
g 0. Introduction 

?hr~~ughotit thy+ p3per. R wdf be an asscxiativ~ ring wit41 unity and / will be an 
injeotive right R-module. 

With I we assxirste a torsion theory and a linear topology. The former gives rise 

to the proce~ of hxafizatian, the latter to the pr~ess ot completion. The reader 

sh~uki bear in mind the c-taskal ex3mpte I = I (R/P $, the injective hull af the R- 

module R/P, when R is commutative and P is a prime ideal. 

It is a maxim of commutative algebra that one should first lwatizc and then corn-- 

pkte. We &all examine the simple fusoctor whioh arixs when one does first one and 

then the olher, under fairly general circumstances. 
In 8 1, WC brietly review xhe relevant concepts of the f-torsion theory and the 

I-a&c topdogy . In 9 2, we discuss the quotient functor Q associated with a torsion 
theory. Our main purpose is to obtain many examples in which Q is an exact end{, 
functor of Mod R. Among other thirrg~, we show that ever)? f-divisible module is 
injcctive If and only if I has zero singular submodule. In $ 3, we study rhc triple 
QlS, q, II) on Mad R which arises from S(&f ) = Horn& (HomR (M. I), I), where 
E = HornR (I, I). We show that Q (M ) q S (M ), with equality holding when HomK 
(MI I ) is 3 finitely gnerated left E~mcxiule. In $ 4, we introduce the finite topology 
on S(M) and show that, when Q is exact, S(M ) is the I-adic cclmpiet ion of Q (.icr). 
In $j 5, we degribe in detail the algebras of the triple (S, q, p ) when Q is exact. 
They are the I-torsionfree and I-divisible R-modules which have been equipped with 
a certain limit operation that assigns a limit to each I-adic Cauchy net. For arly right 
R-module M, I(M) will denote its injcctive hull. 

The author is indebted to the FQrschungsinstitut fur Mathematik of the E.T.H. 
in ZGdch for its generous hospitality and stimuiating atmosphere and to the 
National Research Council of Canada. He is grateful to Basil kttray for discussions 
about $5 and to Robert McMaster for his critical reading of the manuscript. 
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jj 1. the I-torsion theory and the Idic topology 

The torsion theory associated with an injective module was thirst investigated by 
Findlay and the present author in 1958, but it was only caIled *‘torsion theory” by 
the latter in 1966. Equivalent concepts are the idempotent filters of right ideals 

Bostrbaki ( 5 96 1) and Gabriel ( 1962) the torsion radicals of Maranda (1964), 

modular closure ol=rations of Chew ( 1965), the hereditary torsion theories of 
cksan ( 1966), and the idempotent kernel functors of Goldman (1969). An ex- 

ition of torsion thelories with references to the literature may be found in [S] or 
f L 11. Here we shall only give a brief review of what is most relevant to our present 
purpose. 

The following concepts depend on the injective right R-module I; however, we 
shall write “torsion” in4 place of ‘l-torsion”, “ divisible” in place of “I-divisible”. etc. 

A right R-moduie M is calred tors~nn if Horn,,@,, I ) = 0, W&ZVZ@VT if Af is iso- 
morphic to a submodule of some power of I, and bivisihle if I(M)/&# is torsionfree. 
It follows: that M is divisible if and only if Ext#, M j = 0 for every torsion mcodule 
T, or even only for every cyclic torsion module T = R/D. 

Evl?ry module M has a torsion submalule 

and a diwisibfe hull D (nf ) defined by 

One ah defmes the qwtdenf module 

sometimes called the kwaliza~ion of M at 1. D is not a functor, but T and Q are. 

W‘, The r-It is cIear if we add the following condition: 

Q3. h’ is an essential efxtension of f(M). 
all derive Q3 from Qr and 42. 
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Suppose P is a submodule of N such that f‘(M ) n P = 0. Then 

and this is torsion by Q 1. On the other hand, P is torsionfree by Q2, hence P = 0. 

Therefore QS holds’ . 

There are other ways of obtaining Q. For exampIe, let 

then 

We shatl call two injectives sintilor if they give rise to the same torsion theory. 
Clearly, this is the ~a= if and only if each is isomorphic to a submodule of a power 
of ths other. it IS easily seen that every inject&e is simihr to an injective of the form 

II (I(U/A) i R/A is Wrsiunfree). 

The following facts arc known from “additive scmantrcs” (see e.g. [S. 8 I] ). 

The functor from Mod4! to the full subcategory of torsionfree divisible modu- 
les determined by Q is exact. In fact, every full reflective subcategory of Mod R for 
which the reflector preserves regular munomorphisms is obtainable in this way 1 IO] . 

’ tn view of this Gbwrvation, condmtion Q3 i,e redundant in [ 5, p. 37, Proposition 2.5 and 
Corollary 1; Ylmilacly on p. 39, Proposition 2.6). That 43 follows from CM and Q2 is known 
(SEC (4, Lemma 3.81). 



Irt p be a classof R-modules closed under isomorphic images, submodules and 
finite direct pritiucts. Then w’e know (see e.g. [S, 931 1 how to define a topology on 
each R-moduk .M by taking aa a fundamental system of open neighborhoods of 0 
all kerne:s of homomorphismr; hi-d where P E F! 

We shaft write 

The composite mapping M-+/MO -& is called the ~uu~t~~~ff’~u~~~~fi~~?? of M. 
Given an inj6xt ive 1~ , WC coc:ld take Pto be the class of afl I-torsion modules. 

This is not the topology we are interested in here. Instead, we take Pto be the class 
of alt modules isomcqhic to submodules of In for some natural number n. The 

g topology is called the Larlic toyw,logy 011 M, a fundamental system of open 
orhc)Ods Inf 0 consrsts of ail kern& of homomorphisms M+P for some 

finite cardinal n. 
To. see the difference between the two topoiogies, take R = Z, the ring of integers 

and I = I(Z,‘pZ), the Priifer g~-oup associate{! with the prime number p. A funds 
mental system ctf open neighbolrhoods of 0 on 2 in the Atarsion topology consists 
of all ideals mZ, where p does not divide m, while in the Aadic topology it consists 
of ali ideals p”Z, where II is any natural number. 

The I-adic topology behaves :nicely with respect to submodules, as the following 
rvation shops. 

Rd. Clearly, any fundamental open neighborhood of 0 in the induced topofogy 
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has the form 

When R is a commutative ring and P is a prime ideal, 0nC” usually introduces the 
f-adk tcJpolugy on &# by taking as fundamental open neighborhoods of 0 ali sub- 
modules of the form JVIP”~ for some natural number n. The P-adk topology behaves 
nicely with respect to quotitrrt modules, bul: not. in general. with respect to sub- 
modules. The folfowing ~sult has been proved ekwhere 161: 

As eorullaries one may obtain common versions tlf the Artin-Recs Lemma and 
the Kruii Intersxtion Theorem. We record the following trivial observation: 

!$ 2. Exactness of the quotient functor 

We shall regard the quotient functor Q not as a reflector but as an endo-functor 
of Mbd R, hence. as GIG fun&or belonging to an idempotent triple on Mod R. We 
shall examine some conditions an I which guarantee different degrees of smooth- 
fESS of (2. 

Given any flat left K~moduk #, we shall write 

Then F* is an injective right &module. In the F**torsion theory a nodule A4 is 
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torsion if and only if M eR F = 0. iin particutar, 3 cyclic module R/D is torsion if and 
only ifDF= F(see [$I). 

2.1. Pmpasition. Q is isomorphic to the identity furrctor on Mod R if’ond on@ if it 
ix clctcnnincd by art injcctiw FaR, where RF is P frc’c kf? R-rrwdulc. 

RasQlf. In the F*-torsion theory, M is torsion if and only if M aN F = 0, that is, M = 0. 
Thus every module IS torsionfree. and so Q[hf ) = hf. 

C~nvcrscly, if Q( Ilf ) = M for every module Af, we see that ?“[.M) = Kcr ~M-+Q(M)) 
zs mo, hcncc At is tvrsionfrec. Then the torsion theory coincides with that obtained 
from an injectivc of the form F*, wll~erc RF is free. 

hoof. If m is a nonzero element of the module ICI, there exists f : M-4 such that 
f (m ) 9 0 Thus ever+ module M is G-torsionfree, hence the G-torsian theory is the 

me as the F%orsion theory for free RF. 
Of special intcrcsr; arc those torsion theories for which the approximation functor 

ition 1.2 (5) is an equivalence. Various conditions for this to happen were 
Gabriel. Miranda, Walker and WaIker, and Goldman. in prticular, this is 
and only if Q =k ( )@R f&R); @R) is then a tlat left R-module and 

P-Q(R) is an epimorphism of rings. 
The following is a variant of’knDwn results; see e.g. [ 1 1. Corollary 13.121 and 

(5. Proposition 2.7 ] * _ We give a proof for completeness. 

2.2. Pmposition. Q is isomorphic to ([ ) aR O(R) ifond on& if it is detwmiwd by an 
if8jective r;*, where R + F is an @morphism of rings and RF is ftrt. 

ploof. Q is the reflccsor from Mod R to the full subcategory of torsionfree divisible 
modules followed by the indusion functor. The left adjoint of Mod (R+Q(R)) is 
( ) sQ(R)- Assume that this is isomorphic to the rcfiector, then it is left exact, 
hence Q(R) is fiat as ,a teft R-module.. Also Mod (R+Q(R)) is then isomorphic to 
the inclusion functor, hence it is faithful and full, hence R-+Q(R iis an epimorphism 
of rings- Moreover, a module M is torsion if and only if Kcr (M+Q(M)) = T(M) =M, 
that isJf @R Q(R j 2 Q(M) = 0. Tlws the torsion theory is that determined by 

Q(R )‘* 
tonvcrscly, CORSP ut:r the torsion theory determined by F*. To show that Q(M)2 
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ZM @R F we use Proposition 1.1. and check the following: 
QI . The kernel and cokemel of M -+ M @R F are torsion. 
QZ. M @R t;’ and /(M * I;‘) / (M g F) are torsionfree. 

Then, taking MR = RR, we see that Q(K ) 2 F as R-modules. That they are iso- 
morphic as rings follows from the fact that. for @vea: 9 E Q(R). there is a unique 
way of extending the mapping r k 9r, r E R, to an R-homomorphism Q(R) + Q(R). 
It remains to check Q I and QZ. 

Ql . If IPI EM is in the kernel of g : M-44 QC F, then nzR 3 F = 0, hence m is torsion. 
Let n E&f 4~ Fwith equivalence ciass [n] modulog(M). We claim that [nj R @F= 

0. in view of the exact sequence 

it suffices to show that a is a surjection, that is, that rtR x F C: &M) 8 F. Put n = 

Cinli ejit then 

and so nR * F = (n QP 1) F C: g(M) 4~ F. This argument depends on the fact that 
1 @f=fm I for all f E F$ a consequence of the observation that f~ 1 * f and 
f-j-@ 1 agree when fE It(R) and the assumption that h : R +F is an epimorphism ’ 

of rings. 
Q2. First, we show that every F-module N is torsionfree as an R-module. Indeed, 

let The any torsion module, so that T 0 F = 0. Then 

Next, we cIaim that if N is an F-module, then also I(NR )/IV is torsionfree. Indeed, 
by a trick of Findlay, it is contained in the F-module J/N3 where J = f(N&. For 

JR 2 Horn&F, J) is irg ‘ective, since .$ is inject&e and RF is flat. 

The prauf is now complete. 

In Proposition &. 3 2, we considered the situation in which Q preserves all colimits. 

More generally, one may ask when Q is exact. Goldman [4] has considered a number 
of equivalent formulations of this property, among which: 

(C) Every torsionfree factor module of a torsionfree divisible module is divisible. 
We shall obtain another criterion for this to happen. Note that if A is a divisible 

submodule of a torsionfree module B, then B/A is torsionfree. 
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2.3, hpjtion. Giwn a torsionjke diMMe module A, then BfA is divisible for 
me~r torsimfrcc divisible module B extmdirlg A if and onl,v if /(A )/A is divisibk. 

Proof. The necessity of the condition follows if we take B = f(A ). 
~~~~nv~r~~y, assume the condition, and let B be a torsionfree divisible module 

~~t3~nin~ A. Now B/A isI a submodule of I(B)jA with factor moduic i(B)fB. Since 
is divisible and I(B ) is t orsionke. f(B)/B is torsion free. Therefore &?/A will be 

divisrble if I I B ) A is divisible, and this remains to be shown. 
Put L!(B ) = IfA ) 6 K. then K is injective. Hence I (B )/A = I(A )/A @ K, and this is 

&visible, because the first summand is divisible by assumption and the second by in- 
ctwity. 

2.3. I. Catokry. Q is exact i/‘and only if /(A )/A is divisible for a/l twsionfrec di- 
wtbte modules A. 

hmf. ‘The necessity of the condition is clear. Conversely, assume B is torsionfree 
Bivitible and s/A torsionfree. Then A is torsionfree, and the condition asserts that 
/(A )/A is divisible. Then B/A is divisible, by Proposition 2.3., hence Q is exact, by 

This criterion for exactness of Q is not ideal, we should prefer something iike 
Proposrt ion 2.2. Still, it may be applied, as the coroilary to our next proposition 
W”ll show. 

We recall aat the singul:.Gar submodule of a module consists of a11 those elements 
which WC annihilated by e:l;sential right ideals of R. 

PW4&Weshow that(l)*i(2)=*(3)*(1). 
Q 1) * (2). We &in? that HomR (I(M)/M, I) = 0. Ltrt f : I(M) -+ I be such that 

ffM)=Et.TakeanyjE~~M)andput~~)=iE/.Then,forallrER.j~EM=~,ir=O, 
that ir,, i(j- lhf) = 0. Since IN is an essential submodule of I(M), j- * (M) is an essen- 
tial right ideal ofR. Hence, by (l), i = 0, and sof= 0, as was to be shown. 

(23 9 (3). Let M be divisible. Then 1(M),/M is both torsion and torsionfree, hence 
= I (RI). 
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(3) * ( 1). Let E be an essential right ideal of R. Then K/E C I(E)/E = D&)/E is 
torsion, hence Horn, (R jk’. I) = 0. Suppose i E I is such that iE = 0, then [r) t-+ ir is 
a mapping R/E -+ I, and so i = 0. 

2.4. I. Corollary (See 16, Example 21. j When 1 has zcru singular submodule, then Q 
is exWt. 

Ploof. If A is torsionfree and divisible, then I(/? )/A is zero, hence injective. Now 
apply Corollary 2.3.1. 

If (S, v. p) is a triple on Mod R, let \1/,4 : A @R S(R ) -+ S(A ) be the canonical 
mapping such that r for all ar E ~4 and s E S(R ), 

we note that (I may be regarded as a homomorphism R-+,4, hence S(a) : S(R)-+ 
S(A ). 

Proof. Given an exact sequence of R-modules 

Left exactness of S yields the following commutative diagram with two exact rows: 

(1). Assume that C is finitely generated, then we may suppose that B is finitely 
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nerated and free, hence tis will be an isomorphism. By the Two Square Lemma, 

or by routine diagram chasing, it then follows that 

Ifs is exact. S(e) is epi. and we see from the second squnc that $q- is epi. 
(2). Assume that Cis fir&rely presented, then, in additior~ to the above, we may 

supgc~ that A is finitely generated. Fience, by ( 1). tiA is epi. Therefore, by (*), 

tic is mono. 
(3‘). Any R-module C is the direct limit of finitely generated submodules Ci with 

injectlonrs ki : C; -+ C. Then ;rlso C @ S(R) is the direct limit of the Ci s.S(R : \‘*Irh 
i~~e~ti~~l~ kj x 1. Take any eliermcnt rl E C‘ @S(R) and suppose I;i&Q = 0, Sinbe 
C 5~ S(R ) is the union of the images of the Ci QG S(R ). we may put 

pI where dt E Ci 01: S(iR ). Then . 

and SJk, ) is mono, hence tjci(dii) = 0. 

ow ils(iurne fhat R is right Noetherian. Then the fanitely generated module Cj is 
1:~ presented. Hence. by (2), $q is mono, and therefore di = 0, Hence d = 0, 

and so &,c is morro. 
ume that m : A + B is any monomorphism. As we have just proved that GA 

is manlo, it follows that nz * f is mono. Therefore S(R ) is flat as a left R-module. 

if Q is exact and R is right Noetherian, then Q preserves all colimits (see [a] ). If 
we didn’t know already that Q(H ) is then a flat left R-module, we could deduce it 
from the above. 

5 3, The triple astsaciated with d 

Let E Ix the ring of endorrwphisms of the: injective module IR. Then I becomes 
a bimodu!e E/R - If M is a right R-moduie, we write 
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/ qf! M = Homj$M, lb, 

and this is understood to be a left E-module. On the other hand, ifN is a left &?- 
module, we write 

and this is understood to be a right R-module. Thus we obtain a pair of functors 

( ) QI : (E h%od)OP --+ Mod R, 

the former being left adjoint to the latter. 
We shall use the convention that homomorphisms of left modules are written on 

the right of their arguments and that they compose by associativity, thus ((a&)$ = 

(NoWk. 
The above pair of adjoint functors gives rise to a triple IS, q, p_) on Mod R as 

follows: 

S{M) = II 6 M) 4) I; 

Here M and M’ are R-modules, ft-14 A!, g:M’+M, s’eS(M’), md. od2(M). More- 
over f’* : S(M )+f is defrncd by 

f’(s) = ub, 

where s&(M). 
We note that S(R ) = (I 6 R ) & IS I B / is the bicommutator of I, the opposite of 

the usual ring End& ), and that S(I ) = E b I 2 1. 

3.1. Proposition. The fiolfowing assertions hold with respect to the l-torsion theory: 

(1). Ker q(M) = T(M). 
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6 2 ). S( AY) is toniortfret? and divisible. 
(3). Thrr~re is o unique homomorphism Q(M ) + S(M) ovu M, ortd this is o mono- 

mrphism. 
(4). Q(R ) + S(R ) is o ring I’tornnm~rphism. 

Fvcn& ( 1). m E Ker ft(M) if and only if, for all/E I& M, f(m) = df)(q(M)(m)) = 0. 
Tks is the same as saying that NomR(m,lrZ. I) = 0. that is. M E T(M), 

(2). tbt 0 9 sES(Af). then 0 + 0s = f*(i), for some f E I 6 bf. Were 

f 
t- * + I, and so S(N) is torsionfree. 

To see that S(M) is divisible, take any ri,Rht ideal D of R such that R/D is torsion, 
and let +xD -G(M). Then, for any d E I) and SE J 6 M, we write 

frF(d) = Uxs(d )). 

It isclear lhat /@J 3 I. Since jR is torsionfree and divisible, there exists a unique 
ri E I such that, for alI d E D, I 

Now/w !i is a mapping J 6 M + J, and it is easily seen to be an E-homomorphism. 
nce there exists a unique s ES(M) such that 

tn s=Ji. 

for ail / E J 4 M, and therefore. for all d E D, 

(3). Since T(M j = Ker(M -+ Q(M )), we see from ( 1) that there exists a unique map 
Q&W) * S(M) s :e h that M + Q(M) +S(hf ) is q(M). Moreover, this is a mono- 
morphism, since Q(M) is an esxntiai extension afM/TqM) and M/T(M’) + S(M) is 
mono. 

(4). We omit the verification that Q(R) + S(R ) is a ring homomorphism, as this 
rltrutine and has already been shown elsewhere [3]. 

In view of Proposition 3.1.) we may write 
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Since S(M j is torsionfree and Q(M) is divisible, S(M)/Q(M) is torsionfree. Since “_. 
Q(M)/M is t orsion. we have, by Proposition 1.1.) 

Thus, in the definition of Q(M), S(M) could have been used in place of the injective 
hull I(M ). 

3.1 .I. CurdIary. Q(M) --+ S(M) is the eyuolirer ufrhe pair uf’maps qS(M), Sv(Mj: 
S(M) + SfiW )- 

Proof. Take any s E S(M) and g f I 4 S(M ). then 

and 

Put g’ =g .- (gr~&M))*, then the equalizer of the given pair of maps is k; = 
neJw Ker g’. We claim that K = Q(M). 

In view of [ *+) above, s E Q(M ) if and only if, for all g E I qb S(M ), 

Since I’*q(M) = f* for all j-E I 4 M, we have 

g’tlW I= mtnf I- (grl(M)fr)(M) = 0. 

NOW suppose s E Q(M), then, puttingg’ in place of g above, we see that g’(s) = 0. 
Thus Q(M) c K. 

Conversely, suppose s E K. Then, if gq(M) = 0, also g(s) = g’(s) = 0, hence 
s E Q(M). Thus K c Q(M). 

It foilows from a result by Fakir 13) that the idempotent triple determined by Q 
is the best co-approximation of the triple (S, IJ, p) by an idempotent triple. In par- 
ticular, the latter is never idempotent unless S = Q. 

It is natural to ask when Q{M) = S(hf). We shall return to this question after 
some pretirninary calculations. 

We have already pointed out that S(i) Z I, and it follows that S(ln) z In for 
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every finite cardinal n. Actually, *the canonical mapping ~(1”) is an isomorphism, 
and we shall describe its inverse explicitly. 

Define 6, :SfJn) + In by 

fat any s E S(J”)t where pi 11” + J and kj: J -) IN arc the canonical projections and 

injections respectively. 
in what follows, we shati have to consider the algebras of the: triple (S, tag ~1). We 

recall 121 that an S-u/gebm isi a p&r (A, a), where n E Mod R and Q E Wom,(S(A ).A ) 
such that 

q(A ) = 1, q(A) = crS(tr). 

Furthermore, an S-homomorphism between S-algebras (A v Q) and (B, 0) is an R- 
homomorphism g : A -+ B such that ga! = #3S(g). 

M. It is easily seen that 6,&J”!) = 1 and q(J”)S, = 1. We shall only check the 
second equJity. by taking any s E S(P) and fE I 6 Jn and computing: 

since s is an E-homomorphism and fki E E, and since X7=, $pi = 1. 

To show that (I”, 6,) is an S-allgebra. it remains to verify that 6,S(S,) = 

= b&J” )- Take any a E S2(Jn) antd any f E J 6 In, then 

!GOW define I* E J 6 S{P) by takil!lg any s E S(Jn) and putting 

f =f'b,. 
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as was to be shown. (The reader will note that thef’* defined here is a special case 
of that at the beginning of 6 3, with M = IT) 

Finally, by naturaiity of q, 

Multiplying by 6, on the left and h, on the ri$t, we obtain 

and sag is an S-homomorphism. 

Proof. Recall that (S(M). &V)) is the free S-algebra generated by AI, with adjunc- 
tion q(bf ). Therefore. given any R-homomorphism 1’: M + I I). there exists a unique 
S-homomorphism f’*: [S(M ), &%I)) -+ (I*, 6,) such that j'*q(nr ) = fl We compute, 
for any s E S(t\r ), 

I’+(s) = f*p(M) St)(M)(s) = s,s(f*)s~(M)(s) = &J(f>(s) 

The f* introduced at the beginning of the present section is a special carie of this, 
withn= 1. 

To SW that tlom&*S’(~f)/f *Q(M), I) = 0, take any g: f *S(M) + I and suppose 
&*(2(M) = 0. Extend g to 11 :I” -+ I, then hf * is the unique S-homomorphism 

(S(hf), p(M)) -+ (I, 6 I ) such that hf *q(M) = 0, since h and f * are both S-homo- 
morphisms, by Lemma 3.& 7 and the above. But also &J(M) = 0, and 0 is clearly an 



Shumornarphism. hence h/* = 0. Therefore g = 0, and it proof is complete. 

Prsoc., tit the generators of I d M be g, ) . ..? gtr. and put g = Cg, , . ..( ~;r ). Then 
g’:S(M) + IN is defined, for each J! ES(M), by 

g*(s) := t clpl )s, . . . . (gn )s ?. 

SuppoW g*(s) = 0. then s annihilate5 aif the generators of I 4 hf. hence al1 ofI4 M, 
andsos=O.ThusKerg*=O. 

Now, by Lemma 3.3, g4S(M)/ga*Q(RI) is torsion. Since g* is a monomorphism, 
it flows that .!W)/Q(M) is torsion. But, since SC&f) is torsionfree and Q(M) is di- 

ihle. S(Bf ),/Q(M) is also torsionfree, hence zero. 

me fotlnwil*tg sp&ai case was obtained independently by !kIorita and the present 
author. 

The hypothesis of Proposition 31.4 can be given iby a number of equivalent fomtula- 
tions. 

Ptoof.Weshuvthat(i)=*(2)‘(3)~(4)~(3)~(5)5+Q2)~(1). 
d I j 3 (2). By i. 1 j. the in terse: tion T(M) of all fundamental open nei&borhoods 

ofOinMisopen.Thus {O)+Ker&IT(M) ~Kerg,forsomeg:Ad-*P,hence(2). 
Cl- (3). Suppose f E I 4 M. Then Ker g = T(M) c Ker fv hence there exists 

h:f”4suchthatf=hg,Letg=“” btii=t k&i. where gi: M + I, and h = I&~ eipil where 

ei:14. Then 
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and this establishes (3). 
(3) 3 (4). Let I6 M have eeneratorsgt , . ..(g.,, say. Then g= E~=t~~g~ is a 

generator of 1” B, M. Indeed, take any f*E I” 4 M, then 

where u’ E In 6 In. Thus (4) holds. 
(4) * (3). LRt I@ 4 M have gncrator g, say. Then the yip generate 16 M. Indeed, 

take any 1-E I 6 M, then k,f’E In 8 l , hence k, j= ~“g, for some e‘ E IN 6 I? There- 
fore 

and pie’ki E E. Thus (3 j holds. 
(3) * (5). This is already contained in the proof of Proposition 3.4. 
(5) * (2). Assume (51, then 

Ker g = Ker (j&(M)) = Ker Q(M) = TfM), 

and so ( 2 ) holds. 
(2) * ( 1). This is clear. 

In view c*lf the equivalent conditions ( l)--(S), it is easy to find examples for 
which S(N) = Q(&f )_ For instartce, if N is Artinian, condition (2) is clearly satisfied. 
Or again, if I = I(R ), EI is principal, and so (4) holds for M = R arrd N = I, 

$ 4. The density theorem 

How does Q(M) sit inside S(M)? As it is not true in general that Q(M) = S(M), 
one may wish to prove a density theorem. However, it follows from Proposition I .6 

that Q(M) is closed in the I-adic topology of S(M). We shah investigate another 
topology on S(M) which also induces the I-adic topology on Q(M). 

Noting that S(M) = (I 6 i?f ) Ep i G 1’ d”, we mean by the jinire topology on 

S(M) that whicH* is induced by the product topology of 1’4” when I is taken to be 



discrete (see (91). We shall describer this finite topology explicitly. 
Basic oeen sets of .Y( ill ) twe the form 

where the i, E I and the _fk E 14 M’. Now ,/*z <fl ) . ..._.& > :M + In gives rise to the 
canonicai homomorphism j’* - .S(Mb + In considered earlier, e.g., in Lemma 3.3, and 
i = 

6 . ._.. i, FE In may be written asf*(+Q, where sO E S(M), unless t’ is empty. 
aterefore V = i $4) ) f Ker f *. 

We thus we that the finite topology on S(M) is linear, a fundamental system of 
qen nci&borhoods of 0 consisting of all Ker f*, where fE Fa 6 hf. If ap : (S(M), 

p(M)) -* (I 5 6, ) is any S-homomorphism, we may put gr)(MJ = I; and then g = I’. 
Therefore, in view of Lemma 3.3, the fundamental open neighborhoods of Q may 

be described as kernels of .S-hmnomorphisms of the free S-algebra generated by 
M inlo some (In. 6,, F. 

Prwf. Arty fc Jn 4 M gives rise to 2~ unique f’: I@ + I R such that f’( [ml ) = ffr)f), 
for all nr E AI. since T(M) G Ker fi Again, p’ may be extended to a unique f”: Q(M) 
-+ In. since QCM )$I! is torsion and I is torsionfree divisible. 

lat US took at tht induced topolog of Q(M). A fundamental open nei&borhood 
of 0 has the form Ker I‘* CI Q(.&f j = Ker f “. Here f”: Q(M) -+ P is any R-horn* 
msrphism. or any Q(R )-homomorpi~ism. in view of Proposition I .2(4), Therefore 
the induced topology of Q(M) is the same as the f-adic topoi<sy, snd it does not 
matter whether we regard Jn and QliM) as R-modules or as Q{R )-modules. 

What has been said about Q(M) goes, mutatis mutandum, for M. 
Suppose s E S(M) lies in the intersection of all fundamental open nei&borhoods 

of U. Then, in parGcuiar. for each fE / 4 M, (fbs = f*(s) = 0, and so s = 0. Thus 
SCM) is Hausdarff. 

Finaliy, we shaU prove that S(Mli, is uomplett? Given any directed set (X, S), let 
4 s, 1 x f X ] be a Cauchy net on S(M). Thus, for each fE 1” 6 M, there exists 
x( E X such that 

’ “I”hir wrns tc~ h known We f9f ), but I have not Seen a prouf. 



361 

Replacing xf by f. we easily deduce that 

(ii) Ker g* c Ker f* 3 sIS - So E Ker f*. 

Now define the set mapping s : I 6 M -+ by 

We claim that s is an E-homomorphism. For example, 

kf b =: (@tft’,s,, (by (iii)) = lef’)*(seJ.) = (ef )*(s,)(by (ii)) = (ef )sr 

= a f-Is,, 2 e((f)s)( by (iii)). 

The crucial step in proving that (/+g)s= (f )s +g(s) is to note that f,g:M-+Igive 
rise to a single m;ip (fig ) : M -+ lr, such that Ker (/; g >* = Ker f * n Ker g*_ We omit 
the de tails. 

Now take any x ? x1, then s! --’ s, E Ker f‘*, by (i). Moreover, s -. sf E Ker f*, 
by {iii). Hence, by addition, s .- s, E Ker f’. This shows that s is the limit of the 
@ven net, and our proof is complete. 

Proof. A fundamental open nei&borhood of a point s E S(M) has the form 
{s-j f Kc& where f: M -+ IN. We claim that every such set meets Q(M). in other 
words, that f*(s) E f’Q(M). We shall prove that j?(M) = f *Q(A4 ). 

Indeed, we k.now from Lemma 3.3 that f*S(M)/f *Q(M) is torsion. Now, 
j+*Q(M) G IN is torsionfree. Under the assumption of the theorem it is therefore 
divisible. Since f*S(M) C IR is torsionfree, f *S(M)/f *Q(M) is also torsion free, 
hence zero. 

Thus Q(M) is dense in S(M). In view of Proposition 4.1, S(M) is the completion 
of Q(M). It follows that S(M) is the inverse limit of all 
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wheref: M + P. lfg : @(M) + I” is any R-homomr~rphism, let f: M + In be ob- 
tained by composing with M -+ @Mi’ 1, then f’ t Q(M) = g, since f has a unique “ex= 
tension” to Q(hf ). set the proof of Proposition II. 1. Thus f*Q(M) = lm g. 

Wtfhier has constructed an Arttnian ring R far which Q(R ) =;: S(R ), by Proposi- 
tions 3.4 and 3.5, but for which the assumption of Corollary 42.1 is not satisfied. 

4.2.2. Remark, If R is commutative Noetherian, Y a prime ideal, and tR = /(R/P), 
blatils 171 has proved more than the above: S(H ) is actually the ring of ends 
morphisms of lRt hence this ring is commutative. Maths also showed that El = ISIR ) 
is then injective. It fblJows that S is exact, hence we may apply Proposit ion 2.5 and 
deduce that SfM ) is a flat left K-module and that S(&f) 2 M gJt S(H ) for every 
finiteJy gener;ited moduie M. Jf R is a commutative Noctherian local ring and P is 
it.c maximat ideal, this speciaJizes, in view of Pruposition l.S, to the weJi-known 

uit 111 hat the P-adic completion k of R is flat and that the P-adic c’ompletion 
of any finitely generated module M is IW * fk 

The fur?ctor M i-* 6T(M) is obtained in three steps: 
(i) endow M with the I-adic topology, 
(ii) complete, 
(iii) forget the topoJogy. 

Roof. This is an imme’iiate consequence sf Theorem 4.2 and Goldman’s condition 
(C) fur exactness of Q, see 5 2. 

Examples af the tatter resuft are iprovided by Propositions 2. I, 2.2 and 2.4, aJso 
& I = l(R/P) when R is commutative and P is prime, and by any injective I when R 
is right hereditary. fn particular, we have the following: 

4.2.4. CorolJlrry. If I = HomZ(F, Q/Z), where xF is .fiee, then S = C. 

5 5. The aligebras of the triple S 

We have made some use of the f-algebras and S-homomorphisms of the triple 



(S, T), p) associated with the injective 1. These form the so-called Eilenberg-Moore 
category of the triple. It may be of interest to identify them, at Icasa in case Q is 
exact. 

To get our bearing, let us first look at the free algebra (S(hf), J+V)). WC have 
seen that S(JV j is torsionfrec and divisible in the I-torsion theory and that it is 
Hausdorff in the I-adic topology. It is also complete, not in general in the I-adic 
topology, but in the finite topology, which is coarser than tlte I-ad& one. Actually, 
every torsionfrce divisible module which is Hausdorff in the I-adic topology and 
complete in a Coarser topology is in fact the underlying module of an S-algebra. 
However, WC h not know that all S-algebras must be of this fan. Instead of re- 
quiring completeness in a coarser topology, we shall postulate a limit process which 
makes all Cau&y nets converge. 

5.1. Definition. Let A be a Hausdorff topological R-module and X a function which 
assigns to each Cauchy net { ax 1 x E X ) an element of A denoted by X ( a, 1 x E X ] 

=A xrXax. We call X a limit opemtiwt on A provided it satisfies the following con- 
ditions: 

If A is complete, there is exactly one limit operation, the usual limit. But even if 
A becomes Hausdorff and complete in a module topology which is coarser than the 
given topology, the limit in the new topology will be a Limit opcrztion. 

We point out two conscqucnccs of th2 axioms. 
U”. Iftr, = 4 for all x E X, then X_r+- X’ar = u. 
L4’. If { Use,,) 1 y E Y )is a cofinai sjbncr of the Cauchy net { a, I x E X) , then 

?@f(u, = Xx%* 
Indeed, L3’ follows immediately from l_3. To show L4’, consider the net 

1% *- 4f ff ) I (x, y) E X X Y ). This is not only Cauchy, but actually converges to 0 in 

the given topology. For :et U be any neighborhood of- 0, then there exists xc! E X 
such that 

Now, by cofinality, there exists yu E Y such that f&$ > xtr, hence also 



5.2. Definition. tct (A, A) and (A ‘, Xc 1 be Hausdorff ~~opoiogicai modules equipped 
with limit operations X and X’.. respectiively. By a IMr ~WSCW&~ homomorphism 
q : (A. X) -+ (A’. h’) we mean a homomorphism 9 : A --* A ’ such that 

whenever { u_~ f x E X ) and ( &,)i x’E X jhappen to be Cauchy nets. We do not 
require that 9 be continuous in the g&en topologies. 

We note that, when A and A ’ are complete. 9 pmerves the usual limits if and 
mty if tt is contmuous. 

ptoaf. tet h( be the wt of all open neighborhoods of 0 in A, directed by stipulating 
that t’ > U means V C U. For each c & A’ and U E N, ( c ) + 11 meets A, hence there 
exists au E A such that c - au f U. 

It follaws that [ clUrUE 111) is a Cauchy net on A, and we may consider 
x,, &:QQ. Suppose also c - o;EUforaULIEN,thenuri-a;~AnIU\U),and 
we easily see than l oU - &I U E N ) converges to 0 in A, hence also 

by U 9 I.2 and LX Thus we may define a(c) = XcrE Nl~U, and it is easily verified that 
Q is an R-homomorphism A 3 A. Moreover, by L3’, tlr(a) = hi&_ Na zz a, for ail a E A, 
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hcnc”t? Q extends the identity map A -+ A. 
We shall now prove that o is limit preserving. Consider any Cauchy net 

{ c, I ,.. CE X j on tl” with limit c. Ttren. for each 0’ E 111, there exists 4( II) E X such 

that 

Moreover, by density, there exist u,~,~! E R such that 

To see that QI is limit preserving. we may assume that Q a(~,~ )I x E A ) is also a Cauchy 

forced, brcrxe a is unique. 
I 

Proof. We recall from Proposition 1 .li that when A is I-torsionfree then it is Haus- 
dorff in the Imadic topology. We shall establish a one-to-one correspondence between 
the pairs (A, X) in the second category and the S-algebras (A, a) with the same under- 
lying module A, and we shall prove that an R-homomorphism is limit preserving if 
and only if it is an S-hamonlr)rphism. The proof will consist of five parts. 

(, I ). Let (A, x) k &en, where A is torsionfree divisible and X is a Limit operation. 
Then ~$4 ) : A + S(A) is mono and embeds A as a dense submodule into its com- 
pletisn S(A ), by Theorem 4 2. Now, by Lemma 5.3, there exists Q : (S(A ), km) -+ 



(A, A) such that cu&i ) = I. it remains to show that O&S(~) = q(A ). 
First. we note that 

by naturality of 7~~ and because y(‘A )qS(A) = 1 in any triple. 
Next. we observe that p(A ) and S(a) are cont:inuous maps from S$4 ) to S(A )* 

tf both are equipped with the finite topoloa. Indeed, txsy calculations show that 
* 

foreach4.A -+P, 

p(A j-- 1 Ker f = Kcr (f*,*. 

and 

S(a) I Ker /’ = KerVaj*. 

w!A) and aStat) are limit preserving homomorphisms &!@(A), lim) =+ (A, X). 

Take any Q E S2(A). then for each g : S(A) -+ In, there exists sR E S(A) such that 

‘TIlliS 

n 

o = lim qS(A)(Q .J ’ 
f 

i? the finite topofog)l of Sr(A ). We plan to compare a&l j(o) with aS(cr)(o), but 
first we must verify that { sz 1 g : S(,4 ) 3 Jn f and ( a( g : S(A ) + ln ) are Cauchy 
nets in the f-adic topologies of S(A) and A respectively. We write g’ 2 for 
Ker g’ * C Ker g. 

For each g’ =>g, we have 

whence it easily foIlows that 

j;~ -- sK# E Ker g*qS(A j = Ker g, 

arsd w the first net isCauchy. Take any f : A -+ P7, and suppose g, g’ > fa, then by the 
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% - sgp E Ker fa, 
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hence 

a(sg) - ais,+ f aKerfa C, Kerf, 

and so the second net is Cauchy. Therefore Xga(sg) exists. On the one hand this is 

by naturality of q, and since aSi&) is limit preserving. On the other hand it is 

~~(A)~S(Aj~sgj=riii(A)~~S(Aj(sg)=aC1(A)io), 
d 

since w(A) is limit grese~&g. ?%lr ?k.S@)(o) = w(A)(o), as was to be shown. 
(2). Let (A, at) be a given S-algebra. !Gce m(A) = 1, q(A) is mono, hence A is 

torsionfree. We may regard A ?r=i a submodule of Q(A). By Corollary 3.i. t, for each 

aE QiA),Sr)(A)(q)=r2Jb(Aji4)( hence 

q = S(a)Sr)(A)(q) = S(a)qS(Aj(q) = q(A)o(qj, 

and so q E In q(A) T?IUS A is divisible. 
Let ( ax t x E X ) be any Cauchy net on A UI the I-adic topology. We detine 

We claim that X is a limit operation on A. Indeed, conditions Ll ‘~17 L3 are easily 
checked; we shall sldp the verification. The proof of L4 is a little mo:lie interesting, 
as it involves the equation as@) = *(A j. 

Assume that { pxy i(x,sEX>c Y)and {hyE~uxy;xEX] arecauchynets 

onA.‘I%en 

= Q lim S(a) @(A) hm q(A)@, 
x )’ I ,,) 

= aS(ar) tim qS(A) lim q(A)& 
x Y 

. $ 



(3). We have shown in (1) how to define a in terms of h, and in (2) how to define 
X in terms of a. lt is easily seen that these two dletinitions give a one-@one cocre- 

ndence between pairs (A, X) and pairs (A, a). 
For the remaining two parts of the proof we require a lemma. 

M, (ij. Let { a, ix E X ) be a Cauchy net on A. Then, for each f: A --* In, there 
b(,‘,E X such that 

%ow consider any g : l3- In. Then 

that 8s. 

(ii). Take any fundamental open neighborhood Ker g* of 0 cm S(B), where 
g: B-+P, then 

S(gj-- I Ker g* = Ker 6, SQ&!i’(g) = Ker ds\p)*, 

which is clearly a fvzxiamental open neighborhood of 0 on S(A). 

We now continue with the proof of Theorem 5.4. 
(4). Suppa 9 : (A, a) 3 (A’, a’} is an S-homomorphism. Let { ax 1 x E .K) be a 

Cauchy net on St. IBy Lemma 5.5, ( &a& E X) is a Cauchy net on A’ and S(q) 
hmi t pre!ierving. Therefore 



and therefore 9 is limit preserving. 
(5). Suppose cp : (A, X) --* (A It X’) is a limit preserving homomorphism. Take any 

element s E S(A ), then s = lim xGx q(A )(a,). where f a_* 1 x E X ) is a Cauchy net 
on A. By Lemma 5.5, { $(a, ji x E X) is a Cauchy net on A’ and S(q) is limit pre- 
serving. Therefore 

and therefore 9 is an S-homomarphism. 

The method employed in the proof of Theorem 5.4 can be used to establish a 
mote general result. 

h P be a class of mod&s closed under isomorphic images. finite products and 
submodules. By pte P we shali understand the category of pro- P modules, that is, 
inverse limits of modules in P, and continuous homomorphisms (in the inverse 
limit top&a). The inclusion pro? --+ Mad R has a left adjoint (see [ 5, 5 31): with 
each R-module Af we ass&ate 

We may regard C?p as an endo-functor of Mod R, then it gives rise to a triple 

(Cp* rlp*crp)* 

5.6, Proposition. iThe Capture of algebras ~_f the triple (C p, r) p, M p) is isomv~hic 

to the following category: Its objecrs are pairs (A, X), where A is an R-mod~k and 
X is a limit opemtion on A with respect to the P-top&c&y on A; its maps are limit 
pmerving homomorphisms. 
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