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Abstract

We show that after the Seiberg—Witten map is performed the action for noncommutative field theories can be regarded as a
coupling to a field dependent gravitational background. This gravitational background depends only on the gauge field. Charged
and uncharged fields couple to different backgrounds and we find that uncharged fields couple more strongly than the charged
ones. We also show that the background is that of a gravitational plane wave. A massless particle in this background has a
velocity which differs from the velocity of light and we find that the deviation is larger in the uncharged case. This shows that
noncommutative field theories can be seen as ordinary theories in a gravitational background produced by the gauge field with

a charge dependent gravitational coupling.
0 2003 Elsevier Science B.V. Open access under CC BY license,

Noncommutative (NC) theories have been studied
in several contexts since a long time ago. More
recently it was found that they arise as a limit of
string theory with D-branes in a NS—NS background B
field [1]. In this limit gravity decouples but still leaves
some traces in the emerging NC field theory through
the Moyal product, defined as
AW) * B@) = 2" %% A() B(y)| (1)
whered*" is the NC parameter. As a consequence, NC
theories are highly nonlocal and we would expect that
they would be troublesome. However, upon quantiza-
tion, the ultraviolet structure is not modified [2] but
new infrared divergences appear and get mixed with
the ultraviolet ones [3]. This mixing of divergences
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can be handled at one loop level but when higher
loops are taken into account the infrared divergences
are non-integrable turning the theory nonrenormaliz-
able. The only known exceptions fdr> 2 are super-
symmetric non-gauge theories [4]. Even so this mix-
ing of divergences have important consequences for
many aspects of NC field theories [5]. From a classi-
cal point of view many solutions from the commuta-
tive field theory can be carried over to the NC corre-
sponding one. Instantons, monopoles and vortex solu-
tions were found for the NC Maxwell theory showing
its resemblance with a non-Abelian theory. The main
feature of these solutions is that they are non-singular
and stable, properties usually not shared by their com-
mutative counterparts [6].

An important property of NC theories, which dis-
tinguishes them from the conventional ones, is that
translations in the NC directions are equivalent to
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gauge transformations [7]. This can be seen even for action can be interpreted as a gravitational background
the case of a scalar fidldvhich has the gauge trans- which depends on the gauge field. We then determine

formationsé = —i[, Al,, where[A, Bl, = A x B — the metric which couples to real and complex scalar
B * A is the Moyal commutator. Under a global trans- fields. We find that the uncharged field coupling is
lation the scalar field transforms dg¢ = sﬂaué. twice that of the charged one. So we can interpret
Derivatives of the field can be rewritten using the the gauge coupling in NC theory as a particular
Moyal commutator ag)uéﬁ = —ieljvl[x”, #1, so that gravitational coupling which depends on the charge of

8¢ = 8¢ with gauge parametér= _glzvlgﬂxv_ The the field. We then show that the background describes

only other field theory which has this same property @ gravitational plane wave. We also determine the
is general relativity where local translations are gauge 9eodesics followed by a massless particle in this
transformations associated to general coordinate trans-Packground. We find that its velocity differs from
formations. This remarkable property shows that, as the velocity of light by an amount proportional &

in general relativity, there are no local gauge invariant With the deviation for the uncharged case being twice
observables in NC theories. that of the charged one. For the uncharged case the

An alternative approach to study NC theories makes deviation is the same as that found for the gauge theory
use of commutative fields (with its usual properties) in flat space—time [10,11]. As a final check we derive
instead of the NC ones. They are related through the these same velocities in a field theoretic context.
Seiberg-Witten (SW) map [1] which is presented asa ~ The action for the NC Abelian gauge theory in flat
series expansion if. In this way a local field theoryis ~ Space-timeis
obtained at the expense of introducing a large number 1 4. Py . p
of non-renormalizable interactions [8]. Quantization is Sa :_Z/ X FP5 s Fyy, &)
problematic due to the number of divergences that ap- . R N P
pear. It seems that at one loop level the SW map is just WN€ré Fuv = 8, Ay — dv Ay —ilAy, Avl.. For areal
a field redefinition but at higher loop orders this is not Scalar field in the adjoint representation@f1) the
true [9]. At the classical level, on the other side, it is (18t SPace-time action is
possible to understand very clearly the breakdown of , 1 4 Aun A oA
Lorentz invariance induced by the noncommutativity. =% — Ef xD ¢ *Duo, ©)
The dispersion relation for plane waves in a magnetic
background gets modified so that photons do not move
with the velocity of light [10].

We can wonder how other properties of NC field
theo_ries show up in th(_a commutative frame\_/vork. In S, — fd“x D,lq;* (ﬁuéﬁ)T, (4)
particular, the connection between translations and
gauge .transformations seems to be lost. A gllobal with D
translation on commutative fields cannot be rewritten 4«
as a gauge transformation. We will show in this Letter |
that another aspect concerning gravity emerges when ~ . .
commutative fields are employed. Noncommutative A, = DyA, 8¢ = —il@, Als,
field theories can be interpreted as ordinary theories Sp=ikxd, 5ot = —igpT i (5)
immersed in a gravitational background generated by ,
the gauge field. Firstly we notice that the commutative 1° 90 to the commutative framework we apply the
theory can be regarded as an ordinary theory coupled S map to the fields. We assume that there exists a
to a field dependent gravitational background. We will conventional Abelian gauge field,, with the usual
show that the dependent terms in the commutative APelian gauge transformatioiv,, = 9,4 such that

Ap(A)+38,A,(A) = A, (A +354A). Forthe NC real
scalar fieldp we assume the existence of a conven-

1 For the gauge field a translation is equivalent to a gauge tional uncharged scalap, with gauge transforma-
transformation plus a constant shift of the potential [7]. tion 8¢ =0, such that)(p, A) + 8 ;9(p, A) = ¢(A +

whereD, $ =8, — i[A,, §],. On the other side, for
a complex scalar field in the fundamental representa-
tion of U (1) the action is

wp = d,p — iA, » . The gauge transforma-
which leave the above actions invariant are given
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S3AA, ¢ +54¢). Forthe NC complex scalar fielﬁiwe
associate a charged scalar figldlong the same lines.
To first order ing we find

A~

1 p
A/L = A/L - 59 Aa(aﬂA/L + Fﬂ/L)v
¢=¢—0"A,050,
(6)
We can now expand the NC actions (2), (3) and
(4) using (1) and apply the map (6) to get the
corresponding commutative actions.

For the real scalar field we find, always to first order
ing,

1
Sp= Efd“x [aﬂwauw

1
+ 201*F,"” (_8/L¢8v§0 + anwapwawﬂ)] (7

o 1
b=¢— Ee“ﬂAaaw.

It is worth to remark that the tensor inside the

parenthesis is traceless. If we now consider this same

field coupled to a gravitational background

®)

Sg.p = 2

and expand the metrjg,, around the flat metrig,,,,

1
— / d*x =g g" 0,90,

guv = Npv + o + 10k, 9)
whereh,,, is traceless, we get
Sg.p = %/d‘lx (0" o

— h"3,03,0 + hdP9d,p), (10)

where indices are raised and lowered with the flat
metric. Since both actions, (7) and (10), have the same

structure we can identify a linearized background
gravitational field

1
R = 01 FyY + 6V Fo* + Enﬂ”e“ﬁFaﬁ,
h=0. (11)
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The same procedure can be repeated for the com-
plex scalar field. After the SW map the action (4) re-
duces to

S = f d*x |:D“¢(DM¢)T
1 o v va o [ 1 nv pof
=5 (01 Fa 0 F 4 00 Fop

x Dm(Dm)T]. (12)
Note again that the tensor inside the parenthesis is
traceless. Now the action for the charged scalar field
in a linearized gravitational field is

Se.p = f d*x [D*¢(Du)t — "’ D (Dy)'
+2hD (D) '], (13)

which has the same structure as the action (12). Hence,
the background gravitational field in this case is

1 1
h/w — E(@/La Fav + QvaFalL) + Znuv@aﬂFaﬁ’
h=0. (14)

Then charged fields feel a gravitational background
which is half of that felt by the uncharged ones.
Therefore, the gravity coupling is now dependent on
the charge of the field, being stronger for uncharged
fields. Notice that the gauge field has now a dual role,
it couples minimally to the charged field and also as a
gravitational background.

We can now consider the gauge field. As it is well
known, the SW map gives rise to the following action:

1
-5 f d*x [F/”F,w

1
+ zeﬂpFPV(F,wa - 21n,wF“ﬁFaﬁﬂ. (15)

Sa=

Again, the tensor inside the parenthesis is traceless.
At this point we could be tempted to consider this
action as some gravitational action build up from
the metric (11) or (14). Since the field strength
always appears multiplied by inside the metric, all
invariants constructed with it will be of ordér Hence,
they cannot give rise to (15), unless they appear in

Then, the effect of noncommutativity on the commu- combinations involving the inverse éf If we insist
tative scalar field is similar to a field dependent gravi- in having an action which is polynomial ththe best
tational field. we can do is to regard the gauge field as having a
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double role again and couple it to gravitation as in the
previous case. The linearized coupling of the Maxwell
action is

1
Sg,A :_Z/d4x (FWFMV+2hWFupFPV)' (16)

Since it does not couple to the trace part of the met-
ric » remains arbitrary ant*? is given by (14). Since
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tensor so that the metric (17) is not that of a flat space—
time. Then, to order zero i, F,, satisfies the wave
equation and is a function &f,x* with k% = 0. Hence,
the metric has all symmetries of a gravitational plane
wave.

More rigorously, we find that the noncommutative
parameter is covariantly conservéy,6% = 0. We
then have a geometry equipped with a covariantly

the NC gauge field resembles a non-Abelian gauge constant two-form. Since*?¢,5 = 0 to first order

field we expect that its commutative counterpart cou-

ple to the same gravitational field as the charged one.

It should also be remarked that in this case the gravita-
tional field cannot be interpreted just as a fixed back-
ground since it depends on the dynamical gauge field.

Having determined the field dependent background
metric we can now study its properties. We will
consider the metric which couples to the charged
fields (14). To consider the metric (11) we have just
to replace by 29. The linearized metric is then

1
8uv =NMuv + E(Q;wzFav + QuaFau)
1
+ Z’?uvgaﬂFaﬂ- (17)

The geometric quantities can be evaluated without
difficulty and we find

1

Ryvps = E[_Ga[uaﬂaaﬂw + 6pa 3O Fuo
+ 00090 F* )
+ eaﬁ(no[u 81/]8,0 Faﬁ — Nplp 81/]80 Faﬁ)],

(18)
1
Ry = Z(eﬂ"aaaﬂF,gu +6,% 96,9 Fg,,
1 .
+ 50 OFeg ), (19)
1 s
R= Z@ OFus. (20)

Notice that all of them, and also the Christoffel
symbol, are first order if. Since on-shell and in the
absence of matteé¥ F,, is first order ing, theno F,,

is also first ordef. This means that the Ricci tensor and
the scalar curvature both vanish but not the Riemann

2 Notice that field equations for the gauge field are derived
from (15) which is defined in flat space—time. Hence in the field
equations and solutions the Minkowski metric is used.

then the two-form is also null. The existence of
this covariantly null two-form guarantees that the
metric (17) describes a pp-wave [12]. More than that,
if we consider the solution for the gauge field to first
order in 6 and in the absence of matter &5, =
ki Fyp, with k# a null vector andF,, transversal,
k*F, =0, thendy Ryvpo = ko Ruvps and the complex
Riemann tensor
i
2
satisfieSdy Puvps = ka Puvps . This shows that the pp-
wave is in fact a plane wave [12]. Then the metric (17)
is that of a gravitational plane wave.

We can now turn our attention to the behavior of a
massless particle in this background. Its geodesics is
described by

Pp,v,oo' = Rp,vpa + EpaaﬁRuuaﬂ (21)

1
ds? = (1 + Z@"‘ﬂ Faﬁ) dx*dx,

+ 0, F*, dx*dx’ =0. (22)
w

If we consider the case where there is no noncommu-
tativity between space and time, that§ = 0, and
calling 6’/ = ekpk, Fi0 = Ei andF/ = ¢k BX we

find to first order irp that

(1—9%(1—-26-B)—6-F xE)

+926-B—(B-v)@-9)=0, (23)

where?v is the particle velocity. Then to zeroth order,
the velocity vg satisfiesﬁg =1 as it should. We can
now decompose all vectors into their transversal and
Iongituginalcomponents with respectiig E= ET +
S0EL, B = Bt +71oBL andd = 61+ 1oL . We then find
that the velocity is

52=1+§T'(ET—50X ET) (24)

Hence, a charged massless particle has its velocity
changed with respect to the velocity of light by
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an amount which depends @h For an uncharged
massless particle

=1+ 2§T . (ET — Vg X ET), (25)

and the correction due to the noncommutativity is
twice that of a charged particle.

We can now check the consistency of these results
by going back to the original actions (7) and (12),
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uncharged scalar field. It also reproduces the result
in [10,11] when the background is purely magnetic.
This shows the dual role of the gauge field, since
it couples to gravitation as a charged field but its
dispersion relation is that of an uncharged field.

We have seen in this Letter that it is possible to re-
gard noncommutative theories as conventional theo-
ries embedded in a gravitational background produced

and computing the group velocity for planes waves. by the gauge field. This brings a new connection be-
Upon quantization they give the velocity of the particle tween noncommutativity and gravitation. We could
associated to the respective field. For the unchargedimagine that this is a peculiarity of the first order term

scalar field we get the equation of motion

1
(1 - 50‘“’ FW) Op — 20" F,"93,,0,¢ = 0. (26)

If the field strength is constant we can find a plane
wave solution with the following dispersion relation

1
(1-2omr

)k2 — 20" F, Kk ky = 0, (27)

and using the same conventions for vectors as before,

it results in
Q2

k
——1 29T ( T——XET)
w

w

wherek#* = (w, k) We then find that the phase and
group velocities coincide and are given by (25) as
expected. For the charged scalar field we have to turn
off the gauge coupling in order to get a plane wave
solution. In this case the equation of motion is

(28)

(1 - %GILVFW) O¢ — 0" Fy"3,9,¢ = 0. (29)

In a constant field strength background the dispersion
relation for a plane wave reads as in (27) with
replaced byd/2. Then we must perform the same
replacement in the phase and group velocities and we
get (24). Therefore, in both pictures, noncommutative
and gravitational, we get the same results.

For the gauge field the situation is more subtle
because of its double role. There is no clear way to
split the action (15). What can be done is to break up
the gauge field into a background plus a plane wave as
in [10]. We then get the following dispersion relation

(30)

where F,"” is now the constant background. This
leads to (28), that is, the dispersion relation for the

k? — 20"% FyVk ky, = 0,

in the & expansion of the SW map. If we consider the
SW map for the scalar field to second ordepinve

find that it is linear in the scalar field. A short calcu-
lation shows that the action (3) remains quadratic af-
ter the SW map and that it can be cast again in the
form (8) since all terms of the forri2pd2¢ cancel.
Then it seems to be possible to keep the same inter-
pretation to all orders if.
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