initial toric frameM is

given by M(c) = Xc for any c ∈ L. Then the toric frames of the adjacent quantum
seeds are given by (4.22). For typographic reasons, we rename the quantum seed
(M1, B̃1) = �1(M, B̃) to (M ′, B̃ ′) (so the entries of the matrix̃B1 = B̃ ′ are denoted
b′

ij ), and also use the notation(M ′′, B̃ ′′) = �2(M
′, B̃ ′). Thus,X′′

2 = M ′′(e2). Without

loss of generality, we assume that the matrix entryb12 of B̃ is non-positive; and we
set r = −b12 � 0. Since the principal parts of̃B and B̃ ′ are skew-symmetrizable, it
follows that b21 � 0, b′

12 = r, andb′
21 � 0.

Applying (4.23) and (4.22), we see that

X′′
2 = M ′(e′′

2) + M ′(e′′
2 + (b′)2) = �b1,+(XE+e′′

2 + XE+(e′′
2+(b′)2)),

where

e′′
2 = −e2 −

∑
i>2, b′

i2<0

b′
i2ei, (5.17)

(b′)2 is the second column of̃B ′, and E+ is given by (3.2) with k = 1. Note that
the summation in (5.17) does not include a multiple ofe1 becauseb′

12 = r � 0;
this implies thatE+e′′

2 = e′′
2. We also haveE+(b′)2 = b2 (to see this, use (3.1) to

write B̃ ′ = E+ B̃ F+, and note that the second column ofB̃ F+ is equal tob2, hence
(b′)2 = E+b2, and so our statement follows from (3.5)). Remembering (4.8) and (4.21),
we conclude that

X′′
2 = Xe′′

2 + P r
b1,+Xe′′

2+b2. (5.18)

On the other hand, setting

e′
2 = −e2 −

∑
bi2<0

bi2ei,

we have

X′
2 = Xe′

2 + Xe′
2+b2;
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applying (4.1) and (4.21), we obtain

q−�(e2,e′
2)/2X2X

′
2 = Xe2+e′

2 + q−d2/2Xe2+e′
2+b2. (5.19)

Note that the second summandF = q−d2/2Xe2+e′
2+b2 is an invertible element ofZP;

thus, to prove the desired inclusion (5.16), it suffices to show that

X′′
2F ∈ ZP[X1, X′

1, X2, X′
2] .

Using (5.18) and (5.19), we write

X′′
2F = q−�(e2,e′

2)/2S1 − S2 + S3,

where

S1 = P r
b1,+Xe′′

2+b2X2X
′
2,

S2 = (P r
b1,+ − 1)Xe′′

2+b2Xe2+e′
2,

S3 = q−d2/2Xe′′
2Xe2+e′

2+b2 − Xe′′
2+b2Xe2+e′

2.

To complete the proof, we will show that

S1, S2 ∈ ZP[X1, X′
1, X2, X′

2], S3 = 0.

First, we use (5.12) to rewrite S1 as

S1 = (X′
1)

r (Xe′
1)−rXe′′

2+b2X2X
′
2. (5.20)

A direct check shows that the vector−re′
1+ e′′

2 + b2+ e2 has the first two components

equal to 0; it follows that the middle factor(Xe′
1)−rXe′′

2+b2X2 in (5.20) is an invertible
element ofZP. Thus,S1 ∈ ZP[X1, X′

1, X2, X′
2], as desired.

To show the same inclusion forS2, we notice thatP r
b1,+ −1 is a polynomial inXb1

with coefficients inZ[q±1/2] and zero constant term. Ifr = −b12 = 0 then S2 = 0,
and there is nothing to prove. Otherwise, the desired inclusion follows from the fact
that the first two components ofb1 are (0, b21) with b21 > 0, while the first two
components ofe′′

2 + b2 + e2 + e′
2 are (0, −1).

Finally, to show thatS3 = 0, in view of (4.1), we only need to check that

−d2 + �(e′′
2, e2 + e′

2 + b2) = �(e′′
2 + b2, e2 + e′

2),
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or, equivalently,

�(b2, e2 + e′
2 + e′′

2) = −d2,

which is a direct consequence of (4.21). This completes the proof of Lemma5.8 and
Theorem5.1. �

6. Exchange graphs, bar-involutions, and gradings

Recall that theexchange graphof the cluster algebraA(S) associated with a
mutation-equivalent class of seedsS has the seeds fromS as vertices, and the edges
corresponding to seed mutations (cf.[8, Section 7]or [10, Section 1.2]). We define the
exchange graph of a quantum cluster algebra in exactly the same way: the vertices cor-
respond to its quantum seeds, and the edges to quantum seed mutations. As explained
in Section4.5, we can associate the quantum cluster algebra with a compatible matrix
pair (�M, B̃), and denote itA(�M, B̃). Let E(�M, B̃) denote the exchange graph of
A(�M, B̃), andE(B̃) denote the exchange graph of the cluster algebraA(B̃) obtained
from A(�M, B̃) by the specializationq = 1. Then the graphE(�M, B̃) naturally covers
E(B̃).

Theorem 6.1. The specializationq = 1 identifies the quantum exchange graphE(�M,

B̃) with the “classical’’ exchange graphE(B̃).

The proof of Theorem6.1 will require a little preparation. For a quantum seed
(M, B̃), let TM denote the corresponding based quantum torus having{M(c) : c ∈ Zm}
as aZ[q±1/2]-basis. This is the same algebra that was previously denoted byZP[X±1],
whereX is the cluster of(M, B̃); thus, we can rewrite (5.3) as

U(S) =
⋂

(M,B̃)∈S
TM, (6.1)

whereS is the mutation-equivalence class of(M, B̃). We associate with(M, B̃) the
Z-linear bar-involutionX �→ X on TM by setting

qr/2M(c) = q−r/2M(c) (r ∈ Z, c ∈ Zm). (6.2)

Proposition 6.2. Let S be the mutation-equivalence class of a quantum seed(M, B̃).
Then the bar-involution associated with(M, B̃) preserves the subalgebraU(S) ⊂ TM ,
and its restriction toU(S) depends only onS.

Proof. It suffices to show the following: if two quantum seeds(M, B̃) and (M ′, B̃ ′)
are obtained from each other by a mutation in some directionk, then the corresponding
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bar-involutions have the same restriction toTM ∩ TM ′ . Using (5.11), we see that each
element ofTM ∩TM ′ is aZ[q±1/2]-linear combination of the elementsM(c) andM ′(c)

for all c ∈ Zm with ck � 0. It remains to observe that, in view of (4.20), eachM ′(c)

with ck � 0 is invariant under the bar-involution associated with(M, B̃). �

Proof of Theorem 6.1. We need to show the following: if two quantum seeds(M, B̃)

and(M ′, B̃ ′) are mutation-equivalent, and such thatB̃ ′ = B̃ andM ′(c)|q=1 = M(c)|q=1
for all c ∈ Zm, thenM ′ = M. (Recall that a quantum seed is defined up to a permutation
of the coordinates inZm together with the corresponding relabeling of rows and columns
of B̃.) In view of Lemma4.4, it suffices to show thatM ′(c) = M(c) for c being one
of the standard basis vectorse1, . . . , en.
By Corollary 5.2, M ′(c) ∈ TM , i.e., M ′(c) is a Z[q±1/2]-linear combination of the

elementsM(d) for d ∈ Zm. Let N(c) denote theNewton polytopeof M ′(c), i.e., the
convex hull inRm of the set of alld ∈ Zm such thatM(d) occurs inM ′(c) with a non-
zero coefficient. We claim thatN(c) does not shrink under the specializationq = 1, i.e.,
that none of the coefficients at vertices ofN(c) vanish under this specialization. To see
this, note that, in view of (4.20), M ′(c) is obtained from a family{M(d) : d ∈ Zm}
by a sequence of subtraction-free rational transformations. This implies in particular
that, wheneverd is a vertex ofN(c), the coefficient ofM(d) in M ′(c) is a Laurent
polynomial in q1/2 which can also be written as a subtraction-free rational expression.
Therefore, this coefficient does not vanish atq = 1, as claimed. This allows us to
conclude that the assumptionM ′(c)|q=1 = M(c)|q=1 implies thatM ′(c) = p M(c) for
somep ∈ Z[q±1/2]. Because of the symmetry betweenM and M ′, the elementp is
invertible, so we conclude thatM ′(c) = qr/2 M(c) for somer ∈ Z. Finally, the fact
that r = 0 follows from Proposition6.2 since bothM(c) andM ′(c) are invariant under
the bar-involution. �

Remark 6.3. An important consequence of Theorem6.1 is that the classification of
cluster algebras of finite type achieved in[10] applies verbatim to quantum cluster
algebras.

Remark 6.4. Proposition6.2 has the following important corollary: all cluster variables
in A(S) are invariant under the bar-involution associated toS. A good illustration for
this is provided by Example5.3: indeed, the elements given by (5.5)–(5.7) are obviously
invariant under the bar-involution.

We conclude this section by exhibiting a family of gradings of the upper cluster
algebras.

Definition 6.5. A graded quantum seedis a triple (M, B̃, �), where

• (M, B̃) is a quantum seed inF ;
• � is a symmetric integerm × m matrix such thatB̃T� = 0.

As in Definitions2.1 and4.5, graded quantum seeds are defined up to a permutation
of the standard basis inZm together with the corresponding relabeling of rows and
columns ofB̃ and�.
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We identify � with the corresponding symmetric bilinear form onZm. Then the
condition B̃T� = 0 is equivalent to

bj ∈ ker� (j ∈ ex), (6.3)

wherebj ∈ Zm is the jth column of B̃.
The choice of the term “graded’’ in Definition6.5 is justified by the following

construction: every graded quantum seed(M, B̃, �) gives rise to aZ-grading on the
Z[q±1/2]-moduleTM given by

deg�(M(c)) = �(c, c) (c ∈ Zm) . (6.4)

(Note that this isnot an algebra grading.)
We will extend quantum seed mutations to graded quantum seeds. Fix an index

k ∈ ex and a signε ∈ {±1}. Let B̃ ′ be obtained fromB̃ by the mutation in direction
k, and set

�′ = ET
ε �Eε, (6.5)

whereEε has the same meaning as in (3.2). Clearly,�′ is symmetric. The following
proposition is an analog of Proposition3.4 and is proved by the same argument.

Proposition 6.6. (1) We have(B̃ ′)T �′ = 0.
(2) �′ is independent of the choice of a signε.

Proposition6.6 justifies the following definition, which extends Definition4.8.

Definition 6.7. Let (M, B̃, �) be a graded quantum seed, andk ∈ ex. We say that
the graded quantum seed(M ′, B̃ ′, �′) is obtained from(M, B̃, �) by themutation in
direction k, and write (M ′, B̃ ′, �′) = �k(M, B̃, �) if (M ′, B̃ ′) = �k(M, B̃), and�′ is
given by (6.5).

Clearly, the mutations of graded quantum seeds are involutive (cf. Proposition4.10).
Therefore, we can define the mutation-equivalence for graded quantum seeds, and the
exchange graphE(S̃) for a mutation-equivalence class of graded quantum seeds in the
same way as for ordinary quantum seeds above.

Proposition 6.8. Let S̃ be the mutation-equivalence class of a graded quantum seed
(M, B̃, �), and S be the mutation-equivalence class of the underlying quantum seed
(M, B̃).

(1) The upper cluster algebraU(S) is a gradedZ[q±1/2]-submodule of(TM,deg�);
furthermore, the restriction of the gradingdeg� to U(S) does not depend on the
choice of a representative of̃S.
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(2) The forgetful map(M, B̃, �) �→ (M, B̃) is a bijection betweenS̃ and S, i.e., it
identifies the exchange graphE(S̃) with E(S).

Proof. As in the proof of Proposition6.2, to prove (1) it suffices to show the following:
if two graded quantum seeds(M, B̃, �) and (M ′, B̃ ′, �′) are obtained from each other
by a mutation in some directionk, thenTM ∩ TM ′ is a gradedZ[q±1/2]-submodule of
each of(TM,deg�) and (TM ′ ,deg�′), and the restrictions of both gradings toTM ∩TM ′
are the same. By the same argument as in the proof of Proposition6.2, it is enough
to show that, for everyc ∈ Zm with ck � 0, the elementM ′(c) ∈ TM ∩ TM ′ is
homogeneous with respect to deg�, and deg�(M ′(c)) = �′(c, c). By (4.20), M ′(c) is
a Z[q±1/2]-linear combination of the elementsM(Eεc + εpbk); to complete the proof
of (1), it remains to note that, in view of (6.3) and (6.5), we have

�(Eεc + εpbk, Eεc + εpbk) = �(Eεc, Eεc) = �′(c, c)

as required.
To prove (2), suppose that̃S contains two graded quantum sets(M, B̃, �) and

(M, B̃, �′) with the same underlying quantum seed. By the already proven part (1),
the two gradings deg� and deg�′ agree with each other onU(S). In particular, for
every c ∈ Zm

�0, we have

�(c, c) = deg�(M(c)) = deg�′(M(c)) = �′(c, c).

It follows that � = �′, and we are done. �

Proposition6.8 allows us to include the bar-involution onU(S) into a family of
more general “twisted’’ bar-involutions defined as follows. Let(M, B̃, �) be a graded
quantum seed. We associate with(M, B̃, �) the Z-linear twisted bar-involutionX �→
X

(�)
on TM by the following formula generalizing (6.2):

qr/2M(c)
(�) = q−(r+�(c,c))/2M(c) (r ∈ Z, c ∈ Zm). (6.6)

The following proposition generalizes Proposition6.2.

Proposition 6.9. The twisted bar-involutionX �→ X
(�)

associated with a graded quan-
tum seed(M, B̃, �) preserves the subalgebraU(M, B̃) of TM , and its restriction to
U(M, B̃) depends only on the mutation-equivalence class of(M, B̃, �).

Proof. Recall theZ-grading deg� on TM given by (6.4), and note that the twisted

bar-involutionX �→ X
(�)

on TM can be written as follows:

X
(�) = Q−1(Q(X)), (6.7)
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whereQ is a Z[q±1/2]-linear map given byQ(X) = qd/4X for every homogeneous
elementX ∈ TM of degreed. By Part (1) of Proposition6.8, the mapQ preserves
the subalgebraU(M, B̃) ⊂ TM , and its restriction toU(M, B̃) depends only on the
mutation-equivalence class of(M, B̃, �). Therefore, the same is true for the twisted
bar-involution. �

7. Lower bounds and acyclicity

In this section, we state and prove quantum analogs of the results in[2] concerning
lower bounds.We retain all the notation and assumptions in Section5. In particular,
we assume (without loss of generality) thatL = Zm, and the toric frameM of the
“initial’’ quantum seed(M, B̃) is given byM(c) = Xc for c ∈ L. Furthermore, we
assume that the initial clusterX is the set{X1, . . . , Xn}, whereXj = Xej . By (4.23),
for k ∈ [1, n], the mutation in directionk replacesXk with an elementX′

k given by

X′
k = X

−ek+∑bik>0 bikei + X
−ek−∑bik<0 bikei . (7.1)

It follows thatX′
k quasi-commutes with allXi for i �= k; and each of the productsXkX′

k

andX′
kXk is the sum of two monomials inX1, . . . , Xm. The elementsX′

1, . . . , X′
n also

satisfy the following (quasi-)commutation relations.

Proposition 7.1. Let j andk be two distinct indices from[1, n]. ThenX′
j X′

k−qr/2X′
kX′

j

= (qs/2 − qt/2)Xe for some integersr, s, t , and some vectore ∈ Zm
�0.

Proof. Without loss of generality, assume thatbjk � 0. We abbreviate

e′
j = −ej +

∑
bij >0

bij ei, e′
k = −ek −

∑
bik<0

bikei,

so that (7.1) can be rewritten as

X′
j = X

e′
j + X

e′
j −bj

, X′
k = Xe′

k + Xe′
k+bk

,

where the vectorsbj , bk ∈ Zm are the jth and kth columns of B̃. Using (4.1) and
(4.21), we obtain

q
−�(e′

j −bj ,e′
k+bk)/2

X′
j X′

k − q
−�(e′

k+bk,e′
j −bj )/2

X′
kX′

j

= (q−�(bj ,bk)/2 − q−�(bk,bj )/2)X
e′

j +e′
k . (7.2)
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If bjk = 0 then�(bj , bk) = 0 by (4.21), and so the right-hand side of (7.2) is equal to
0; we see that in this case,X′

j andX′
k quasi-commute. And ifbjk < 0 (and sobkj > 0)

then the vectore = e′
j + e′

k belongs toZm
�0, since itsj th (resp.kth) component is

−bjk − 1� 0 (resp.bkj − 1� 0). �

Following [2, Definition 1.10], we associate with a quantum seed(M, B̃) the algebra

L(M, B̃) = ZP[X1, X′
1, . . . , Xn, X′

n]. (7.3)

We refer toL(M, B̃) as thelower boundassociated with(M, B̃); this name is justified
by the obvious inclusionL(M, B̃) ⊂ A(M, B̃).
The following definition is an analog of[2, Definition 1.15].

Definition 7.2. A standard monomialin X1, X′
1, . . . , Xn, X′

n is an element of the
form X

a1
1 · · · X

an
n (X′

1)
a′
1 · · · (X′

n)a′
n , where all exponents are non-negative integers, and

aka′
k = 0 for k ∈ [1, n].

Using the relations between the elementsX1, . . . , Xn, X′
1, . . . , X′

n described above,
it is easy to see that

the standard monomials generateL(M, B̃) as aZP-module. (7.4)

To state our first result on the lower bounds, we need to recall the definition of
acyclicity given in [2, Definition 1.14]. We encode the sign pattern of matrix entries
of the exchange matrixB (i.e., the principal part ofB̃) by the directed graph�(B)

with the vertices 1, . . . , n and the directed edges(i, j) for bij > 0. We say thatB (as
well as the corresponding quantum seed) isacyclic if �(B) has no oriented cycles.
The following result is an analog of[2, Theorem 1.16].

Theorem 7.3. The standard monomials inX1, X′
1, . . . , Xn, X′

n are linearly independent
over ZP (that is, they form aZP-basis ofL(M, B̃)) if and only if B is acyclic.

Proof. The proof goes along the same lines as that of[2, Theorem 1.16]. The only
place where one has to be a little careful is[2, Lemma 5.2]which is modified as
follows.

Lemma 7.4. Let u1, . . . , u$ and v1, . . . , v$ be some elements of an associative ring,
and let i �→ i+ be a cyclic permutation of[1, $]. For every subsetJ ⊂ [1, $] such that
J ∩ J + = ∅, and for everyi ∈ [1, $], we set

ti (J ) =
{

ui if i ∈ J ,
vi if i ∈ J +.
ui + vi otherwise.
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Then

∑
J⊂[1,$]

J∩J +=∅

(−1)|J |t1(J ) · · · t$(J ) = u1 · · · u$ + v1 · · · v$. (7.5)

The proof of [2, Lemma 5.2]applies verbatim, and the rest of the proof of[2,
Theorem 1.16]holds with obvious modifications. �

Our next result is an analog of[2, Theorem 1.18]; it shows that the acyclicity
condition closes the gap between the upper and lower bounds.

Theorem 7.5. If a quantum seed(M, B̃) is acyclic thenL(M, B̃) = A(S) = U(S),
whereS is the mutation-equivalence class of(M, B̃).

Proof. The proof of [2, Theorem 1.18]extends to the quantum setting, again with
some modifications caused by non-commutativity. The most non-trivial of these modi-
fications is the following: in[2, Lemma 6.7], we have to replaceP1 with an element
P r

b1,+ for an arbitrary positive integerr; the proof of the modified claim then follows
from PropositionA.2 in the same way as in Case 1 in the proof of Proposition5.7. �

We conclude this section with an analog of[2, Theorem 1.20], which is proved in
the same way as its prototype.

Theorem 7.6. The condition that a quantum seed(M, B̃) is acyclic, is necessary and
sufficient for the equalityL(M, B̃) = A(S).

8. Matrix triples associated with Cartan matrices

In this section, we construct a class of matrix triples(�, B̃, �) satisfying conditions
in Definitions2.1, 3.1 and6.5, i.e., giving rise to graded quantum seeds in the sense of
Definition 6.5. These triples are associated with (generalized) Cartan matrices; in the
case of finite type Cartan matrices, the matricesB̃ were introduced in[2, Definition
2.3]. Our terminology on Cartan matrices and related notions will basically follow[15].

8.1. Cartan data

Definition 8.1. A (generalized)Cartan matrix is an r × r integer matrixA = (aij )

such that

• aii = 2 for all i.
• aij � 0 for i �= j .
• aij = 0 if and only if aji = 0.
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Recall thatA is symmetrizableif diaij = dj aji for some positive integersd1, . . . , dr .
In what follows, we fix a symmetrizable Cartan matrixA and the numbersdi .

Definition 8.2. A realizationof A is a triple (h, �, �∨), whereh is a C-vector space,
and� = {	1, . . . , 	r} ⊂ h∗, and�∨ = {	∨

1 , . . . , 	∨
r } ⊂ h are two subsets satisfying the

following conditions:

• both � and�∨ are linearly independent.
• 	j (	∨

i ) = aij for all i, j .
• dim h + rkA = 2r.

In what follows, we fix a realization ofA; as shown in[15, Proposition 1.1], it is
unique up to an isomorphism. The elements	i (resp.	∨

i ) are calledsimple roots(resp.
simple coroots) associated toA.
For eachi ∈ [1, r], the simple reflectionsi is an involutive linear transformation of

h∗ acting by

si(
) = 
 − 
(	∨
i )	i .

The Weyl groupW is the group generated by allsi . We fix a family {�1, . . . , �r} ⊂ h∗
such that�j (	∨

i ) = �ij ; the elements�j are calledfundamental weights. Thus, we
have

si(�j ) =
{

�j − 	j if i = j ;
�j if i �= j . (8.1)

Note that each�j is defined up to a translation by aW-invariant vector fromh∗. Note
also the following useful property:

for every j ∈ [1, r], the vector
∑

i∈[1,r]
aij�i − 	j is W-invariant. (8.2)

As shown in [15, Chapter 2], there exists aW-invariant non-degenerate symmetric
bilinear form (
|�) on h∗ such that

(	i |
) = di
(	∨
i ) (
 ∈ h∗). (8.3)

8.2. Double words and associated matrix triples

By a double word we will mean a sequencei = (i1, . . . , im) of indices from
±[1, r] = −[1, r] � [1, r]. For everyi ∈ [1, r], we denote

ε(±i) = ±1, | ± i| = i.
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We adopt the convention thats−i is the identity transformation ofh∗ for i ∈ [1, r]. For
any a � b in [1, m], and any signε, we set

�ε[a, b] = �iε[a, b] = sεia · · · sεib .

Iterating (8.1), we obtain the following properties which will be used many times
below:

�ε[a, b]�i = �ε[a, c]�i if a � c � b, and εit �= i for c < t � b,

�ε[a, b]�j = �ε[a, b − 1](�j − 	j ) if εib = j. (8.4)

For k ∈ [1, m], we denote byk+ = k+
i the smallest index$ such thatk < $ � m

and |i$| = |ik|; if |ik| �= |i$| for k < $ � m, then we setk+ = m + 1. Let k− = k−
i

denote the index$ such that$+ = k; if such an$ does not exist, we setk− = 0. We
say that an indexk ∈ [1, m] is i-exchangeableif both k− andk+ belong to[1, m], and
denote byex= exi ⊂ [1, m] the subset ofi-exchangeable indices.
We will associate to a double wordi a triple (�(i), B̃(i), �(i)), where�(i) and�(i)

are integerm × m matrices (respectively, skew-symmetric and symmetric), whileB̃(i)
is a rectangular integer matrix with rows labeled by[1, m] and columns labeled by
ex.
We define the matrix entries of�(i) and�(i) by

�k$ = �k,$+ − �$,k+ , k$ = �k,$+ + �$,k+ (8.5)

for k, $ ∈ [1, m], where

�k$ = �k$(i) = (�−[$, k]�|ik | − �+[$, k]�|ik ||�|i$|) (8.6)

(with the convention that�k$ = 0 unless 1� $ � k � m). Note that�k$ and so both
matrices�(i) and�(i) are independent of the choice of fundamental weights. Indeed,
a simple calculation shows that�k$ does not change if we replace�|ik | by �|ik | + 
,
and�|i$| by �|i$| + 
′, where both
 and 
′ areW-invariant.
Following [2, Definitions 2.2, 2.3](which in turn were based on[21]), we define

the matrix entriesbpk of B̃(i) for p ∈ [1, m] and k ∈ ex as follows:

bpk = bpk(i) =




−ε(ik) if p = k−;
−ε(ik)a|ip |,|ik | if p < k < p+ < k+, ε(ik) = ε(ip+)

or p < k < k+ < p+, ε(ik) = −ε(ik+);
ε(ip)a|ip |,|ik | if k < p < k+ < p+, ε(ip) = ε(ik+)

or k < p < p+ < k+, ε(ip) = −ε(ip+);
ε(ip) if p = k+;
0 otherwise

(8.7)
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(For technical reasons, the matrix̃B(i) given by (8.7) differs by sign from the one
in [2, Definitions 2.2, 2.3], but this does not affect the corresponding cluster algebra
structure.)

Theorem 8.3. Suppose that a double wordi satisfies the following condition:

for every p∈ [1, m] with p− = 0, there are no

i-exchangeable indicesk ∈ [1, p − 1] with a|ip |,|ik | < 0. (8.8)

Then the matrix entries given by(8.5) and (8.7) satisfy

m∑
p=1

bpk�p$ = 2�k$d|ik |,
m∑

p=1

bpkp$ = 0 (8.9)

for $ ∈ [1, m] and k ∈ ex. Thus the pair(�(i), B̃(i)) is compatible in the sense of
Definition 3.1, and the pair(B̃(i), �(i)) satisfies Definition6.5.

Example 8.4. Let

A =
(

2 −1

−1 2

)

be the Cartan matrix of typeA2, with d1 = d2 = 1. Taking

i = (1,2,1,2,1, −1, −2, −1)

it is easy to check that the corresponding matricesB̃(i) and�(i) are those in Example
3.2. The first equality in (8.9) was shown there. As for�(i), it is a symmetric matrix
whose entries on and below the main diagonal are equal to those of�(i). The last
equality in (8.9) can be seen by a direct inspection.

Proof of Theorem 8.3.We will use (8.7) to definebpk for all k, p ∈ [1, m] (with k
not necessarilyi-exchangeable). In view of (8.5), to verify (8.9) it suffices to show the
following.

Lemma 8.5. For an arbitrary double wordi, we have

m∑
p=1

bpk�p$ = �k+,$ d|ik | (8.10)
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for all k, $ ∈ [1, m] such thatk+ � m. If i satisfies(8.8) then we also have

m∑
p=1

bpk�$,p+ = −�k$d|ik | (8.11)

for all $ ∈ [1, m] and k ∈ ex.

The rest of this section is dedicated to the proof of Lemma8.5. First, we get (8.11)
out of the way by showing that it follows from (8.10). To see this, consider theopposite
double wordi◦ = (im, . . . , i1). We abbreviatek◦ = m +1− k, so thati◦ can be written
as i◦ = (i1◦ , . . . , im◦). Examining (8.6) and (8.7), we obtain

�k$(i) = �$◦,k◦(i◦) (k, $ ∈ [1, m]),
bpk(i) = −bp+◦,k+◦(i◦) (k+, p+ ∈ [1, m]). (8.12)

Turning to (8.11), we note that the summation there can be restricted to the values of
p such thatp+ � m (because�$,p+ = 0 unlessp+ � $). Substituting the expressions
given by (8.12) into (8.11), we obtain

m∑
p=1

bpk�$,p+ = −
∑

p+�m

bp+◦,k+◦(i◦)�p+◦,$◦(i◦). (8.13)

Comparing this with the counterpart of (8.10) for the double wordi◦, we see that it
remains to show the following:

∑
(p◦)+i◦=m+1

bp◦,k+◦(i◦)�p◦,$◦(i◦) = 0,

wheneverk is i-exchangeable. To complete the proof of (8.11), it remains to observe
that condition (8.8) guarantees thatbp◦,k+◦(i◦) = 0 for all p such that(p◦)+i◦ = m + 1
(which is equivalent top− = 0).
We now concentrate on the proof of (8.10). We will need to consider several cases

of the relative position ofk and $. As a warm-up, we note thatbpk = 0 for p > k+,
and �p$ = 0 for p < $; therefore, the sum in (8.10) is equal to 0 if $ > k+. For
$ = k+, the sum in question reduces to just one term withp = $ = k+; using (8.6),
(8.7), and (8.1)–(8.3), we see that this term is equal to

bpk�p$ = ε(ip)(s−ip�|ip | − sip�|ip | | �|ip |) = (�|ik | − s|ik |�|ik | | �|ik |)

= (	|ik | | �|ik |) = d|ik |

in accordance with (8.10).
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For the rest of the proof, we assume that$ < k+, and (for typographical reasons)
abbreviate|ik| = j and |i$| = h. To show that the sum in (8.10) is equal to 0, we
compute, for everyi ∈ [1, r], the contribution to this sum from the values ofp such
that |ip| = i. We denote this contribution bySi = Si(k, $; i).

Lemma 8.6.We have

Sj =




(�j − �ε(ik+ )[$, k+]�j | �h) if k < $ < k+;
(�ε(ik)[$, k](�j − 	j )

−�ε(ik+ )[$, k+]�j | �h) if $ � k, ε(ik) = ε(ik+);
(�ε(ik)[$, k]�j

−�ε(ik+ )[$, k+]�j | �h) if k− < $ � k, ε(ik) = −ε(ik+);
(�ε(ik)[$, k](2�j − 	j )

−�ε(ik+ )[$, k+](2�j − 	j )|�h) if $ � k−, ε(ik) = −ε(ik+)

(8.14)

and, for i �= j ,

Si =
{

aij (�i − �ε(ik+ )[$, k+]�i | �h) if k < $ < k+;
aij (�ε(ik)[$, k]�i − �ε(ik+ )[$, k+]�i | �h) if $ � k.

(8.15)

Proof. By (8.7), the only possible values ofp contributing to Sj are p = k+ and
p = k− (the latter value appears only when$ � k−). Let us do the last case in (8.14)
(the other cases are similar):$ � k−, ε(ik) = −ε(ik+) = ε. Applying (8.7) and (8.6),
and using (8.4), we get

bk+,k�k+,$ = (�ε[$, k+]�j − �−ε[$, k+]�j | �h)

= (�ε[$, k]�j − �−ε[$, k+]�j | �h)

and

bk−,k�k−,$ = (�ε[$, k−]�j − �−ε[$, k−]�j | �h)

= (�ε[$, k](�j − 	j ) − �−ε[$, k+](�j − 	j ) | �h)

which implies our claim.
Turning to (8.15), we will also consider only the latter case$ � k, the former one

being similar and simpler. The indicesp with |ip| = i, which may have a non-zero
contribution toSi , fall into the following types:
Type 1:$ � p < k < k+ < p+, ε(ik) = −ε(ik+), or $ � p < k < p+ < k+, ε(ik) =

ε(ip+). Using (8.6), (8.7), and (8.4), we see that the corresponding contribution toSi

is given by

bpk�p$ = aij (�ε(ik)[$, k]�i − �−ε(ik)[$, k]�i | �h). (8.16)
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Type 2:k < p < p+ < k+, ε(ip) = −ε(ip+), or k < p < k+ < p+, ε(ip) = ε(ik+).
The corresponding contribution toSi is given by

bpk�p$ = aij (�−ε(ip)[$, p]�i − �ε(ip)[$, p]�i | �h). (8.17)

Note that there is at most one index of type 1, but there could be several indices of
type 2. We need to show that all contributions (8.16) and (8.17) add up to

Si = aij (�ε(ik)[$, k]�i − �ε(ik+ )[$, k+]�i | �h). (8.18)

First, suppose that there are no indicesp with |ip| = i betweenk and k+; in
particular, there are no indicesp of type 2. In view of (8.4), the sum in (8.18) can be
rewritten as

aij (�ε(ik)[$, k]�i − �ε(ik+ )[$, k]�i | �h).

This expression is easily seen to vanish unlessε(ik) = −ε(ik+), and there exists a
(unique) indexp of type 1; furthermore, in the latter case, it agrees with (8.16).
Next, consider the case when there are some indicesp with |ip| = i betweenk and

k+, but none of them are of type 2. In other words, all these values ofp have the
same sign, sayε, of ip, and we also haveε(ik+) = −ε. In this case, the sum in (8.18)
can be rewritten as

aij (�ε(ik)[$, k]�i − �−ε[$, k]�i | �h).

Again, this expression vanishes unlessε(ik) = ε, and there exists a (unique) indexp
of type 1; and again, in the latter case, it agrees with (8.16).
It remains to treat the case when there are some indicesp of type 2. Letp(1) <

· · · < p(t) be all such indices. By the definition, we haveε(ip(s)) = −ε(ip(s+1)) for s =
1, . . . , t−1, andε(ip(t)) = ε(ik+). Furthermore, (8.4) yields�−ε(ip(s+1))[$, p(s+1)]�i =
�ε(ip(s))[$, p(s)]�i for s = 1, . . . , t−1. This shows that the sum of all expressions (8.17)
allows telescoping, and so is equal to

aij (�−ε(ip(1))[$, k]�i − �ε(ik+ )[$, k+]�i | �h). (8.19)

An easy inspection shows that (8.19) agrees with (8.18) if there are no indicesp of
type 1. In the latter case, we must haveε(ik) = ε(ip(1)), and so the sum of expressions
in (8.19) and (8.16) is equal to that in (8.18), as desired. This completes the proof of
Lemma8.6. �
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To finish the proof of (8.10), we need to show that

S := Sj +
∑
i �=j

Si = 0

in all the cases in Lemma8.6. Combining (8.14) and (8.15) with (8.2), we get

S =




(	j − �j

−�ε(ik+ )[$, k+](	j − �j ) | �h) if k < $ < k+,
(�ε(ik)[$, k](−�j )

−�ε(ik+ )[$, k+](	j − �j | �h) if $ � k, ε(ik) = ε(ik+);
(�ε(ik)[$, k](	j − �j )

−�ε(ik+ )[$, k+](	j − �j ) | �h) if k− < $ � k, ε(ik) = −ε(ik+);
0 if $ � k−, ε(ik) = −ε(ik+).

(8.20)

It remains to show thatS = 0 in each of the first three cases in (8.20). In case 1,
we have�ε(ik+ )[$, k+](	j − �j ) = −�j , and soS = (	j | �h) = 0. In case 2 (resp.
3), we have�ε(ik+ )[$, k+](	j − �j ) = �ε(ik)[$, k](−�j ) (resp.�ε(ik)[$, k](	j − �j ) =
−�j = �ε(ik+ )[$, k+](	j − �j )), which again yieldsS = 0. This completes the proof
of (8.10) and hence those of Lemma8.5 and Theorem8.3. �

Remark 8.7. Inspecting the above proof, we see that condition (8.8) was used only to
ensure thatbp◦,k+◦(i◦) = 0 for all i-exchangeable indicesk and all p with p− = 0. It
follows that (8.8) can be replaced, for instance, by the following weaker restriction:

For everyp ∈ [1, m] and j ∈ [1, r] such thatp− = 0, a|ip |,j < 0,

and {k ∈ [1, p − 1] : |ik| = j} = {k1 < · · · < kt } with t � 2,

we haveε(ik2) = · · · = ε(ikt ); if kt is i-exchangeable then also

ε(ikt ) = −ε(ip). (8.21)

However, the simpler condition (8.8) is good enough for our applications. For instance,
it is satisfied whenever the firstr terms of i are ±1, . . . , ±r arranged in any order;
this covers the class of double wordsi considered in[2, Section 2]and in Section10.

Remark 8.8. Because of the fundamental role played by the matrixB̃ in the theory
of cluster algebras, it would be desirable to find an alternative expression to (8.7)
involving fewer special cases. One such expression was given in[2, Remark 2.4].
Here, we present another expression that seems to be more manageable. Namely we
claim that, forp ∈ [1, m] and k ∈ ex, (8.7) is equivalent to

bpk = spk − sp,k+ − sp+,k + sp+,k+ , (8.22)
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where

spk = sgn(p − k)(ε(ip) + ε(ik))

4
a|ip |,|ik | (8.23)

and we use the following convention: ifp+ = m + 1 then the last two terms in (8.22)
are given by (8.23) with im+1 = ±ip (the choice of a sign does not matter). The proof
of (8.22) is straightforward, and we leave it to the reader.

9. Preliminaries on quantum groups

9.1. Quantized enveloping algebras

Our standard reference in this section will be[3]. We start by recalling the defini-
tion of the quantized enveloping algebra associated with a symmetrizable (generalized)
Cartan matrixA = (aij ). We fix a realization(h, �, �∨) of A as in Definition8.2. Let
(
|�) be the inner product onh∗ defined by (8.3). Define the weight latticeP by

P = {� ∈ h∗ : �(	∨
i ) ∈ Z for all i ∈ [1, r]}.

The quantized enveloping algebra Uis a Q(q)-algebra generated by the elementsEi

andFi for i ∈ [1, r], andK� for � ∈ P , subject to the following relations:

K�K� = K�+�, K0 = 1

for �, � ∈ P ;

K�Ei = q(	i |�)EiK�, K�Fi = q−(	i |�)FiK�

for i ∈ [1, r] and � ∈ P ;

EiFj − Fj Ei = �ij

K	i
− K−	i

qdi − q−di

for i, j ∈ [1, r]; and thequantum Serre relations

1−aij∑
p=0

(−1)pE
[1−aij −p;i]
i Ej E

[p;i]
i = 0,

1−aij∑
p=0

(−1)pF
[1−aij −p;i]
i Fj F

[p;i]
i = 0
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for i �= j , where the notationX[p;i] stands for thedivided power

X[p;i] = Xp

[1]i · · · [p]i , [k]i = qkdi − q−kdi

qdi − q−di
. (9.1)

The algebraU is a q-deformation of the universal enveloping algebra of the Kac–
Moody algebrag associated toA, so it is commonly denoted byU = Uq(g). It has
a natural structure of a bialgebra with the comultiplication� : U → U ⊗ U and the
counit homomorphismε : U → Q(q) given by

�(Ei) = Ei ⊗ 1+ K	i
⊗ Ei, �(Fi) = Fi ⊗ K−	i

+ 1⊗ Fi, �(K�) = K� ⊗ K�, (9.2)

ε(Ei) = ε(Fi) = 0, ε(K�) = 1. (9.3)

In fact, U is a Hopf algebra with the antipode antihomomorphismS : U → U given
by

S(Ei) = −K−	i
Ei, S(Fi) = −FiK	i

, S(K�) = K−�

but we will not need this structure.
Let U− (resp.U0; U+) be theQ(q)-subalgebra ofU generated byF1, . . . , Fr (resp.

by K� (� ∈ P ); by E1, . . . , Er ). It is well-known thatU = U−·U0·U+ (more precisely,
the multiplication map induces an isomorphismU− ⊗ U0 ⊗ U+ → U ).
The algebraU is graded by the root latticeQ:

U =
⊕
	∈Q

U	, U	 = {u ∈ U : K�uK−� = q(� | 	) · u for � ∈ P }. (9.4)

Thus, we have

degEi = 	i , degFi = −	i , degK� = 0.

9.2. The quantized coordinate ring of G

Our next target is the quantized coordinate ringOq(G) (also known as thequantum
group) of the groupG associated to the Cartan matrixA. Since most of the literature
on quantum groups deals only with the case whenA is of finite type, we will also
restrict our attention to this case (even though we have little doubt that all the results
extend to Kac–Moody groups). That is, from now on we assume thatA is of finite
type, i.e., it corresponds to a semisimple Lie algebrag. Let G be the simply connected
semisimple group with the Lie algebrag. Following [3, Chapter I.8], the quantized
coordinate algebraOq(G) can be defined as follows.
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First note thatU∗ = HomQ(q)(U, Q(q)) has a natural algebra structure: forf, g ∈
U∗, the productfg is defined by

fg(u) = (f ⊗ g)(�(u)) =
∑

f (u1)g(u2) (9.5)

for all u ∈ U , where we use the Sweedler summation notation�(u) = ∑
u1 ⊗ u2 (cf.

e.g., [3, Section I.9.2]). The algebraU∗ has the standardU − U -bimodule structure
given by

(Y • f • X)(u) = f (XuY )

for f ∈ U∗ and u, X, Y ∈ U . In view of (9.5), we have

Y • (fg) • X =
∑

(Y1 • f • X1)(Y2 • g • X2). (9.6)

Let U◦ be theHopf dual of U defined by

U◦ = {f ∈ U∗ : f (I) = 0 for some idealI ⊂ U of finite codimension}.

ThenU◦ is a subalgebra and aU − U -sub-bimodule ofU∗.
Slightly modifying the definition in[3, Section I.8.6], for every 
, � ∈ P , we set

U◦

,� = {f ∈ U◦ : K� • f • K� = q(�|
)+(�|�)f for �, � ∈ P }. (9.7)

Finally, we defineOq(G) as theP × P -graded subalgebra ofU◦ given by

Oq(G) =
⊕


,�∈P

U◦

,�

(from now on, we will denote the homogeneous components ofOq(G) by Oq(G)
,�
instead ofU◦


,�).
It is well-known (see e.g.,[3, Theorem I.8.9]) that Oq(G) is a domain.
The algebraOq(G) is aU − U -sub-bimodule ofU◦: according to[3, Lemma I.8.7],

we have

Y • Oq(G)
,� • X ⊂ Oq(G)
−	,�+� for X ∈ U	, Y ∈ U�.

We now give a more explicit description ofOq(G). Let

P + = {� ∈ P : �(	∨
i ) � 0 for all i ∈ [1, r]}
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be the semigroup of dominant weights. Thus,P + is a free additive semigroup generated
by fundamental weights�1, . . . , �r . (SinceA is of finite type, the setup in Section8.1
simplifies so that simple coroots (resp. simple roots) form a basis inh (resp.h∗), and
the fundamental weights are uniquely determined by the condition�j (	∨

i ) = �ij .) To

every dominant weight� ∈ P + we associate an element�� ∈ U∗ given by

��(F K�E) = ε(F )q(�|�)ε(E) (9.8)

for F ∈ U−, E ∈ U+ and � ∈ P . Let E� = U • �� • U be theU − U -sub-bimodule
of U∗ generated by��. The following presentation ofOq(G) was essentially given in
[3, Section I.7].

Proposition 9.1. Each element�� belongs toOq(G)�,�, each subspaceE� is a finite-
dimensional simpleU − U -bimodule, andOq(G) has the direct sum decomposition

Oq(G) =
⊕
�∈P +

E�.

The reason for our choice of theP × P -grading inOq(G) is the following: we can
view Oq(G) as aU × U -module via

(X, Y )f = Y • f • XT,

whereX �→ XT is the transpose antiautomorphism of theQ(q)-algebraU given by

ET
i = Fi, F T

i = Ei, KT
� = K�.

The specializationq = 1 transformsOq(G) into a g × g-module, andOq(G)
,� be-
comes the weight subspace of weight(
, �) under this action. In particular, under the
specializationq = 1, the spaceE� becomes a simpleg × g-module generated by the
highest vector�� of weight (�, �).
Comparing (9.7) with (9.4), we obtain the following useful property:

If the pairingOq(G)
,� × U	 → Q(q) is non-zero then	 = 
 − �. (9.9)

9.3. Quantum double Bruhat cells

For eachi ∈ [1, r], we adopt the notational convention

E−i = Fi, s−i = 1
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(the latter was already used in Section8.2). For i ∈ ±[1, r] = −[1, r] � [1, r], we
denote byUi the subalgebra ofU generated byU0 and Ei . For every double word
i = (i1, . . . , im) (i.e., a word in the alphabet±[1, r]), we set

Ui = Ui1 · · · Uim ⊂ U.

Denote

Ji := {f ∈ Oq(G) : f (Ui) = 0},

i.e., Ji is the orthogonal complement ofUi in Oq(G).
Clearly, eachUi satisfies�(Ui) ⊂ Ui ⊗ Ui , henceJi is a two-sided ideal inOq(G).

In fact, Ji is prime, i.e.,Oq(G)/Ji is a domain (see, e.g.,[14, Corollary 10.1.10]).
Recall that areduced wordfor (u, v) ∈ W × W is a shortest possible double word

i = (i1, . . . , im) such that

s−i1 · · · s−im = u, si1 · · · sim = v;

thus,m = $(u) + $(v), where$ : W → Z�0 is the length function onW.

Proposition 9.2. If i and i ′ are reduced words for the same element(u, v) ∈ W × W ,
thenUi = Ui′ .

Proof. By the well-known Tits’ lemma, it suffices to check the statement in the fol-
lowing two special cases:

(1) i = (i, j, i, . . .), i ′ = (j, i, j, . . .), where i, j ∈ [1, r], and the length of each ofi
and i ′ is equal to the order ofsisj in W;

(2) i = (i, −j), i ′ = (−j, i), wherei, j ∈ [1, r].
Case (1) is treated in[19], while Case (2) follows easily from the commutation relation
betweenEi andFj in U. �

In view of Proposition9.2, for every u, v ∈ W , we setUu,v = Ui , and Ju,v = Ji ,
where i is any reduced word for(u, v). The algebraOq(G)/Ju,v has the following
geometric meaning. LetH be the maximal torus inG with Lie algebrah, and let
B (resp. B−) be the Borel subgroup inG generated byH and the root subgroups
corresponding to simple roots	1, . . . , 	r (resp.−	1, . . . , −	r ). Recall that the Weyl
groupW is naturally identified with NormG(H)/H . For u, v ∈ W , let Gu,v denote the
double Bruhat cellBuB ∩ B−vB− in G (for their properties see[7]). Let Gu,v denote
the Zariski closure ofGu,v in G. As shown in[4], the specialization ofOq(G)/Ju,v at
q = 1 is the coordinate ring ofGu,v. Thus, we will denoteOq(G)/Ju,v by Oq(Gu,v)

and refer to it as aquantum closed double Bruhat cell.
In order to define the “non-closed’’ quantum double Bruhat cells, we introduce the

quantum analogs of generalized minors from[7]. Fix a dominant weight� ∈ P +, a pair
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(u, v) ∈ W ×W , a reduced word(i1, . . . , i$(u)) for u, and a reduced word(j1, . . . , j$(v))

for v. For k ∈ [1, $(u)] (resp. k ∈ [1, $(v)]), we define the coroot�∨
k (resp. �∨

k ) by
setting �∨

k = si$(u)
· · · sik+1	

∨
ik
(resp. �∨

k = sj$(v)
· · · sjk+1	

∨
jk
). It is well-known that the

coroots �∨
1 , . . . , �∨

$(u) (resp. �∨
1 , . . . , �∨

$(v)) are positive and distinct; in particular, we

have�(�∨
k ) � 0 and�(�∨

k ) � 0. Then we define an element�u�,v� ∈ E� ⊂ Oq(G) by

�u�,v� = (F
[�(�∨

1 );j1]
j1

· · · F
[�(�∨

$(v));j$(v)]
j$(v)

) • �� • (E
[�(�∨

$(u)
);i$(u)]

i$(u)
· · · E

[�(�∨
1 );i1]

i1
) (9.10)

(see (9.1)); in view of the quantum Verma relations[18, Proposition 39.3.7]the element
�u�,v� indeed depends only on the weightsu� and v�, not on the choices ofu, v and
their reduced words. It is also immediate that each quantum minor�
,� belongs to
the graded componentOq(G)
,�, and that it spans the one-dimensional weight space
E� ∩ Oq(G)
,�. This implies that

Ei • �
,� = 0 if (	i | �) � 0,

Fi • �
,� = 0 if (	i | �) � 0, (9.11)

�
,� • Fi = 0 if (	i | 
) � 0,

�
,� • Ei = 0 if (	i | 
) � 0. (9.12)

The generalized minors have the following multiplicative property:

�u�,v��u�,v� = �u(�+�),v(�+�) (�, � ∈ P +, u, v ∈ W). (9.13)

For u = v = 1, this follows at once from (9.8); for generalu and v, (9.13) follows
by a repeated application of the following useful lemma which is proved by a direct
calculation using (9.2) and (9.6).

Lemma 9.3. Let f ∈ Oq(G)
,� andg ∈ Oq(G)
′,�′ . For a giveni ∈ [1, r], suppose that
a = �(	∨

i ) (resp. b = �′(	∨
i )) is the maximal non-negative integer such thatF a

i •f �= 0
(resp. F b

i • g �= 0). Then

(F
[a;i]
i • f ) · (F

[b;i]
i • g) = F

[a+b;i]
i • (fg). (9.14)

Similarly, if c = 
(	∨
i ) (resp. d = 
′(	∨

i )) is the maximal non-negative integer such
that f • Ec

i �= 0 (resp. g • Ed
i �= 0), then

(f • E
[c;i]
i ) · (g • E

[d;i]
i ) = (fg) • E

[c+d;i]
i . (9.15)
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The following fact can be deduced from the proof of Proposition II.4.2 in[3].

Proposition 9.4. For any dominant weight� ∈ P +, a pair of Weyl group elements
u, v ∈ W , and a homogeneous elementf ∈ Oq(G)
,�, we have

f · ��,v−1� − q(
 | �)−(� | v−1�)��,v−1� · f ∈ Ju,v, (9.16)

�u�,� · f − q(
 | u�)−(� | �)f · �u�,� ∈ Ju,v. (9.17)

Let �u,v denote the projectionOq(G) → Oq(Gu,v). It is not hard to check that
�u,v(�u�,�) �= 0 and�u,v(��,v−1�) �= 0. We can rewrite (9.16) and (9.17) as

f · �u,v(��,v−1�) = q(
 | �)−(� | v−1�)�u,v(��,v−1�) · f, (9.18)

�u,v(�u�,�) · f = q(
 | u�)−(� | �)f · �u,v(�u�,�) (9.19)

(for f ∈ Oq(Gu,v)
,�).
In view of (9.18)–(9.19) and (9.13), for eachu, v ∈ W the set

Du,v := {qk�u,v(�u�,�) · �u,v(��,v−1�) : k ∈ Z, �, � ∈ P +}

is an Ore set in the Ore domainOq(Gu,v) (see the appendix). This motivates the
following definition.

Definition 9.5. The quantum double Bruhat cellOq(Gu,v) is the localization ofOq

(Gu,v) by the Ore setDu,v, that is,Oq(Gu,v) = Oq(Gu,v)[D−1
u,v].

Definition 9.5 is easily seen to coincide with the definition in[3, Section II.4.4].

10. Cluster algebra setup in quantum double Bruhat cells

10.1. Clusters associated with double reduced words

Fix a pair (u, v) ∈ W × W , and letm = r + $(u) + $(v) = dimGu,v. Let i =
(i1, . . . , im) be a double word such that(ir+1, . . . , im) is a reduced word for(u, v),
and (i1, . . . , ir ) is a permutation of[1, r]. For k = 1, . . . , m, we define the weights

k, �k ∈ P as follows:


k = s−i1 · · · s−ik�|ik |, �k = sim · · · sik+1�|ik |
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(with our usual convention thats−i = 1 for i ∈ [1, r]). Let �
k,�k
∈ Oq(G) be the

corresponding quantum minor. Note that

{�
1,�1, . . . , �
r ,�r
} = {��1,v−1�1

, . . . , ��r ,v−1�r
}

and�
k,�k
= �u�|ik |,�|ik | wheneverk

+ = m+1 (see Section8.2); thus, the only minors
�
k,�k

that depend on the choice ofi are those for whichk is i-exchangeable.

Theorem 10.1.The quantum minors�
k,�k
pairwise quasi-commute inOq(G). More

precisely, for 1� $ < k � m, we have

�
k,�k
· �
$,�$

= q(
k | 
$)−(�k | �$)�
$,�$
· �
k,�k

. (10.1)

Proof. Identity (10.1) is a special case of the following identity:

�s′s�,t ′� · �s′�,t ′t� = q(s� |�)−(� | t�)�s′�,t ′t� · �s′s�,t ′� (10.2)

for any �, � ∈ P +, and s, s′, t, t ′ ∈ W such that

$(s′s) = $(s′) + $(s), $(t ′t) = $(t ′) + $(t).

Indeed, (10.1) is obtained from (10.2) by setting

� = �|ik |, � = �|i$|, s′ = s−i1 · · · s−i$ , s = s−i$+1 · · · s−ik ,

t ′ = sim · · · simax(k,r)+1, t =
{

sik · · · simax($,r)+1 if r < k,
1 otherwise.

To prove (10.2), we first consider its special case withs′ = t ′ = 1:

�s�,� · ��,t� = q(s� |�)−(� | t�)��,t� · �s�,� (10.3)

for any �, � ∈ P + and s, t ∈ W . In view of (9.11) and (9.12), the minors in (10.3)
satisfy

Ei • �s�,� = ��,t� • Fi = 0 (i ∈ [1, r])

or equivalently,

E • �s�,� = ε(E)�s�,� (E ∈ U+), ��,t� • F = ε(F )��,t� (F ∈ U−).

Thus, (10.3) is a consequence of the following lemma.
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Lemma 10.2. Suppose the elementsf ∈ Oq(G)
,� and g ∈ Oq(G)
′,�′ satisfy

E • f = ε(E)f (E ∈ U+), g • F = ε(F )g (F ∈ U−).

Then

fg = q(
 | 
′)−(� | �′
)gf. (10.4)

Proof. It suffices to show that both sides of (10.4) take the same value at each element
F K�E ∈ U , whereF (resp.E) is some monomial inF1, . . . , Fr (resp.E1, . . . , Er ).
Using (9.6) together with (9.2)–(9.3) and (9.7), we obtain

(fg)(F K�E) = (E • fg • F )(K�) =
∑

(E1 • f • F1)(K�) · (E2 • g • F2)(K�)

= (KdegE • f • F )(K�) · (E • g • KdegF )(K�)

= q(degE|�)+(degF |
′)f (F K�) · g(K�E);
similarly,

(gf )(F K�E) = f (F K�) · g(K�E).

In view of (9.9), f (F K�) �= 0 (resp.g(K�E) �= 0) implies that degF = 
 − � (resp.
degE = 
′ − �′). We conclude that

fg = q(
′−�′ | �)+(
−� | 
′)gf = q(
 | 
′)−(� | �′
)gf

as claimed. �

To finish the proof of Theorem10.1, it remains to deduce (10.2) from (10.3). Re-
membering definition (9.10), we see that this implication is obtained by a repeated
application of the following lemma, which is immediate from Lemma9.3.

Lemma 10.3. In the situation of Lemma9.3, suppose the elementsf and g quasi-
commute, i.e., fg = qkgf for some integerk. Then

(F
[a;i]
i • f ) · (F

[b;i]
i • g) = qk(F

[b;i]
i • g) · (F

[a;i]
i • f ); (10.5)

(f • E
[c;i]
i ) · (g • E

[d;i]
i ) = qk(g • E

[d;i]
i ) · (f • E

[c;i]
i ). (10.6)

This completes the proof of Theorem10.1. �

Remark 10.4. Under the specializationq = 1, Theorem10.1 evaluates the standard
Poisson–Lie brackets between the ordinary generalized minors. This answer agrees with
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the one given in[16, Theorem 2.6], in view of [11, Theorem 3.1]; in fact, Theorem
10.1allows one to deduce each of these two results from another one (see[16, Remark
2.8]). (Unfortunately, the Poisson bracket used in[16] and borrowed from[17] is the
opposite of the one in[3].)

10.2. The dual Lusztig bar-involution

Following Lusztig, we denote byu �→ u the involutive ring automorphism ofU such
that

q = q−1, Ei = Ei, Fi = Fi, K� = K−�.

Clearly, this involution preserves grading (9.4). Define thedual bar-involutionf �→ f

on Oq(G) by

f (u) = f (u) (u ∈ U). (10.7)

This is an involutive automorphism ofOq(G) as aQ-vector space, satisfyingQf =
Q f for Q ∈ Q(q), whereQ(q) = Q(q−1). The definitions imply at once that

Y • f • X = Y • f • X (X, Y ∈ U, f ∈ Oq(G)). (10.8)

It follows that

Oq(G)
,� = Oq(G)
,�

for any 
, � ∈ P .
The dual bar-involution has the following useful multiplicative property.

Proposition 10.5. For any f ∈ Oq(G)
,� and g ∈ Oq(G)
′,�′ , we have

f · g = q(� | �′
)−(
 | 
′)g · f . (10.9)

Proof. We start with some preparation concerning “twisted’’ comultiplications inU.
For a ring homomorphismD : U → U ⊗ U and a ring automorphism� of U, we
define the twisted ring homomorphism�D : U → U ⊗ U by

�D = (� ⊗ �) ◦ D ◦ �−1. (10.10)

In particular, we have a well-defined ring homomorphism−� : U → U ⊗ U corre-
sponding toD = � and�(u) = u. Clearly,−� is Q(q)-linear.
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Let  : U → U denote aQ(q)-linear automorphism ofU given by

(u) = q
(	 | 	)
2 uK	

for u ∈ U	 (an easy check shows that is a ring automorphism ofU). As an easy
consequence of (9.9), we see that

f ◦  = q
(
 | 
)−(� | �)

2 f (10.11)

for any f ∈ Oq(G)
,�.
Let �op : U → U ⊗ U be theQ(q)-algebra homomorphism defined as in (10.10)

with � =  andD = �op, the opposite comultiplicationgiven by�op = P ◦ �, where
P (X ⊗ Y ) = Y ⊗ X. We claim that

−� = �op; (10.12)

indeed, both sides areQ(q)-algebra homomorphismsU → U ⊗ U , so it suffices to
show that they take the same value at each of the generatorsEi , Fi , andK�, which is
done by a straightforward calculation.
Now everything is ready for the proof of (10.9), which we prefer to prove in an

equivalent form:f · g = q(� | �′
)−(
 | 
′)gf . Indeed, combining the definitions with (10.12)

and (10.11), we obtain

f · g(u) = (f ⊗ g)(−�(u)) = (f ⊗ g)(�op(u)) = (((g ◦ ) · (f ◦ )) ◦ −1)(u)

= q
(
 | 
)−(� | �)+(
′ | 
′)−(�′ | �′)−(
+
′ | 
+
′)+(�+�′ | �+�′)

2 (gf )(u)

= q(� | �′
)−(
 | 
′)(gf )(u),

as claimed. �

Proposition 10.6. Every quantum minor�
,� is invariant under the dual bar-involution.

Proof. First, we note that�� = ��: this is a direct consequence of (9.8). The general
statement�
,� = �
,� follows from (9.10) together with (10.8) and the observation
that all divided powers of the elementsEi andFi in U are invariant under the Lusztig
involution. �

Let i and the corresponding quantum minors�
k,�k
for k = 1, . . . , m be as in Section

10.1. Generalizing Proposition10.6, we now prove the following.

Proposition 10.7. Every monomial�a1

1,�1

· · ·�am


m,�m
is invariant under the dual bar-

involution.
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Proof. Using Propositions10.9, 10.6, and Theorem10.1, we obtain

�a1

1,�1

· · ·�am


m,�m
= q

∑
$<k aka$((�k | �$)−(
k | 
$))�am


m,�m
· · ·�a1


1,�1
= �a1


1,�1
· · ·�am


m,�m
,

as claimed. �

Note that the projection�u,v : Oq(G) → Oq(Gu,v) gives rise to a well-defined dual
bar-involution onOq(Gu,v) given by�u,v(f ) = �u,v(f ) (indeed, the Lusztig involution
preservesUu,v so its dual preservesJu,v = ker �u,v).

Proposition 10.8. The monomials�u,v(�
1,�1)
a1 · · ·�u,v(�
m,�m

)am are linearly inde-
pendent overQ(q), and each of them is invariant under the dual bar-involution in
Oq(Gu,v).

Proof. The linear independence is clear because it holds under the specializationq = 1.
The invariance under the dual bar-involution is immediate from Proposition10.7. �

10.3. Connections with cluster algebras

As in Section10.1, let i = (i1, . . . , im) be a double word such that(ir+1, . . . , im) is
a reduced word for(u, v), and (i1, . . . , ir ) is a permutation of[1, r]. Let �(i) (resp.
�(i)) be the skew-symmetric (resp. symmetric) integerm × m matrix defined by (8.5).
We identify �(i) with the corresponding skew-symmetric bilinear form onL = Zm,
and consider the based quantum torusT (�(i)) associated withL and�(i) according
to Definition 4.1. For k = 1, . . . , m, we denoteXk = Xek , where {e1, . . . , em} is
the standard basis inZm. Let F be the skew-field of fractions ofT (�(i)), and let
M : Zm → F − {0} be the toric frame such thatM(ek) = Xk for k ∈ [1, m] (see
Definition 4.3 and Lemma4.4).
On the other hand, letOq1/2(Gu,v) denote the algebra obtained fromOq(Gu,v) by

extending the scalars fromQ(q) to Q(q1/2). Let Ti ⊂ Oq1/2(Gu,v) denote the quantum
subtorus ofOq1/2(Gu,v) generated by the elements�u,v(�
1,�1), . . . , �u,v(�
m,�m

) (see
Proposition10.8).

Proposition 10.9. (1) The correspondenceXk �→ �u,v(�
k,�k
) (k ∈ [1, m]) extends

uniquely to aQ(q1/2)-algebra isomorphism� : T (�(i)) → Ti .
(2) The isomorphism� transforms the twisted bar-involutionX �→ X

(�(i))
on T (�(i))

(see(6.6)) into the dual bar-involution onTi (see Section10.2).

Proof. (1) Comparing (4.18) with (10.1), and using Proposition10.8, we see that it
suffices to prove the following:

�k$(i) = (
k | 
$) − (�k | �$) (10.13)
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for 1� $ < k � m. Remembering (8.5) and (8.6), we obtain (for$ < k):

(
k | 
$) − (�k | �$) = (s−i1 · · · s−ik�|ik | | s−i1 · · · s−i$�|i$|)

−(sim · · · sik+1�|ik | | sim · · · si$+1�|i$|)

= (s−i$+1 · · · s−ik�|ik | |�|i$|) − (�|ik | | sik · · · si$+1�|i$|)

= (�−[$+, k]�|ik | − �+[$+, k]�|ik | | �|i$|) = �k$+ = �k$(i)

as required.
(2) This is a direct consequence of (6.6), (4.19) and the last statement in Proposition

10.8. �

In view of Proposition10.9, the isomorphism� : T (�(i)) → Ti extends uniquely
to an injective homomorphism of skew-fields of fractionsF → F(Oq1/2(Gu,v)), which

we will denote by the same symbol�. Let U(M, B̃(i)) ⊂ F be the upper cluster
algebra associated according to (5.2) with the toric frameM and the matrixB̃(i) given
by (8.7). We can now state the following conjecture whose classical counterpart is[2,
Theorem 2.10].

Conjecture 10.10.The homomorphism� : F → F(Oq1/2(Gu,v)) is an isomorphism of

skew fields; furthermore, it restricts to an isomorphism ofQ(q1/2)-algebrasU(M, B̃(i))
→ Oq1/2(Gu,v).

For instance, ifG = SL3, and Gu,v is the open double Bruhat cell inG (i.e.,
u = v = w0) then we conjecture thatOq1/2(Gu,v) identifies with the quantum upper

cluster algebra associated with the compatible pair(�, B̃) in Examples3.2 and 8.4.
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Appendix A . Ore domains and skew fields of fractions

Let R be a domain, i.e., an associative ring with unit having no zero-divisors. As
in [14, A.2], we say thatR is an Ore domain if is satisfies the (left) Ore condition:
aR ∩ bR �= {0} for any non-zeroa, b ∈ R. Let F(R) denote the set ofright fractions
ab−1 with a, b ∈ R, and b �= 0; two such fractionsab−1 and cd−1 are identified if
af = cg andbf = dg for some non-zerof, g ∈ R. The ringR is embedded intoF(R)

via a �→ a · 1−1. It is well known that ifR is an Ore domain then the addition and
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multiplication in R extend toF(R) so thatF(R) becomes a skew-field. (Indeed, we
can define

ab−1 + cd−1 = (ae + cf )g−1,

where non-zero elementse, f , andg of R are chosen so thatbe = df = g; similarly,

ab−1 · cd−1 = ae · (df )−1,

where non-zeroe, f ∈ R are chosen so thatcf = be.)
A subsetD ⊂ R − {0} is called an Ore set ifD is a multiplicative monoid with unit

satisfyingdR = Rd for all d ∈ D. One checks easily that ifD is an Ore set, then the
set of right fractionsR[D−1] = {ad−1 : a ∈ R, d ∈ D} is a subring ofF(R), called
the localization ofR by D.
We now present a helpful sufficient condition for a domain to be an Ore domain.

Suppose thatR is an algebra over a fieldk with an increasing filtration(k ⊂ R0 ⊂
R1 ⊂ · · ·), where eachRi is a finite-dimensionalk-vector space,RiRj ⊂ Ri+j , and
R = ∪Ri . We say thatR has polynomial growth if dimRn � P (n) for all n � 0, where
P (x) is some polynomial. The following proposition is well known (see, e.g.,[1,13]);
for the convenience of the reader, we will provide a proof.

Proposition A.1. Any domain of polynomial growth is an Ore domain.

Proof. Assume, on the contrary, thataR ∩ bR = {0} for some non-zeroa, b ∈ R.
Choosei � 0 such thata, b ∈ Ri . Then, for everyn � 0, the k-subspacesaRn and
bRn of Ri+n are disjoint, hence

dim Ri+n � dim aRn + dim bRn � 2 dim Rn.

Iterating this inequality, we see that dimRmi � 2m for m � 0, which contradicts the
assumption thatR has polynomial growth. �

As a corollary, we obtain that any based quantum torusT (�) (see Definition4.1) is
an Ore domain, as well as the quotient of the quantized coordinate ringOq(G) (see
Section9.2) by any prime idealJ. Indeed, bothT (�) andOq(G)/J are easily seen
to have polynomial growth (e.g., forR = Oq(G)/J , takeRn as theQ(q)-linear span
of all products of at mostn factors, each of which is the projection of one of the
generatorsEi, Fi , or K�).
We conclude with a description of the two-sided ideals inT = T (�). The following

proposition is well known to the experts; it was shown to us by Maria Gorelik.

Proposition A.2. (1) The centerZ of T = T (�) is a freeZ[q±1/2]-module with the
basis {Xf : f ∈ ker�}. Thus, Z is the Laurent polynomial ring overZ[q±1/2] in r

independent commuting variables, where r = rk(ker�).
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(2) The correspondenceJ �→ I = T J = JT gives a bijection between the ideals in
Z and the two-sided ideals inT . The inverse map is given byI �→ J = I

⋂
Z.

(3) The correspondenceJ �→ I in (2) sends intersections to intersections. In partic-
ular, if z1 and z2 are relatively prime inZ, then T z1 ∩ T z2 = T z1z2.

Proof. We start with a little preparation. LetL∗ = Hom(L, Z) be the dual lattice. For
� ∈ L∗, we set

T� = {X ∈ T : XeXX−e = q�(e)X for e ∈ L}. (A.1)

This makesT into a L∗-graded algebra: the decompositionT = ⊕�∈L∗T� is clear
since, in view of (4.3),

T� is a Z[q±1/2]-module with the basis{Xf : �f = �}, (A.2)

where�f (e) = �(e, f ). It follows that

the multiplication byXf gives an isomorphismT� → T�+�f
. (A.3)

In view of (A.1), we haveZ = T0. Thus, assertion (1) is a special case of (A.2). To
prove (2), it is enough to note that every two-sided idealI of T is L∗-graded, and,
in view of (A.3), the multiplication by anyXf restricts to an isomorphismI

⋂ T� →
I
⋂ T�+�f

. Finally, (3) is immediate from (2): since the correspondenceI �→ J =
I
⋂

Z sends intersections to intersections, the same is true for the inverse correspon-
dence. �
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