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Introduction 

The starting point of this paper was the problem of the existence of enough 

injective abelian groups (in the following abbreviated by EIAG). 

For ordinary abelian groups a natural proof of the existence of enough injectives 

proceeds by first showing that there are enough divisible abelian groups and then 

using the result of Baer that every divisible abelian group is injective. That this 

approach cannot work for the abelian groups in an arbitrary topos is already seen 

for the simplest case of a topos different from the usual topos of set theory, the 

topos Shv(X) of set-valued sheaves on a topological space X: In [6j Banaszhewski 

shows for &,-spaces X, that the injectivity of every divisible abelian group-c,qlued 

sheaf on X (i.e. abelian group in Shv(X)) implies X is discrete. 

Further, in [4] Blass shows for ZermelD-Fraenkel set theory without the Axiom 

of Choice, that the injectivity of every divisible abelian group implies the Axiom of 

Choice. Moreover, in [3] Bl~s glies different models of Zermelo-Fraenkel set 

theory without the Axiom .jf Choict, among them one in which there are no non- 

trivial injective abeliar. groups, as well as another with EIAG. Furthermore we know 

‘hat every Gro&. ndieck topos (for example Shv(X)) has EIAG [15]. Since a topos 

i5 c rl intLlonistic type theory ([7], [IO], [12], [S], [19]), this means there are a lot 

of models of weak set theories that have EIAG. So the question arises what does 

it take for a model to have EIAG? 

Examining the proofs which establish the existence of ElAG in certain abelian 

categories - such as Grothendieck categories with a generator e.g. the category of 

abelian groups in a Grothendieck topos - one notices that they depend on two facts: 

first that these categories have a set of generators and second that there are enough 

injective ordinary abelian groups. 
Hence the appropriate context in which to approach the problem is to start with 

a base topos IL (in the above cases this is just .I, the category of sets) and then to 
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24X R. Hurting 

consider topoi P- w’,lich are bounded over I! (‘bounded’ internalizes the fact that 

there is a set of j.:nerators; for I’ = I, r‘ bounded over r! implies that * is a 
Grothendieck topm). Consequently the following natural conjecture arises: 

Conjecture C. !f a topos i is bounded over a base topos b, then g has EIAG if 

,! has. 

Oue way to establish this conjecture would be to prove the fokminp two 
;w.t’rt ions: 
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(e’ ) of abetian groups in P is 

in 2 , tc A%’ is the category of X- 

the pullback functsr A?: ff -+fc //X which assigns 

stant family, has both a ief t and a 

isjoint sum’ is left adjoint to X*, and 

adjoint to .I’*. It follows that X* and 

thus respect abelian groups. Hence they 

can be lifted to a pair f adjoint functsrs between Abf F’ ) and Ab( It LY). If tC has 

a natural number abject, then ,Y* : Ab(p” )-+Ab(t” !X) also has a left exact left 

adjoint C$ \ : N?q@p “X)-%4 c ), the internal coproduct f Mj. 

Note that for an abelian II\ XV3 is canonically isomorphic to B \‘, 

hence the abelian roup structure of B,’ is induced by that of B. 

In thr’ following e’ will always denote an elementary topos rc+rh a nafurur’ nun&er 

o@llc*f and X an object in 2 . For topos theoretical terminology we follow [IS]. 

I. The ihithfulness af t&e intcrnai coproduct 

Ah indicated in the introduction, the crucial point in achieving the ‘transfer 

theorem’ for the cuistence of enough injective abelian groups (resp. injective ef- 

faeements) i\ the faithfulness of the internal coproduct C-f>1 : Ab(f’/X)-+Ab(l’ ). SC 

thi\ chapter fill be concerned with the proof of this fact. 

In [ 161 NC have shown that in intuit ionistic type t hcory our usual c:onccpt ion of 

the coproduct of abelian groups as being a subobject of the direct product is 

misleading. Only for decidable indexing objects can we safely say that the coproduct 

has a natural homomorphism in the product. Hence there is no reason why the case 
Go z.z t should give a hint for the proof we are looking for. But again - as for the 

construction of the internal coproduct - we make use of the intriguing double 

mtt~~rt‘, both cct t hcsaretica) and geometrical. of topos theory. The geometrical mode 

will ttkw 11s to reduce a he problem to the boolean case, and there the set t hcorefical 

modk* cnrrblcd u\ to prcrcccd ‘as in Set+‘. 

1.2. Let A(x) be an abeiian group in 6’ /X. By using the set theoretical mode of 

~opos theory it ha9 been shown in [ 16, ( 1. IO)] that for decidable X there is a 

n~o!~o~n~~r~~~~isrn ~8 : ,4(x)-4’* I[ ~ ,4(x) in ,Ab( It /X) that internalizes the canonical 

inclusion of the abelian group .4(x) into the product of abelian groups I/, c , 4 ~9. 

1.3. Proposition. If X is decidubk, /hen @# : Ab( I’ IX) --+ Ab( I( ) is fuithfd. 
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Proof. We have to show that the unit q of the adjunction @JV --IX* is a 
monomorphism. So let A(x) be an abelian group in UX. Since X is decidable it 
follows as mentioned above that there is a monomorphism nr : A(x)++,Y*~, A(x). 

Because of the adjunction @IY - X*, m defines a morphism m# : @I:{ A(x)+ fl,, A(x) 
such that IZI = X*l,w *)q,_I,,s,. Hence q+I(x, is a monomorphism since rn is. 

1.4. Corollar v. If I( is n boolean topos, then @,+ : Ab( rC IX) -+ Ab( I( ) is faithfir for 
erw_r~ object A in lL . 

Proof. Follows immediately from (1.3) since in a boolean topos every object is 
decidable [ 1, 2.61. 

Before showing how the general case reduces to the boolean one, we want to 
prow a very useful proposition. Note that the main part of it is a corollary of eser- 
&e 3.7 in [ 181, but we think the case given below valuable enough to be proved once 
explicitly. 

1.5. Proposition. Let .f’: k- -+ I( he u geot?1etric nlorphisrw Denote by rj the wit of 
t/w ffdjrrtrcW?m f* - fl#. J?_V f y t/14 f1rnctor . . 

(i) The _firrlctor 
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(iii) If f* is a logical functor, then the following 
canonical isomorphism: 
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diagram commutes up to 

(3) 

Here obviously fi does not need to have a natural number object. 

Proof. (i) ,yf* is left adjoint to ,vf* since we have a sequence of natural bijections 

between the following sets of morphisms: 

E F 

.uf*( la P IP in .F/f*X 

X f*x 

by the definition of xf* 
.PE F 

If - 
f *X*” 

111 
f*X 

since f * -i _f* 
E f*F 
1 
x” + 

i 
L4P in Uf*f *X 

I’/\ 
f ¶kPX f*f “4%’ 

-_-- -- - by the definition of ,uf* 
E E 

I 
X” 

?,f*( l/j ) 
f*X 

Moreover xf * is left exact since f * is. 

(ii) Ah the functors in diagram (I) have a left adjoint. Hence diagram (1) com- 

mutes up to canonical isomorphism if the corresponding diagram of the left adjoints 



252 R. ffffrling 

commutes TV, to canonical isomorphism. This is the case since xf * is left exact, 

hence respc,ts fS;e products. 

ObGously the following diagram commutes: 

+-/j-*x 
A-f * 

4-----+/x 

Hence the corresponding diagram of the right adjoinas - which is diagram (2) - com- 

mutes up to canonical isomorphism. 

E 
(iii) Recall that 11, (1~) may be obtained by the following pullback: 

X 

I 
’ (1 

I ’ 
i 

id .!’ ’ 
1 

1 ___-----__-+ x.\ 

Sinw _f* is a logical functor it respects pullbacks and exponentiation, it thus follows 

that diagram (2) commutes up to canonical isomorphism. 

Pr~f. It rmains to show that @.,. : Ab(tVX)+Ab(l’ ) is faithful. Now, from [I& 

-).!-I) it t‘c~llo~s thitt there csists a geometric morphism f: i-+ (’ where p is a 

3c~lc’;t11 IC~WS such that ,f’” : I( -+ k- is faithful. hiZoreover it follows t’rom lJ(ii) that 

I tw t‘oIIou ing di;igram commutes up to canonical isomorphism: 
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Ab(.F/‘f ‘x) (f *x)* - Ab( 9-) 

if*1 If* 

Ab(n/X) z Ab( (5’) 

where the same notations as in 1.5 are used. 
Al! the functors appearing in the diagram have a left adjoint. Hence the cor- 

responding diagram of these left adjoints commutes too up to canonical iso- 
morphism: 

Ab(.F/f*X) 
5Ir* I(. 

I Ab(.l) 

.vf * : Ab(UX)+Ab(.//f *X) is faithful since f * is (cf. 1 A). ,i is a Boolean topos, 
it thus follows from 1.4 that @_r*,Y : Ab(.j-/f *X)*Ab(.;(-) is faithful. Hence 
@_r*,y l .y f * is faithful. 

But f*@p @ex- xf *$ therefore f *ox is faithful and consequently 

@x : Ab(l’/X)+Ab(f! ) 

is faithful. 

2. The existence of enough injective effacements in Ab( 6 ) 

The notion of injective effacement was introduced by Grothendieck in [ 153 where 

it is shown that the construction of satellites in abelian cohomology does not really 

require the existence of enough injectives but only that of enough injective 
effacements. 

Obviously for every Crothendieck topos fL, Ab(f’ ) has enough injectve ef- 

facements, since it actually has enough Lrjectives, but this result is false for an ar- 

bit I-ary topos I‘ (even with a natural nun+cr object). In [4] Blass gives an example 

of a topos I( without any non-trivial injective abelian group, and it is easy to see 

that Ab(/’ ) has no non-trivial, injective effacements either. Concerning the results 

about the direct existence of enough injective effacements as for example in [2], 

[IS], [20], note that they do not apply to the case of topoi, since they all assume 

sDme completeness and cocompleteness conditions not fulfilled by Ab( k ). Gn the 

other hand, that these conditions are not necessary is shown by an exampie of a 

topos ft given in 131. Here Ab( (’ ) has even enough injectives but only finite 

coproducts. (A description of this topos is also given in [S, Section 41.) 
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In the present section, some transfer principles for injective effacements are prov- 
ed (compare also [2O]j and they are used to show that the conjecture mentioned in 
the introduction is true for iniective effacements, i.e. if a topos 7 is bounded over 
1C ~ then Ab( .F) has enough injective effacements if Ab(fi ) has. 

2.1. Recall that a monomorphism It : B--G in a category ~4 is called an in+ective 
exfucernent if for every monomorphism 771: A >-, C and every morphism g : A -4 in 
,A there is a mc/rphism f : C--Q in ~4 such that fin = kg. 

A is said L? have enough injective effacemen& if for every object B in ~4 there 
exist an o'o~d D and a monomorphism k : D--d3 in /+ such that k: B-D is an in- 
jective effacement in /4. 

2.2. Lemma. Let G : >a--+ B be a _ftrnclor which has a refi adjoint F: IB-+ A respec- 
ting mono~ttorphis~tts. 

(i) !f F is faithftrl urrd if A has enough injecrive effacements, then so has E. 
(ii ) /f‘ G is .ftrll artd .ftiirhjk f and if I3 hns e/tough injective q[facwtten~s, then so 

bus ,‘A . 

Proof. (i) Suppose that F is faithful and that A has enough injective effacements. 

Let B be an object in E. Then there is a monomorphism k : FB>-,A which is an in- 

ject ive effacement in A. Since F is faithful it follows that t7’7H : IO--+ GFB, the unit of 
ths: adjunction I;‘-- G at B, is a monomorphism. Moreover G as a right adjoint 
respects monomorphisms, thus the composite G(k)t-!,: W-G_4 is a monomor- 
phi\m. It is now easy to check that this monomorphism is an injective effacement 
in 7 . 

(ii) Sqyxm that G is full and faithful and that E? has enough inje4ve ef- 

fxcrncnt s. Let A lx an object in A. Then there is a monomorphism k : GA )--, B 
u hi& is ali injectivc effacement in !B. Since F respects mor?timorphisms, 
F(k) : FGA++l? is again a monomorphism. Now, G is ful! and faithful and 
therefore the counit I: of the adjunction F + G is an isomorphism. Hence the com- 
po\ite F(k)& ,I * . A )--, FB is a monomorphism. And again it is easy to check that this 
rllononlorphisnl is an injectivc effacement in A. 

Proof. Suppose (ii) and let 



Ahelian groups in a topos 255 

be a diagram in A with m a monomorphism. Form the pushout of the given diagram 

to get the following diagram: 

Since A is an abelian category a push-out along a monomorphism is again a 

monomorphism, hence N is a monomorphism. We apply the assumption (ii) to get 

a morphism h : P-G such that hn = k. Thus for f = hl we have fm = kg. 

The other implication is trivial. 

2.4. Remark. From (18, p. 1201 we conclude that Gnaud’s theorem about the 

characterization of Grothendieck topoi can be reduced to the statement: 

“A topos .i is a Grothendieck topos iff it is defined over Sets and contains an 

object whose subobject s generate . i-. ” 

In “Change of base for tdposes with generators” Diaconescu is led to replace here 

the particular topos Sets by an arbitrary base topos. This leads - as mentioned in 

the introduction - to the notion of ‘bounded morphism’. The ‘relative’ version of 

Giraud’s theorem is then the following ([ 1 I], also [ 18, 4.461): 
If f: .it+r: is a geometric 

(i) f is bounded. 

(ii) Thare exist an internal 

morphism, then the following are equivalent: 

category C in I[ and an inclusion i : .F+ t such that 

commutes up to canonical isomorphism. (I ’ ” denotes the topos of internal 

diagrams on C, we may think of it as the category of functors from C to tL. i in- 

clusion means that i, : i+ 1’ ” is full and faithful, or equivalently that there is a 

(unique) topology j in 15 such that .F is equivalent to sh# ‘), the full subcategory 
of I1 (’ whose objects are the j-sheaves - by an equivalence identifying i, with the 

embedding sh.,(t’ “)-+ IC “). 



Observe that bounded morphisms which arise naturally in the geometric aspect 
of topos theory, appear in logic too. Bounded morphisms are in general not logical, 
hence do not respj:ct the internal logic so, as one might expect, they play a role in 
independence proofs. For example in the topos-theoretical approach to CI’ohen’s 
proof of the independence of the Continuum Hypothesis the bounded morphism 
Sh,_,( f ‘) -+ .I is exploited, where P is a certain poset in .‘I ((241, also [ 18, 9.56]). 

In a fur;+cr proof, given in boolean-valued set theory, the bounded morphism 
Shv(B, C’; 1 is e::ploited, where B is a certain Boolean algebra and C the canonical 
Grothendieck topology on B. Note, that Shv(B, C) is equivalent to the category of 
Boolean-valued sets based on B ([ 171, [2 11, [22]). For other examples see (91, [ 141. 

Proof. Suppose that Ab( f( ) has enough injective effacements. Since f is bounded 
there exist - as stated in 2.j - an internal category C in (( and an inclusion 
i: c-+,[ ” such that 

From [ 18, 2.3 11 it follows that t hertz is a left esact comonad C3 on tc j C,, such that 

I ’ i\ iwtnorphic to the topos (Y ,.’ C,& of G-coalgebras (C,. is t hc object -of-objects 
ot‘ c). Rlorewcr [ 18, 2.32 and 3.1Z(ii)] imptv that there is a gt‘oinc!i~c morphism I 
_f‘ : ,( ,*q --+ ( Ic X& such t bar: .f’* is faithful. Hence there is a leGmetric morphism 
I! : ’ c,, --+ I( (’ such that u* is faithfu!. The functor I)* : Ab(f’ /C’,,)-+Ab((‘ “) has thus 
a left watt left adjoint U* which is faithful. 

!++lorsot x, it foIlows from (1.7) that CL” l . Ab( cc ) -+ Ab( IL T,,) has a faithful left 
euct Ict’t adjoint. Now, Ab[ ( ) has enough injectiw effacements. Hence, applying 
1 Ccc 2. Z(I), WC deduce that Ab(t’ (’ ) has enough injcctiw cffawments. Further- 
I~OW. +iwc‘ i : b -+ lL ” is an inclusion, i* : .Ab( 4 )-+.MJ(~’ I‘) is full and faithful. It 
thm ti~110~~ s front X(ii) that Ab( j ) has also enough injwtivc effawments. 

3. The esistence of enough injwlives in Ab( I~ ) 

1 Cf _f’ : ’ -+ f’ be a bounded geomct ric morphism and consider the decomposition 
0t’ _I’ ckwibcd in 2.4: 
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As stated in the introduction it will be shown that Ab( I’ ‘) has enough injectives if 
Ab(l ) has. 

Now, recall that in Ab(Shv(X)), the category of abelian group-valued sheaves on 
a topological space X, there are enough injective hulls [ 131; indeed, Banaschewski 
recently observed that this result carries over to topoi in the following sense: if j 
is a topology in rt, then Ab(sh,(6 )) has enough injective hulls if Ab( (5 ) has. 

It is neither known whether there is a transfer theorem for enough injective hulls 
from Ab(#@- ) to Ab(f” ‘) nor whether there is one for enough injectives from 
Ab(r’ ‘) to Ab( i ). 

3.1. Recall the following lemma already mentioned in the introduct ion: 

Lemma. [f a functor G : A -+ has a left acfioinr that respects monomorphism and 

is $aithfirl, then IE has enough injectives if A has. 

3.2. Proposition. k’j’ Ab(t’ ) has enough injectives, then so has Ab( 1’ /X). 

Proof. $9X : Ab( tp /X)-+Ab( ac ) is a left exact left adjoint to X* : Ab(t’ )-+Ab( ff IX). 
Moreover we have shown in t .7 that @,Y is faithful. It thus follows from 3. I that 
Ab( p( 4.X) has enough injectives if Ab(f’ ) has. 

3.3. Theorem. If Ab(t’ ) has enough injectives, then so bus Ab((’ “) for every in- 

rental cvcllegory C in I( . 

Proof. Suppose that Ab(t’ ) has enough injectives and let C be an internal category 

in fD. In the proof of 2.5 we have shown that there is a functor u*: Ab(UC&-+ 
Ab(t’ “) which has a faithful left exact left adjoint. Now, Ab( I’ ) has enough injec- 
tives, hence by 3.2 also Ab( k K,,) and therefore, using 3.1, it follows that Ab( fL ‘) 
has enough injectives. 

3.4. Recall that a monomorphism k : A )--+B in a category A is called an essential 

txtcnsion of A (or just essential), if every morphism f: D-C, for which fk is a 
monomorphism, is itself a monomorphkm. 

An injective hull of A is an essential extension k : b-4 of A with B injective. 

3.5. Proposition (Banaschcwski). Lut I.’ : Q\ -+ 3 be a fzrncfor which respects 
monomorphisnts rend has I~JuN md faithful right adjoint G. Then E3 has enough in- 
jective hulls if A has. 

Proof. Suppose that A has enough injective hulls, let B be an object in B and 

k : GBb-+ J an injscti\e huBI of‘ GB in A. Consider the following commutative 

diagram: 



R . l-far-ring 

GB 
v(;r 

-- GFGB 

k 

where q denotes the unit of the adjunction F-I G. Let c denote the counit, then 

(GEB)Q~ = idGB, hence rfCiH is a monomorphism. G and F respect monomor- 

phisms, therefore GFk is also a monomorphislm and it follows from the com- 

mutativity of the diagram above that qrk 1s a monomorphism, thus also 

rl, : J>-)GFJ, since k is essential. Now J injectivi: implies that r/./ is a coretraction. 

Furthermore G is full, it thus follows from [23, 16.5.41 that qJ is an isomorphism 

and consequently GFJ is injective. Since G is full and faithful1 and respects 

monomorphisms, it reflects injectives, hence FJ is injective in 5. 

Moreover G full implies that there is a morphism IPI : B-+ FJ in 5 with G(IZI) = 

rjlJh-. 

Since G is faithful and respects monomorphisms, it reflects essential extensions; 

r; I and k are essential thus also Gjt~) = rlJk. It fJlows that 111: B>-,FJ is essential. 

F-II is injcctive and consequently TV : B++FJ is an injective hull of B. 

3.6. Corollary. If j is a topology in (0 therl Ab(sh., ((’ )) /tczs eno~~# ir[irdiw hriLs 
if’ Ab( (’ ) has. (Hurts I( is rtot si4pposd to have a rtattiral rttruther object.) 

Proof. Follow immediately from 3.5 since the canonical geometric morphism 
i : sh.,( I: )-, I( is an inclusion, hence i * : Ab(sh_,( I( ) is full and faithfsk 

3.7. Remark. Examining the proof of 3.5 one notices that once ?jJ is established to 

be a monomorphism for injective J it turns out to be even an isomorphisrn. Hence 
t‘or j 3 topology in t’, an injective j-separated object is already a j-sheaf. To get 
rhc transt’cr theorem for injectives from Ab(i’ ) to Ab(sh+ )) it would thus ‘suf- 
fice’ IO show that every abelian group B in sh,( I( ) can be embedded in a j- 
\cparatrtd injcctkc abelian group in (I. 

3.8. Remark. i_c~ us finallkp mention for completeness sake that the internal 

coproduct &, : Ab((’ I’ X) -+ Abtt‘ ) enables us also to show that injectivity is not 

only an in~~ariant notion in Ab( I’ ) for I: a Crothcndieck tc;pos but for et c‘r! topos 
I’ with a natural number object. Thus: 

(i) An abelian group B in fL is injwtive iff A’*B is injective in Ab(t’ M) for every 
ohjcct .Y in ,’ ; and consequently 

(ii) An abelian group B in I( is injtxtivt‘ iff B’ is injsctiw in Ab(fc ) for awry ob- 
jeer X in ’ . 

Indwd, (i) follows immcdiatcly from the fact that &I.\. : Ab(c’X)-+Ab(~’ ) is a 
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left exact left adjoint to X* : A&( I’ )-+Ab( ff IX), since this implies that X* respects 
injectivity. Similarly it follows that n,Y : Ab(UX)-+Ab(r ) respects injectivity. 
Therefore (ii) follows from (i), since BS ij: canonically isomorphic to II,v XV* 
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Note that injectivity of abelian groups is not respected by logical funcors 

J ‘$ : ,c --) p- even not if f’* is part of an essential geometric morphism f: .P-+ t!, 
although >* is then not ‘too far away’ from being a pullback functor. (If f: ?-+t 
is an essential geometric morphism with f * logical, then the additional assumption 
that the left adjoint _fi of f * respects equalizers ensures that . i- is equivalent to (c /X 

for some X by an equivalence identifying f * with X* [ 18, 1.471.) 

Let us give an example: Let G be the abelian two-element group: G = { 0, a} where 
0 is the neutral element. Then .I (P is the topos of sets with a left action of the 
group G. Consider the essential geometric morphism y : .‘I “““+. 1 defined by 

Y 
G”r, y/-+ / , S-SC; the set S with trivia1 G-action, 

y*: ’ 
W_+ , . 

9 M-the set of G-fixed elements of M, 

p : / ~;““--b / ; M- the set of G-orbits of 121. 

(I!!, y *, y*) constitute an essential geometric morphism and y * is logical. 
Ab( / <;“’ ) is the cateogry of left Z[G]-modules; we want to show, that 

I’* : Ab-Q_[G]-Mod; .4 - & the abelian group A with trivia1 
G-act ion: 

does not respect injectives. 
Take M to be G with trivial G-action, N the cyclic group Z4 = (6, i,2. j} with the 

G-action defined by ai = 3. The morphism 1~ : M -+ N defined by tn(u) = 2 is a 
monomorphism in Z[G]-Mod. --- 

Let k : M --+(Q/Z)(; be defined by k(a) = l/2, and suppose there is a morphism 

. f: N-+(QLT’)(; in I[G]-Mod such that 

111 
M-N 

1~ = k(a) =ftNd =f(2) = f( 5) + f(i) =.f( 5) + f(3) = f(i + 3) = O., 
-. 

but l/2+0 in Q/J. 
Thus Q/Z is injective in ,4b, but y*(d$LT) = (Q’S),; is not injective in Z[G]- 

MOd. 
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