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One of the major drawbacks of the Gurson-type of porous plasticity models is the inability of these models
to predict material failure under low stress triaxiality, shear dominated conditions. This study addresses
this issue by combining the damage mechanics concept with the porous plasticity model that accounts for
void nucleation, growth and coalescence. In particular, the widely adopted Gurson–Tvergaard–Needleman
(GTN) model is extended by coupling two damage parameters, representing the volumetric damage (void
volume fraction) and the shear damage, respectively, into the yield function and flow potential. The effec-
tiveness of the new model is illustrated through a series of numerical tests comparing its performance
with existing models. The current model not only is capable of predicting damage and fracture under
low (even negative) triaxiality conditions but also suppresses spurious damage that has been shown to
develop in earlier modifications of the GTN model for moderate to high triaxiality regimes. Finally the
modified GTN model is applied to predict the ductile fracture behavior of a beta-treated Zircaloy-4 by cou-
pling the proposed damage modeling framework with a recently developed J2–J3 plasticity model for the
matrix material. Model parameters are calibrated using experimental data, and the calibrated model pre-
dicts failure initiation and propagation in various specimens experiencing a wide range of triaxiality and
Lode parameter combinations.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Microvoid nucleation, growth and coalescence, has been
regarded as a common mechanism of ductile failure of metals
and alloys. Early studies by McClintock (1968) and Rice and
Tracey (1969) on growth of cylindrical and spherical voids in infi-
nitely large, plastic solids showed the major parameters in this
fracture process and suggested possible further developments
towards mechanism-based, micromechanical models that describe
the complex ductile failure process. Later Gurson (1977) proposed
a homogenized yield surface for void-containing materials based
on the maximum plastic work principle, and Rousselier (1987)
described the mechanical behavior of voided materials using ther-
modynamic and plastic potentials. More recent efforts on this area
have focused on extending/modifying these models to develop
computational schemes that simulate the ductile fracture process
under various circumstances. Tvergaard (1981, 1982) introduced
two adjustment parameters into the Gurson model to account for
the effect of void interaction and material strain hardening. Chu
and Needleman (1980) proposed void nucleation models con-
trolled by the local stress or plastic strain. Tvergaard and
Needleman (1984) introduced a simplified method to provide for
rapid deterioration of stiffness after localization has occurred in
the material. Koplik and Needleman (1988) proposed a unit cell
approach to calibrate the micromechanical parameters of the
homogenized model. Gologanu et al. (1993, 1994) extended the
Gurson model and derived a yield function for materials containing
spheroidal voids. The Gurson model, with additional developments
by Tvergaard and Needleman, is often referred as the GTN model.
For the Gurson-type model, the prediction of ductile fracture
comes out naturally through the progressive loss of load carrying
capacity at the material level. With the existence of a critical poros-
ity to predict ductile fracture, the porosity serves not only as an
internal variable, but also as a ‘‘failure indicator’’. To address the
mesh sensitivity issue inherited from the lack of a length scale in
the material model, Xia et al. (1995) and Gao et al. (1998) pre-
sented a computational cell approach based on the GTN model
and predicted the constraint effect on ductile fracture. This idea
of representing material in the fracture process zone as cell ele-
ments governed by the GTN model has been widely employed by
the computational fracture mechanics community in recent years.
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Fig. 1. Effect of volumetric damage and shear damage on the yield surface: (a)
Ds = 0, (b) q1f = 0.01.

Table 1
Model parameters for extended GTN model used in the single material point analyses.

q1 q2 f0 fc ff es
f n k

1.5 1 0.005 0.1 0.25 1.4 5 0.7

3274 J. Zhou et al. / International Journal of Solids and Structures 51 (2014) 3273–3291
Despite the apparent success and wide popularity of the GTN
model in predicting ductile fracture, it still suffers from several
limitations (Benzerga and Leblond, 2010). A major drawback of
the GTN model is its inapplicability to model localization and duc-
tile fracture under low stress triaxiality, shear dominated deforma-
tions, since it does not predict void growth and damage under
shear loading. Recent modifications have been motivated by this
limitation to include shear-induced damage in the GTN model,
among which the work by Xue (2008) and Nahshon and
Hutchinson (2008) have received the most attention. These modi-
fications preserve the original form of the GTN model while treat-
ing the void volume fraction in the model as a generalized damage
parameter driven by a volumetric contribution that represents the
traditional void nucleation, growth and coalescence processes and
a deviatoric contribution that incorporates void shearing mecha-
nisms. These modifications show improvement in predicting duc-
tile damage under low triaxiality conditions but indicate
excessive and spurious damage in the cases of moderate to high
triaxiality. Nielsen and Tvergaard (2010) recognized this problem
and introduced an ad hoc modification to the shear damage evolu-
tion law to reduce shear damage under high triaxiality. Moreover,
these modified GTN models are shown to over-predict the volume
change and thus result in unreasonable numerical results under
shear-dominated conditions.

To resolve the problems faced by the existing models, a new
extended GTN model is proposed in this study by combining the
damage mechanics concept of Lemaitre (Lemaitre, 1985; Lemaitre
and Lippmann 1996) with the GTN void growth model. Lemaitre’s
continuum damage mechanics (CDM) model treats the effect of
damage in a purely phenomenological way and does not explicitly
describe the details in the microstructure. It is based on the idea
that the actual sustainable stress level in the material increases
due to the reduction of the effective load bearing area resulted from
defects such as micro-cracks or micro-voids. In this framework, a
damage variable is introduced as the internal variable to the plastic-
ity model without the details of the micro features being defined.
Similar to using the porosity in a GTN model as a ‘‘failure indicator’’,
the damage variable in CDM is also used as a ‘‘failure indicator’’. The
CDM model is widely used in literature with various damage defi-
nitions, e.g., Chaboche (1988) and Xue (2007). By combining the
GTN model with the CDM concept, two damage parameters, the
volumetric damage (effective void volume fraction) and the shear
damage, are coupled into the yield function and flow potential.
The evolution law for void volume fraction remains the same as
in the original GTN model and a new shear damage evolution law
is proposed. Separate critical damage condition is used for volumet-
ric damage and shear damage and complete material failure is said
to have occurred if the total damage parameter (a combination of
volumetric damage and shear damage) reaches unity. By doing this,
the proposed model can no longer be regarded as a micromechan-
ical model but a phenomenological one.

This paper is organized as follows. In Section 2 we first briefly
review the GTN model and the recent modifications by Xue
(2008) and Nahshon and Hutchinson (2008). A new model is pre-
sented after the discussions of the drawbacks of the existing mod-
els. The effectiveness of the new model is illustrated through a
series of numerical tests that compare its performance with exist-
ing models in the literature. In Section 3 we apply the new model
to predict the ductile fracture behavior of a beta-treated Zircaloy-4,
where the elastic–plastic response of the undamaged material
exhibits tension–compression asymmetry and is described by a
recently developed J2–J3 model (Zhai et al., 2014). The material
constants involved in the model are determined based on the
experimental observations reported by Cockeram and Chan
(2009, 2012) as well as model calibrations using experimental data
reported in Zhai et al. (2014). The predicted failure initiation and
propagation behavior and load–displacement response of speci-
mens experiencing a wide range of stress states are compared with
experiments. Finally some concluding remarks are made in
Section 4.

2. The ductile failure model

In this section, we first briefly describe the GTN model as well as
recent modifications by Xue (2008) and Nahshon and Hutchinson
(2008). After discussing the drawbacks of these existing models,
we present a new, modified model by combining the damage
mechanics concept and the void growth model.

2.1. The original GTN model

To date, the most widely used micromechanical model for duc-
tile fracture descends from Gurson with extensions by Tvergaard
and Needleman (Gurson, 1977; Tvergaard, 1981, 1982; Tvergaard
and Needleman, 1984). The yield function of the GTN model takes
the following form

U ¼ re

rM

� �2

þ 2q1f cosh
q2

2
rkk

rM

� �
� 1� ðq1f Þ2 ¼ 0; ð1Þ

where: f is the current void volume fraction; re is the macroscopic
effective stress; rkk is the hydrostatic stress; and rM is the current



Fig. 2. Effects of n and es
f on the effective stress vs. matrix plastic strain response under pure shear loading.
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yield stress of the matrix material. The adjustment parameters q1

and q2 were introduced by Tvergaard (1981, 1982) to improve
model predictions.

The plastic strain rate is defined as

_ep
ij ¼ _knij; ð2Þ

where _k is the plastic multiplier and the associated (normality) flow
rule is invoked to define the normal of the plastic strain rate, i.e.,
nij ¼ @U

@rij
.

The evolution of the void volume fraction is due to two contri-
butions, void growth and void nucleation.

_f ¼ _f g þ _f n: ð3Þ

Void growth is based on bulk material incompressibility under
plastic deformation

_f g ¼ ð1� f Þ _ep
kk; ð4Þ

where _ep
kk represents the first invariant of the plastic strain rate.

Void nucleation can be stress or strain controlled. A commonly
used strain-controlled void nucleation law is taken to follow a nor-
mal distribution as suggested by Chu and Needleman (1980)

_f n ¼ AN _ep
M; AN ¼

fn

Sn

ffiffiffiffiffiffiffi
2p
p exp �1

2
ep

M � en

Sn

� �2
" #

; ð5Þ

where ep
M represents the matrix plastic strain, and fn, en and Sn are

material parameters.
In the GTN model, the effect of void coalescence is taken into

account by replacing f in Eq. (1) with an effective porosity f ⁄

defined by the following bilinear function

f � ¼
f for f 6 fc

fc þ 1=q1�fc
ff�fc

ðf � fcÞ for f c 6 f 6 ff

(
; ð6Þ

where fc is the critical void volume fraction at which void coales-
cence begins and the material softening is accelerated thereafter.
Another material constant is the void volume fraction cutoff at fail-
ure ff. As f reaches ff, f ⁄ increases to 1/q1 and the material loses all
stress carrying capacity.

By enforcing equality between the rates of macroscopic plastic
work and the matrix plastic dissipation, the matrix yield stress,
rM, and the matrix plastic strain rate, _ep

M , are coupled through

rij _ep
ij ¼ ð1� f ÞrM _ep

M ð7Þ
where the matrix material follows a prescribed hardening function
rMðep

MÞ.
2.2. Modified GTN models by Xue (2008) and Nahshon and Hutchinson
(2008)

Eq. (4) indicates shear deformation does not trigger void growth
and consequently, the original GTN model does not predict failure
under shear deformation. Because of this limitation, Gao and Shih
(1998) had to introduce ad hoc strain controlled void nucleation
when they tried to use the GTN model to study mixed mode I/III
ductile fracture. Recently Xue (2008) and Nahshon and
Hutchinson (2008) proposed similar modifications to the original
GTN model to incorporate the shear induced damage. In these
modifications, the void volume fraction that appears in Eq. (1) is
replaced by a general damage parameter containing contributions
of both volumetric damage and shear damage while the form of the
GTN yield function is retained.

Nahshon and Hutchinson (2008) claimed that f is no longer
directly tied to the plastic volume change but rather should be
regarded as a damage parameter, and introduced an additional
term in the evolution equation of f to account for shear damage.
Xue directly introduced a new damage parameter, D, which con-
tains both void damage and shear induced damage, and substi-
tuted the q1f term in Eq. (1) with D. The modified yield function
can be expressed as

U ¼ re

rM

� �2

þ 2D cosh
q2

2
rkk

rM

� �
� 1� D2 ¼ 0; ð8Þ

which is in the same form as the original GTN model given by Eq.
(1) with D ¼ q1f .

In establishing shear damage evolution law, both Xue (2008)
and Nahshon and Hutchinson (2008) first derived the evolution
of shear damage under the pure shear or simple shear state, then
extended it to other stress states by introducing a Lode angle
dependent function. Nahshon and Hutchinson proposed a phe-
nomenological shear damage law that assumes linear dependence
on the porosity and the effective strain increment. Inspired by the
solution for coalescence of holes in a shear band by McClintock
et al. (1966), Xue developed his shear damage law based on the
change of the void ligament of a unit cell model under simple shear
deformation. The damage evolution law can be summarized as fol-
lows, where (9a) represents the Nahshon–Hutchinson model and
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Fig. 3. Comparison of the effective stress vs. matrix plastic strain response between the current model (New), the Xue model, the Nahshon–Hutchinson model (NH), and the
GTN model under generalized shear condition with different stress triaxialities.
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(9b) represents the Xue model, and (9c) show the Lode angle
dependent functions

_f ¼ _f g þ _f n þ _f s;
_f s ¼ kxfxðrijÞ

rij _ep
ij

re
; ðaÞ

_D ¼ q1ð _f g þ _f nÞ þ _Ds; _Ds ¼ q3f q4 gðhÞep
M

_ep
M; ðbÞ

xðrijÞ ¼ 1� ½cosð3hþ p=2Þ�2; gðhÞ ¼ 1� 6jhj
p

: ðcÞ

ð9Þ

Here, h represents the Lode angle defined as

h ¼ tan�1 1ffiffiffi
3
p 2

s2 � s3

s1 � s3
� 1

� �� �
; ð10Þ

with s1, s2 and s3 being the maximum, intermediate, and minimum
principal deviatoric stress components. The Lode angle can be
related to the third invariant of the deviatoric stress tensor J3

through cos(3h + p/2) = 27J3/(2re).
The shear damage evolution laws of both models share three

common features. First, shear damage is a weighted integration
of equivalent plastic strain increment (the fraction in the Nahshon
and Hutchinson model can be regarded as a definition of the equiv-
alent plastic strain increment). Second, the Lode angle dependency
functions, x(rij) and g(h), have the same limit values. It equals to
one at the generalized shear (pure shear state + hydrostatic state)
and zero at the generalized tension/compression (uniaxial
tension/compression + hydrostatic state). Third, one material
parameter, kx or q3, is used to scale the shear damage growth rate.
This parameter can be calibrated using experimental data obtained
from a shear dominated test.

The major difference between the two models is the void vol-
ume dependency. There is an additional parameter q4 in Xue’s
model, where shear damage is scaled by f q4 . The value of q4 is
1/2 for 2D problem and 1/3 for 3D problem. This parameter has a
significant effect on the predicted shear damage since porosity f
can vary significantly during the loading history.

Since the model has one generalized damage parameter in Eq.
(8), the onset of localization and the final material failure process
can be modeled by introducing a D⁄ in a similar fashion as the f ⁄

concept described in Eq. (6).

2.3. Drawbacks of the existing models

Although the above models have shown improvements in the
prediction of shear dominated failure at zero or low, positive triax-
iality stress states, it has been observed that these models have
inherent drawbacks (Nielsen and Tvergaard, 2009; Malcher et al.,
2012). In particular for combined stress states, the prediction of
the location of fracture, the displacement to fracture, and the
equivalent plastic strain to fracture are not representative of exper-
imental results. As discussed by Nielsen and Tvergaard (2009), the



Fig. 4. The predicted (a) void volume fraction vs. matrix plastic strain, (b) shear damage vs. matrix plastic strain and (c) effective stress vs. matrix plastic strain responses by
the new model at three triaxiality levels.
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additional damage contribution due to the shear modification may
have a too strong of an effect in some cases where the stress triax-
iality is not low. To solve this problem, Nielsen and Tvergaard
(2009) modified the Nahshon–Hutchinson model by pre-multiply
an additional stress dependent factor, X(t), on the shear damage
term in the Eq. (9a). This X(t) factor is introduced to interpolate
between the value one at a low stress triaxiality level, T�1, and
the value zero at a high stress triaxiality level, T�2, with a linear
function XðtÞ ¼ ðT� � T�2Þ=ðT

�
1 � T�2Þ between the two limits. This

modification gives no shear damage when stress triaxiality exceeds
the cutoff value. Although this modification can address the shear
damage over-prediction problem at high triaxialities discussed in
Section 2.2, it bypasses the intrinsic causes of the problem.

In the following, the causes of the limitations for the existing
modified GTN models are discussed extensively.
2.3.1. Use of a unified single damage parameter in the yield function
In the original Gurson model, the void coupled yield function is

derived from the void deformation behavior in a matrix material.
Therefore f represents the physical void volume fraction, and the
plastic volume change of the material is due to the void size
change. This basis was kept when the Gurson model was extended
to the GTN model. The incorporation of shear damage in the mod-
ified model was accomplished through the introduction of an addi-
tional term in the evolution equation of void volume fraction. This
term does not represent a physical value of the porosity but
ensures the detrimental effect of void distortion and inter-void
linking. However, it is questionable that shear damage has the
same significant effects on plastic flow under hydrostatic tension
as porosity has. Since a single scalar damage variable is used to
measure the total accumulation of different types of damage, it
should not be used as same as the void volume fraction f, in the ori-
ginal yield function. Furthermore, the plastic volumetric strains
predicted by Eq. (8) are too large compared to the original GTN
model when Ds is high.

Assuming an incompressible matrix material and the associated
flow rule, the plastic volume change can be obtained as
_ep
kk ¼ _k3D

q2

rM
sinh

q2

2
rkk

rM

� �
; ð11Þ

The plastic multiplier _k can be derived from the consistency
condition, and the void growth rate is determined by Eq. (4).

From the above equation, shear damage contributes to the plas-
tic volume change, and therefore the void growth rate. This results
in significant overestimates of volume change predictions, which
in turn lead to overestimates of void growth. This implicit coupling
serves as one of the main reasons for the over-predicted damage
under high triaxiality.

The models also result in unrealistic plastic volume change
especially when the stress history is complex. For example, if the
material has an initial porosity f0 and is first subjected to a pure
shear loading, the shear damage Ds will increase but the total vol-
ume will remain unchanged. If the material is then subjected to a
pressure loading, the volume will immediately shrink at a rate
above the rate suggested by the initial void volume fracture. The
total volume can shrink beyond (1 � f0)V0 because D > 0 at f = 0,
Eq. (11), where V0 represents the initial volume.
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The above discussion suggests that the two failure mechanisms,
volumetric damage and shear damage, cannot be adequately
described using a single damage parameter in the yield function.
2.3.2. The Lode angle dependency
A Lode angle dependent function is used to distinguish the axi-

symmetric tension state and the pure shear state. The original GTN
model provides good prediction at high triaxiality and no damage
under pure shear, thus the Lode angle dependent function is taken
to be zero for axisymmetric tension and one for pure shear. Xue
(2008) showed the ability of his modified GTN model to predict
cup–cone fracture of the round bar tensile test and slant fracture
of a C(T) specimen, indicating the necessity of the inclusion of
the Lode angle dependency in the model.

However, the Lode angle dependent functions used in the exist-
ing models preclude failure at generalized tension or generalized
compression with zero pressure. From the viewpoint of void liga-
ment reduction, at these stress states, the shortest ligament dis-
tance can also be reduced under proportional loading without
void volume change. Therefore, the Lode angle function needs to
have a non-zero value to predict failure under zero or negative
triaxiality.
2.3.3. Dependency of the shear damage on void size
Under the shear deformation field, the voids tend to distort,

rotation and may become crack-like, which reduces the ligament
distance and results in coalescence. This so called void shearing
effect has been studied by many authors. Most of these studies
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Table 2
Nominal chemical composition of Zircaloy-4 (wt%).

Element Fe Sn Cr O Zr

Composition 0.21 1.53 0.11 0.13 Balance
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were based on finite element analyses of unit cells, e.g., Tvergaard
(2008, 2009), and showed the influence of void size on the void
shearing effect. Anderson et al. (1990) conducted studies of cells
containing micro-cracks under shear deformation field and found
that micro-cracks would rotate and align in the preferred direction,
resulting in the reduction of the ligament distance and promoting
‘‘crack coalescence’’. However, a quantitative relationship between
void size and shear damage is hard to obtain. Moreover, effects of
other factors, such as void distribution and void shape, make the
problem even more complicated.

The simple linear relationship between shear damage and void
volume fraction used by Nahshon and Hutchinson could be
another reason it over-predicts the shear damage under high triax-
iality. The power parameter q4 used by Xue gives a better way to
(a)

b1 = 0
(Mises)

Fig. 8. (a) Yield surface of the matrix material as b1 tak
tackle this issue. Since the unit cell model Xue made to determine
q4 may not be valid in reality, it may be better to relax q4 to a free
parameter.

Due to the difficulties mentioned above, to make the problem
tractable we take a phenomenological approach assuming shear
damage only depends on the stress state and equivalent strain.
Further studies are required to obtain a more accurate model.
2.4. The proposed model

To overcome the above drawbacks, we propose a new, extended
GTN model. By combining the damage mechanics concept of
Lemaitre (Lemaitre, 1985; Lemaitre and Lippmann, 1996) with
the Gurson-type void growth model, shear damage in the new
model only affects the deviatoric stress while the only cause of
the plastic volume change is the porosity.
2.4.1. A new yield function with two damage parameters
In Lemaitre’s damage mechanics model, a scalar damage

parameter D is defined to represent the general loss of load bearing
area, which is coupled in the plasticity model. The loss of load
     (b) 
es different values, (b) tensile stress–strain curve.



Fig. 9. Sketches of a smooth round bar, a notched round bar, a compression
specimen, a torsion specimen, a flat notched tensile specimen, and a flat grooved
plane strain specimen.
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carrying capacity due to damage is reflected in both the yield func-
tion and the elastic stiffness. In the yield function, the effective
(a)  (b)

(d) (e)
Fig. 10. Finite element mesh of (a) a smooth round tensile specimen, (b) a notched rou
tensile specimen, (e) a flat grooved plane strain tensile specimen, and (f) a pure torsion
stress is scaled by 1/(1 � D), i.e., U ¼ re
1�D� rM . When D equals

unity, the material is said to have completely failed.
In the original GTN model, Eq. (1), if no pressure (hydrostatic

stress) exists, the yield function can be written as

U ¼ re

rM

� �2

þ 2q1f � 1� ðq1f Þ2 ¼ re

rM

� �2

� ð1� q1f Þ2: ð12Þ

By replacing q1f with D, Eq. (12) is equivalent to the Lemaitre
model. Since f represents the void volume fraction, q1f can be con-
sidered as a parameter which quantifies the void damage.

Under a deviatoric stress state, shear damage, Ds, accumulates
in the material. If we assume the shear damage only affects the
deviatoric stress, and the total damage is the combination of void
damage and shear damage, we can add a Ds term in Eq. (12).
Therefore, the yield function without pressure can be modified as
(c)

(f)
nd tensile specimen, (c) a compression specimen with L/D = 1.5, (d) a flat notched
specimen.



Table 3
Model parameters for Zircaloy-4.

q1 q2 f0 fn Sn en fc ff es
f n k

1.5 1 0 0.012 0.02 0.1 0.03 0.08 0.5 5 0.5
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U ¼ re

rM

� �2

� ð1� q1f � DsÞ2

¼ re

rM

� �2

þ 2q1f þ 2Ds � 1þ ðq1f þ DsÞ2
h i

: ð13Þ

Under a general stress state, a void will grow due to hydrostatic
stress. Assuming the softening effect due to void growth takes the
same form as given in the original GTN model, the yield function of
a new, extended GTN model can be expressed as

U ¼ re

rM

� �2

þ 2q1f cosh
q2

2
rkk

rM

� �
� 1þ ðq1f þ DsÞ2 � 2Ds

h i
¼ 0:

ð14Þ

When the total damage (q1f + Ds) becomes unity, the material
loses its load carrying capacity completely. The new model degen-
erates to the GTN model when no shear damage exists and it
becomes the same form as the CDM of Lemaitre when the material
is under pure shear.
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Fig. 11. Comparison of load vs. displacement or torque vs. twist angle response between
notched round tensile specimen; (c) pure torsion specimen; (d) compression specimen.
This new model separates contributions from the two failure
mechanisms, i.e., volumetric damage and shear damage. Fig. 1
shows the effect of the volumetric damage and shear damage on
the yield surface. In Fig. 1(a), where Ds = 0, the model reduces to
the GTN model and the yield surface shrinks as q1f increases. When
q1f becomes one, the yield surface shrinks to a point. In Fig. 1(b) is
shown the additional softening effect provided by the shear dam-
age. For a given value of q1f, the yield surface shrinks as Ds

increases.
2.4.2. The shear damage evolution law
The shear damage evolution law, which features potential con-

tributions from several failure mechanisms, might be fairly com-
plex and the preliminary studies conducted by the authors
attempt to balance the accuracy of the model and the number of
material parameters to be calibrated. A quantitative relationship
between void size and shear damage has not been firmly
established since shear localization can occur with or without
the existence of voids. In the material considered in this study
(Zircaloy-4), we assume that shear damage is not directly linked
to the void volume fraction, and regard void growth as merely
one of the sources that weakens the material under shear loading.

Here a phenomenological approach is taken and it is assumed
that ductile damage is due to accumulation of plastic deformation.
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Consequently, the shear damage is taken to be a function of plastic
strain and stress state. Let es

f be the failure strain under the pure
shear state. A shear damage parameter can be defined by a power
function as below

Ds ¼
ep

M

es
f

 !n

; ð15Þ

where ep
M represents the matrix plastic strain and n is a weakening

exponential larger than one. Ds is equal to one when ep
M reaches to

es
f . With n is greater than one, the softening effect is small at the

early stage of plastic deformation and becomes larger as the mate-
rial approaches failure. The incremental form of shear damage can
be expressed as

_Ds ¼
nD

n�1
n

s

es
f

_ep
M: ð16Þ

To extend Eq. (16) to any arbitrary stress state, a function of tri-
axiality T ⁄ and Lode angle is introduced as a weight factor (Xue,
2007; Gao et al., 2010; Zhou et al., 2012)
_Ds ¼ wðh; T�ÞnD
n�1

n
s

es
f

_ep
M; ð17Þ

where the weight function w(h,T ⁄) must have unit value under pure
shear state. To our knowledge, there is no generally accepted form
of this function at present. In this study, the weight function is
taken to be the same as the g(h) function used in the Xue
model (2008) for positive stress triaxiality (Eq. (9c)). A modification
is made to provide the ability of predicting shear damage as
h = ±p/6 with negative stress triaxiality

wðh; T�Þ ¼
gðhÞ T� > 0
gðhÞð1� kÞ þ k T� 6 0

�
; ð18Þ

where the constant k in (18) represents the value of the weight fac-
tor when the stress triaxiality is negative and h = ±p/6, which can be
calibrated using axisymmetric compression test data. In the Xue
model and the Nahshon–Hutchinson model, shear damage is indi-
rectly related to the stress triaxiality through the void volume frac-
tion dependency. For the material (Zircaloy-4) considered in this
study, it is found that Eq. (18) provides an adequate description of



(a) (b) (c)
Fig. 14. Crack initiation and growth in the smooth round tensile specimen: (a) contour pl
initiation; (c) contour plot of the weight function after some amount of crack propagation
fracture.

J. Zhou et al. / International Journal of Solids and Structures 51 (2014) 3273–3291 3283
the stress state effect on shear damage. While the rather simplified
form of the weight function given by Eq. (18) works reasonably well
for the material considered in this study by being able to capture
the damage evolution process in various specimens and reproduce
the experimental data, further investigation needs to be dedicated
to explore different forms of the w(h,T ⁄) function.

2.4.3. Evolution of volumetric damage
The volumetric damage is due to the increase of void volume.

The evolution equation for void volume fraction is the same as in
the original GTN model described in Section 2.1.

2.4.4. Separate critical conditions for the two types of damage
The critical damage conditions play a significant role in the pre-

diction of failure initiation and propagation. After the critical con-
dition is reached, damage increases rapidly and the softening
process accelerates so that material loses its load carrying capacity
quickly.

For the two kinds of damage discussed above, when triaxiality
is high, volumetric damage (increase of void volume) triggers
coalescence, but when triaxiality is low, shear damage often
triggers failure initiation. Unlike the previous model with only
one critical damage condition, a separate critical damage condition
can be established for each damage mechanism. Under the situa-
tion that void damage grows faster than shear damage, the poros-
ity reaches the critical value first and triggers void coalescence, and
vice versa. The competition between the two failure mechanisms,
influenced significantly by the stress state, results in a different
mode of fracture and different appearance of the fracture surface.

In this study, void coalescence is modeled the same way as
described in Section 2.1 using the f ⁄-function. The shear damage
evolution law is selected so that the damage acceleration effect is
already reflected. For common ductile metals and alloys, the
softening induced by shear damage increases slowly when the plastic
strain is small and accelerates when ep

M approaches es
f , so the

n-power in the shear damage definition is usually greater than 4.
The parameters es

f and n determines the onset of shear localization.

2.4.5. Summarization of the extended GTN model
The following equations summarize our extended GTN model

U ¼ re

rM

� �2

þ 2q1f � cosh
q2

2
rkk

rM

� �
� 1þ ðq1f � þ DsÞ2 � 2Ds

h i
¼ 0;
@U
(d) (e)
ot of triaxiality before fracture initiation; (b) contour plot of porosity before fracture
; (d) contour plot of shear damage after some amount of crack propagation; (e) final
_ep
ij ¼ _knij; nij ¼

@rij
;

_f ¼ _f g þ _f n; _f g ¼ ð1� f Þ _ep
kk; _f n ¼ AN _ep

M;

AN ¼
fn

Sn

ffiffiffiffiffiffiffi
2p
p exp �1

2
ep

M � en

Sn

� �2
" #

;

f � ¼
f for f 6 fc

fc þ 1=q1�fc
ff�fc

ðf � fcÞ for f c 6 f 6 ff

(
; ð19Þ

_Ds ¼ wðh; T�ÞnD
n�1

n
s

es
f

_ep
M ; wðh; T�Þ ¼

gðhÞ T� > 0
gðhÞð1� kÞ þ k T� 6 0

�
;

D ¼ q1f � þ Ds; rij _ep
ij ¼ ð1� D=q1ÞrM _ep

M:

Compared to the original GTN model, the new model introduces
the following additional parameters: the new state variable Ds

(shear damage parameter), the weight function w, the total dam-
age D, and three new material constants, the weakening exponen-
tial n, the failure strain under pure shear es

f and the weight factor k
under negative triaxiality. When D reaches unity, the material is
said to have completely failed. Based on the concept of CDM, stres-
ses in the material increase due to the reduction of the effective
load bearing area resulted from damage. This should be reflected
in the equation describing the equivalence of the rates of macro-
scopic plastic work and the matrix plastic dissipation. The
(1 � D/q1) factor used in Eq. (19) ensures the model can degenerate
to the GTN model as Ds = 0.

2.5. Matrix plasticity behavior

For an isotropic material in general, the yield function and flow
potential should be functions of the hydrostatic stress as well as
the second and third invariant of the deviatoric stress tensor, J2

and J3 (Gao et al., 2011 and references therein). If the material
exhibits no pressure sensitivity or Lode dependency, the J2 flow
theory is usually used to describe the plastic response. In the origi-
nal GTN model, the matrix plasticity behavior follows the J2 flow
plasticity theory, where the equivalent stress re is the von Mises
stress defined as re =

ffiffiffiffiffiffiffi
3J2

p
.
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3. Single material point test

To illustrate the effect of the modifications presented above on
the predicted material behavior, a series of numerical tests are pre-
sented in this section and the results are compared with the origi-
nal GTN model as well as the Xue model and Nahshon–Hutchinson
model.

3.1. Analysis procedure

For proportional loading histories, the stress tensor can be rep-
resented by a load proportionality factor ~r multiplied by a constant
tensor Rij. The designated stress triaxiality and Lode parameter can
be obtained by choosing appropriate Rij values.

A load-controlled process using ~r as the loading parameter is
difficult to achieve because of the softening effect. Instead, an algo-
rithm is developed to apply the plastic multiplier incrementally
and compute ~r and the internal variables ep

M , f and Ds at each step
accordingly.

To illustrate this process, we started with the consistency
condition

_U ¼ @U
@rij

_rij þ
@U
@rM

@rM

@ep
M

_ep
M þ

@U
@f �

@f �

@f
_f þ @U

@Ds

_Ds ¼ 0; ð20Þ

where the rates of internal variables ep
M , f and Ds can be written as

functions of _k. Substituting _ep
M , _f and _Ds in (20) results in

_k ¼ 1
H
@U
@rij

_rij; ð21Þ

where H is the hardening modulus

H ¼ � @rM

@ep
M

@U
@rM

@ep
M

@k
þ @U
@f �

@f �

@f
@f
@k
þ @U
@Ds

@Ds

@k

� �
: ð22Þ

For a given stress state where the ratios between stress compo-
nents are fixed, Eq. (21) can be written as (23a) and the increment
of ~r can be obtained by (23b)

_k ¼
_~r
H
@U
@rij

Rij ðaÞ;

_~r ¼ H
@U
@rij

Rij

_k ðbÞ:
ð23Þ

Eq. (23b) can be solved numerically. This is done in MATLAB
using a forward Euler integration scheme. The increment size is
reduced until the solution is converged. The initial values of ~r at
the onset of plastic deformation (k ¼ 0) can be solved from Eq. (14).

The details of the procedures described above to maintain the
stress triaxiality and Lode parameter at constant values during
the loading history are given in Appendix A.

3.2. Numerical examples

In the numerical examples presented in this Section, the matrix
material is assumed to follow the J2 flow plasticity theory and
obeys a power-law hardening, true stress–strain relation

e ¼ r
E r 6 r0

e ¼ r0
E

r
r0

� 	N
r > r0

8<
: : ð24Þ

Here the material parameters are taken to be E/r0 = 300 and
N = 0.1, where E, r0 and N represent the Young’s modulus, yield
stress and hardening exponent respectively. The damage related
parameters for extended GTN model are listed in Table 1, with
no consideration of void nucleation.
For comparisons among the current model and the Xue model,
the Nahshon–Hutchinson model, and the original GTN model, the
same matrix material constants and volumetric damage parame-
ters are adopted in the numerical analyses. Specific parameters
used to define shear damage contribution in the Xue model and
the Nahshon–Hutchinson model are chosen to ensure these
models predict similar behaviors as the current model under
the pure shear condition. The parameters chosen are kx = 3 for
the Nahshon–Hutchinson model and q3 = 1.8 and q4 = 1/3 for the
Xue model.

3.2.1. Effects of parameters n and es
f

Shear damage is an important state variable introduced in the
new model and the evolution of shear damage is governed by
two materials constants, n and es

f . To understand the effects of n
and es

f on model behavior, a material point is analyzed under pure
shear loading. In these analyses, various values of n and es

f are con-
sidered, while all other model parameters take the values given in
Table 1. Fig. 2(a) shows the effect of n on the effective stress vs.
matrix plastic strain response, where es

f is taken to be 1.4 and var-
ious values of n are considered. A larger n results in a smaller soft-
ening effect but leads to a more sudden load drop as the matrix
plastic strain approaches to es

f . This confirms that the damage
acceleration effect is already reflected in the shear damage evolu-
tion law if a large value of n is used. Fig. 2(b) shows the effect of es

f

on the effective stress vs. matrix plastic strain response, where
n = 5 and different values of es

f are considered. A larger es
f value

results in a delayed failure initiation. The two parameters n and
es

f in the new model work together to define the critical shear dam-
age condition.

3.2.2. Case 1 – comparison of model predictions under generalized
shear loading

For generalized tension (uniaxial tension + hydrostatic stress)
where T ⁄ > 0 and h = �p/6, there is no difference among predicted
results from the four models. However, under generalized shear
(pure shear + hydrostatic stress) where h = 0, the models predict
different behaviors. Here comparisons are made at three levels of
stress triaxialities, T ⁄ = 0, 0.7 and 1.2. Fig. 3 shows the effective
stress re vs. matrix plastic strain ep

M response generated by the four
models, where the black solid curve represents the result of the
current model and the blue, red and green dash lines represent
the results of the Xue model, the Nahshon–Hutchinson model
and the GTN model respectively.

For the pure shear case (h = 0, T ⁄ = 0) shown in Fig. 3(a), the pre-
dictions of the current model, the Xue model, and the Nahshon–
Hutchinson model show little difference prior to shear localization.
These three modified GTN models result in similar material soften-
ing behavior caused by shear damage. In contrast, the original GTN
model does not predict any damage as expected.

The difference between the current model and the other two
modified models is apparent as the stress triaxiality increases.
Fig. 3(b) displays the results for T ⁄ = 0.7 and Fig. 3(c) displays the
results for T ⁄ = 1.2. Results of the Xue model and the Nahshon–
Hutchinson model both predict significantly higher damage than
the current model and the GTN model. But as discussed in Sec-
tion 2.3, the shear damage corrections introduced in the Xue model
and the Nahshon–Hutchinson model are too strong at high triaxi-
ality levels. On the other hand, the predicted softening effect by the
current model lies between the results from the original GTN
model and the Xue and Nahshon–Hutchinson models. As the triax-
iality level increases, the predictions of the current model
approaches the GTN model. With the new model, shear damage
governs the failure behavior when the triaxiality is low. As the tri-
axiality increases, the dominant failure mechanism shifts to void
growth and coalescence. At high triaxiality levels (for T ⁄ > 1.2



(a) (b) (c)

Fig. 15. Crack initiation and growth in the notched round tensile specimen: (a) contour plot of porosity before fracture initiation; (b) contour plot of effective plastic strain
after some amount of crack propagation; (c) final fracture.
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here), void damage is dominant, and the shear effect is negligible.
This also matches findings by numerous researchers that the origi-
nal GTN model works well under high stress triaxiality conditions.

This transition of damage mechanism can be better observed in
Fig. 4(a) and (b), where the evolution of the two damage variables f
and Ds is plotted vs. the matrix plastic strain at three triaxiality lev-
els. At T ⁄ = 0.7, two damage effects are nearly equal. As T ⁄

increases, the shear damage is taken over by the void damage,
the softening behavior becomes more pronounced and the onset
of material failure occurs earlier (Fig. 4(c)).
3.2.3. Case 2 – effect of the introduction of two separate damage
parameters in the yield function

To illustrate the effect of the introductions of two separate dam-
age parameters in the yield function, we consider a modified Xue
model, where the volumetric damage and shear damage parame-
ters present separately in the yield function as shown in Eq. (14),
and compare the numerical predictions with the original Xue
model. Fig. 5 plots the re vs. ep

M responses under generalized shear
(h = 0) for the T ⁄ = 0, 0.7, and 1.2 cases, where the results of the
modified Xue model, the original Xue’s model and the GTN model
are displayed in black, red and green lines respectively. For pure
shear loading (T ⁄ = 0), since the volumetric damage does not grow,
(a) (b)
Fig. 16. Crack initiation and growth in the pure torsion specimen: (a) contour plot of e
before fracture initiation; (c) final fracture.
the modified Xue model and the original Xue model become the
same, Fig. 5(a). The modified Xue model predicts less softening
effect and delayed material failure compared to the original Xue
model, Fig. 5(b) and (c). It is worth noting that, unlike the new
model developed in this study, the modified Xue model still pre-
dicts significant shear damage effect under high stress triaxiality
level.

Fig. 6 compares the void growth rates predicted by the modified
Xue model, the original Xue’s model and the GTN under h = 0 and
T ⁄ = 0.7, which clearly indicates that the void growth rate pre-
dicted by using Eq. (14) is much slower than the original Xue
model. In particular, the modified Xue model predicts almost the
same void growth rate as the GTN model in the early stage of load-
ing while the original Xue model predicts a much accelerated void
growth rate.
3.2.4. Case 3 – failure under negative stress triaxiality
Under very low or negative stress triaxiality, the void growth

mechanism is suppressed, and shear damage becomes the driver
for material failure. This case study illustrates the capability of
our proposed model to predict damage and failure under these
conditions. The loading conditions considered are for T ⁄ = �1/3
with three different Lode angles: h = �p/6, h = �p/12, and h = 0.
 (c)

quivalent plastic strain before fracture initiation; (b) contour plot of shear damage



(a) (b)

(c) (d) 

Fig. 17. Crack initiation and growth in the compression specimen: (a) contour plot of the weight function before fracture initiation; (b) contour plot of shear damage showing
slant crack growth from the top of the specimen toward the center of the specimen; (c) slant fracture predicted using a full model with a coarse mesh; (d) photo of a fractured
specimen.
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The predicted re vs. ep
M and f vs. ep

M responses are shown in Fig. 7.
The model predicts ductile failure even when the triaxiality is neg-
ative and the void tends to close (Fig. 7(b)). From Fig. 7(a), the
h = �p/6 case gives the highest failure strain while the h = 0 gives
the lowest failure strain. This difference in the predicted ductile
failure behavior is determined by the parameter k introduced in
Eq. (18).

4. Modeling the ductile fracture behavior of a beta-treated
Zircaloy-4

In this section, the newly extended GTN model described above
is calibrated for a beta-treated Zircaloy-4 and used to predict dam-
age and fracture of a variety of specimens.

4.1. Material

The beta-treated Zircaloy-4 considered in this study is the same
material studied by Zhai et al. (2014) and Zhang et al. (2012). The
chemical compositions of this material are listed in Table 2. All
the specimens were extracted from wrought material in the
longitudinal direction and tests were conducted at room tempera-
ture and quasi-static loading rate. The Zircaloy-4 was heat-treated
to produce a random texture on a macroscopic scale and is consid-
ered isotropic in this study. The Young’s modulus of the material is
99.6 GPa and the Poisson’s ratio is 0.34.

A recent study found that the matrix plasticity behavior of this
material exhibits tension–compression asymmetry and follows a
J2–J3 dependent plasticity model (Zhai et al. 2014). According to
this model, the definition of equivalent stress is modified as

re ¼ c1 3
ffiffiffi
3
p

J3=2
2 þ b1J3

� 	1=3
; ð25Þ

where b1 is a function of ep
M as defined by Eq. (26) and

c1 ¼ 1=ð2b1=27þ 1Þ1=3

b1 ¼ 2:2 when ep
M 6 0:1

b1 ¼ 17:3� ðep � 0:1Þ þ 2:2 when 0:1 < ep
M < 0:2

b1 ¼ 4:8 when ep
M P 0:2

: ð26Þ

The varying b1 gives a distortional hardening effect on the pres-
ent material. Fig. 8(a) illustrates the shape change of yield surface
with the value change of the parameter b1. When b1 is zero, the



(a) (b) (c) 

(d) (e) 

Fig. 18. Crack initiation and growth in the flat notched tensile specimen: (a–d) contour plots of equivalent plastic strain, triaxiality, porosity and shear damage before fracture
initiation; (e) final fracture.
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model becomes identical to the Mises plasticity model. When b1 is
greater than zero, the yield stress in compression will be larger
than the yield stress in tension. Fig. 8(b) shows the stress strain
curve of the matrix material under tension. Details of this plasticity
model can be found in Zhai et al. (2014).

Although the plasticity behavior of matrix material is complex,
the purpose of this section is not to provide a detailed discussion
on this subject. The objective of this section is to provide an exam-
ple of a real-world application of proposed ductile fracture model.
From model calibration to numerical prediction, the emphasis is on
the ductile fracture behavior. The main story the authors would
like to share is the ability of the proposed model to predict failure
under various stress states.

Cockeram and Chan (2013) conducted in situ experimental
studies over a range of positive stress triaxialities on beta-treated
Zircaloy-4 and Zircaloy-2. Several important void formation and
damage evolution characteristics observed in their experiments
are utilized to determine the material constants in the void model.
The material is initially void-free. Fracture is observed as a process
of void nucleation, growth and coalescence. The lath boundaries for
beta-treated Zircaloy-4 are covered with laves phase particles that
are localized sites for void nucleation. Voids are previously
observed to nucleate on these precipitates located at lath bound-
aries. Void nucleation may also occur within the lath at the inter-
section of slip bands. Void coalescence generally resulted in the
formation of larger elongated voids or microcracks. Many lath
boundaries were observed to be dotted with rows of micron-sized
voids, whose coalescence eventually would lead to the formation
of grain boundary microcracks.

The experimental studies by Cockeram and Chan (2013) also
indicate that the critical local strain at the initiation of void nucle-
ation is almost constant for all the stress states studied. The strain
to failure is shown to be controlled by the process of void growth
and coalescence that is strongly dependent on stress-state.

In the material modeling, we try to correlate the void related
material constants to the experimental observation. It must be
pointed out though, f should be regarded as an effective void vol-
ume fraction, which is not correlated to the actual void size. The
void distribution in the material is highly non-homogenous,
mainly located along the lath boundaries in the form of micron-
sized voids. In the coalescence process, microcracks are formed
from the linkage of these small voids.

The initial void volume, f0, is set to be zero and void nucleation
is assumed to be strain-controlled. Cockeram and Chan (2009)
found that void nucleation process in the tensile specimens was
observed to occur at the UTS and beyond. From the uniaxial ten-
sile tests conducted in this study, the strain value when necking
occurs is around 0.1, which can be regarded as the mean strain
for void nucleation, en. It was observed that once the voids are
nucleated, little growth is required before the voids coalesce.
Therefore, we set the critical porosity fc to be slightly larger than
fn. Other parameters are calibrated by matching the finite element
analysis results to experimental obtained load–displacement
response.



(a) (b)

(c) (d)

(e) (f)

Fig. 19. Crack initiation and growth in the flat grooved plane strain tensile specimen: (a–d) contour plots of triaxiality, shear damage weight function, porosity and shear
damage, before fracture initiation; (e) contour plot of shear damage after some amount of crack propagation; (f) final fracture.
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4.2. Specimens

This study analyzes numerical models of smooth round tensile
bars, notched round tensile bars, cylindrical compression speci-
mens, the Lindholm-type torsion specimens subjected to pure tor-
sion and combined torsion–compression, the flat notched tensile
specimens, and the flat grooved plane strain tensile specimens.
Fig. 9 shows sketches of these specimens. The experimental results
for the testing of these specimens were reported in Zhai et al.
(2014) and Zhang et al. (2012). The diameter of the gauge section
of the smooth round tensile bar is 12.7 mm and the gauge length
is 50.8 mm. For the notched round bars, the diameter at the notch
section is 7.62 mm, the notched radius is 2.54 mm, and the gauge
length is 25.4 mm. The compression specimen has a diameter of
8.0 mm and length/diameter (L/D) ratio of 1.5. The Lindholm-type
torsion specimen is a hollow cylinder having an inner diameter of
13.1 mm and outer diameter of 25.4 mm. The gauge section length
and wall-thickness are 2.54 and 0.7366 mm respectively. Torsion–
compression tests were performed with a central pin to prevent
inward buckling. The flat notched tensile specimens have a thick-
ness of 2.286 mm and the gauge section length is12.7 mm. The
thickness of the flat grooved plane strain specimen at the groove



Fig. 20. Evolution of the void volume fraction and shear damage in the center element of the flat grooved plane strain tensile specimen.
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is 2.032 mm, the radius of the groove is 2.032 mm, the plate thick-
ness at the specimen shoulder is 6.096 mm, and the length of
gauge section for this specimen is 12.7 mm.
4.3. Finite element procedure

ABAQUS/explicit is used to analyze all the specimens, where the
material model is implemented via a user defined subroutine
VUMAT. In the finite element analyses, 4-node axisymmetric ele-
ments with reduced integration (CAX4R) are used for round tensile
specimens and the element size is 63.5 � 63.5 lm around the
mid-plane where failure is expected to occur. Three-dimensional,
8-node brick elements with reduced integration (C3D8R) are used
for all other specimens, where similar element size is adopted in
critical regions. To improve model efficiency, symmetry conditions
are applied whenever available. Fig. 10 shows typical finite ele-
ment meshes of a round tensile specimen, a notched round bar ten-
sile specimen, a compression specimen, a torsion specimen, a flat
notched tensile specimen, and a flat grooved plane strain tensile
specimen. For compression tests, the compression platen is mod-
eled as a rigid surface, and frictional surface contact models the
interaction between the platen and the specimen. Since the exact
Fig. 21. Crack initiation and growth in the torsion–compression specimen: (a–d) conto
shear damage before fracture initiation; (e) final fracture.
friction coefficient is unknown and difficult to obtain, a value of
0.08 is used in the finite element analysis.

After the fully damaged material loses the ability to sustain
hydrostatic tension load and shear load, it still can withstand pres-
sure load. Therefore, special treatment is required after the com-
plete failure of material under compressive stress states.
Completely damaged material retains its bulk modulus for com-
pressive hydrostatic loads. This corresponds to a fluid-like behav-
ior. When the failed element under undergoes extremely large
deformation, computational efficiency is reduced drastically, the
element will be removed.
4.4. Results and discussion

4.4.1. Model calibration and verification
Model calibration follows a three-step strategy. For specimens

where the onset of fracture is dominated by the void damage
mechanism, the calibration of void related parameters can be con-
ducted. The shear damage parameters can be calibrated using test
data where fracture is dominated by shear damage. Finally the
parameter k in the weight function of the shear damage evolution
can be calibrated using experimental data obtained from a speci-
men with negative triaxiality and gðhÞ–1.
ur plots of equivalent plastic strain, triaxiality, shear damage weight function and
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Table 3 lists all calibrated material constants. The values of q1

and q2 are the suggested by Tvergaard (1981). Standard deviation
of the void nucleation strain, Sn, is chosen to be a relatively small
value to produce a rapid void nucleation process. Parameters fn,
fc , and ff , are calibrated from the smooth and notched round bar
specimens. Effective failure strain under pure shear, es

f , and the
shear damage softening parameter n are calibrated from the pure
torsion test. The value of parameter k is calibrated using the com-
pression test data.

Fig. 11 provides comparisons of the load vs. displacement and
torque vs. twist angle responses among numerical simulations
and experimental data for specimens used in the calibrations. Since
these specimens were used to fit material parameters, the
extended GTN model with the calibrated model parameters pre-
dicts the plasticity responses and the onset of fracture very well
for all the specimens.

To validate the calibrated model, the flat notched tensile speci-
men, the flat grooved plane strain tensile specimen and the tor-
sion–compression specimen are analyzed. Fig. 12 provides
comparisons of the load vs. displacement among numerical simu-
lations and experimental data for the flat notched tensile specimen
and the flat grooved plane strain tensile specimen respectively. The
predictions of the load–displacement response and fracture onset
agree with very well with experimental data.

Fig. 13 shows comparisons of the load vs. displacement and tor-
que vs. twist angle responses among numerical simulations and
experimental data for the torsion–compression specimen. This
specimen is under negative triaxiality and the Lode angle is
between pure shear and uniaxial compression. The comparison
between model prediction and experimental data is reasonably
well up until failure initiation. Experimental results show slowly
softening after the peak load is reached which is not accurately
captured by our model. There are several potential explanations.
The weight function used to describe the stress state effect on
shear damage may not be adequate. Alternatively, the newly cre-
ated free surfaces contact and friction prevents rapid shear sliding.
This behavior can provide some resistance to additional loading
but is not included in the present model, which responses like a
fluid (no shear resistance) after being fully damaged. These effects
may be considered in further studies of fracture under negative tri-
axiality in the future.

4.4.2. Prediction of fracture initiation and propagation
To further examine the capability of the extended GTN model,

prediction of fracture initiation, propagation and fracture surface
appearance are discussed in this section. Figs. 14–20 provide the
contour plots of several state variables during the loading history
to show the volumetric and shear damage initiation, accumulation,
and propagation process.

For the smooth round bar tensile specimen, as shown in Fig. 14,
the crack initiates in the center of specimen where the triaxiality is
high. The crack growth remains normal to the loading direction ini-
tially, is then followed by a slant fracture as it approaches to the
specimen surface, and finally results in a cup–cone fracture sur-
face. The notched round bar specimen does not show the cup–cone
features, Fig. 15.

Fig. 16 shows fracture initiation occurs at the transition region
in the pure torsion specimen due to strain concentration in this
region (only a representative section is shown). The crack growth
direction is normal to the direction of the applied torque.

For the compression specimen, Fig. 17 shows that fracture initi-
ates at the top surface where the weight function has a higher
value. The crack then propagates towards the specimen center,
leading a slant fracture surface. Fig. 17(a) and (b) are obtained
using a 1/8-symmetric finite element model while Fig. 17(c) shows
the result of the full model where a coarser mesh is used to reduce
the computational cost. In Fig. 17(d) is shown the picture of a failed
specimen, confirming the features of the failure process and frac-
ture surface predicted in Fig. 17(a)–(c).

Fig. 18 shows contour plots of flat notched tensile specimen,
which is under a similar stress state as the notched round bar. Frac-
ture starts in the center of the specimen, where it has the highest
triaxiality, and propagates toward the specimen surface. The frac-
ture surface is mostly flat, with a slight portion of slant fracture
at the notch region where shear damage is caused by high plastic
strain.

For the flat grooved plane strain specimen, both the stress triax-
iality and the shear damage weight function have high values in a
large region around the specimen center, Figs. 19(a) and (b). Con-
tour plots of the void volume fraction and shear damage are given
in Fig. 19(c) and (d). Fracture initiates at the center of the specimen
and propagates to the sides of the specimen with a strong tunnel-
ing effect, as shown in Fig. 19(e). As the crack front approaches the
specimen edge, shear damage is shown to be high in a slant plane,
leading to the formation of a slant shear lip, Fig. 19(f).

Fig. 20 shows the evolution of the void volume fraction and
shear damage in the center element of the flat grooved plane strain
tensile specimen. Although the growth of the shear damage is not
slow at the early stage, the void damage reaches the critical value
first and void coalescence leads to the failure of this element.

Fig. 21 provides the contour plots of a representative section of
torsion–compression specimen. Similar to the pure torsion test,
crack initiation develops at the transition region. Crack growth fol-
lows a slant direction towards the center of the specimen.
5. Concluding remarks

In this paper, the GTN model is extended to account for the
shear-induced damage by combining the damage mechanics con-
cept with the void growth model. In particular, two damage
parameters, the volumetric damage and the shear damage, are cou-
pled into the yield function and flow potential. The evolution law
for void volume fraction remains the same as in the original GTN
model and a new shear damage evolution law is proposed. Sepa-
rate critical conditions for the two types of damage are introduced.
Complete material failure occurs once the total damage parameter
reaches unity. The effectiveness of the new model is illustrated
through a series of numerical tests comparing its performance with
existing models. As an application, the model is employed to pre-
dict the ductile failure behavior of a beta-treated Zircaloy-4, where
the plastic response of the undamaged matrix material exhibits
tension–compression asymmetry, by coupling the proposed dam-
age modeling framework with a recently developed J2–J3 plasticity
model for the matrix material. The combined plasticity and ductile
failure model is implemented in ABAQUS via a user defined sub-
routine. A model calibration scheme is presented and the material
constants are determined based on experimental observations a
semi-inverse method of matching the predicted load–displace-
ment responses with experimental data for various specimens.
The calibrated model predicts very well the load–displacement
response, fracture initiation point, and propagation behavior in a
variety of specimens, including specimens that exhibit zero or neg-
ative stress triaxiality.
Appendix A

The following summarizes the procedure of the single material
point test which keeps the stress triaxiality and Lode parameter
constant during the loading history.

Consider in the principal stress space and let ~r be a proportion-
ality factor. The mean stress can be expressed as
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rm ¼
1
3
rkk ¼ b~r: ðA1Þ

The three principal deviatoric stresses components can be
expressed as

s1 ¼ ~r; s2 ¼ a~r; s3 ¼ ð�1� aÞ~r; ðA2Þ

where a and b are constants which can be related to the stress tri-
axiality and Lode parameter and the three principal stresses can be
expressed as

r ¼ ð1þ b; aþ b; b� 1� aÞT ~r: ðA3Þ

Therefore the von Mises equivalent stress can be expressed as
re ¼ ~r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ aþ a2Þ

p
and the stress triaxiality and Lode angle

can be related to constant a and b through

T� ¼ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ aþ a2Þ

p
h ¼ tan�1 2

2aþ 1
2þ a

� 1
� �

1ffiffiffi
3
p

� �
:

ðA4Þ

For any prescribed T ⁄ and h, parameters a and b can be solved
from Eq. (A4). For h varying from �p=6 to p=6, a varies from
�0.5 to 1.

The values of a and b together with the value of ~r solved from
Eq. (23b) determines the three principal stresses. Let
hM ¼ @rM=@ep

M be the tangent modulus of the matrix material,
the following derivatives are needed to compute the hardening
modulus, H, Eq. (22).
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