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Abstract

We show that after the Seiberg–Witten map is performed the action for noncommutative field theories can be rega
coupling to a field dependent gravitational background. This gravitational background depends only on the gauge field
and uncharged fields couple to different backgrounds and we find that uncharged fields couple more strongly than th
ones. We also show that the background is that of a gravitational plane wave. A massless particle in this backgrou
velocity which differs from the velocity of light and we find that the deviation is larger in the uncharged case. This sho
noncommutative field theories can be seen as ordinary theories in a gravitational background produced by the gauge
a charge dependent gravitational coupling.
 2003 Elsevier Science B.V. Open access under CC BY license.
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Noncommutative (NC) theories have been stud
in several contexts since a long time ago. Mo
recently it was found that they arise as a limit
string theory with D-branes in a NS–NS backgroun
field [1]. In this limit gravity decouples but still leave
some traces in the emerging NC field theory throu
the Moyal product, defined as

(1)A(x) � B(x)= e
i
2θ

µν∂xµ∂
y
ν A(x)B(y)

∣∣
y→x

,

whereθµν is the NC parameter. As a consequence,
theories are highly nonlocal and we would expect t
they would be troublesome. However, upon quant
tion, the ultraviolet structure is not modified [2] b
new infrared divergences appear and get mixed w
the ultraviolet ones [3]. This mixing of divergenc

E-mail address: rivelles@lns.mit.edu (V.O. Rivelles).
0370-2693  2003 Elsevier Science B.V.
doi:10.1016/S0370-2693(03)00271-5

Open access under CC BY license.
can be handled at one loop level but when hig
loops are taken into account the infrared divergen
are non-integrable turning the theory nonrenorma
able. The only known exceptions ford > 2 are super-
symmetric non-gauge theories [4]. Even so this m
ing of divergences have important consequences
many aspects of NC field theories [5]. From a clas
cal point of view many solutions from the commut
tive field theory can be carried over to the NC cor
sponding one. Instantons, monopoles and vortex s
tions were found for the NC Maxwell theory showin
its resemblance with a non-Abelian theory. The m
feature of these solutions is that they are non-sing
and stable, properties usually not shared by their c
mutative counterparts [6].

An important property of NC theories, which di
tinguishes them from the conventional ones, is t
translations in the NC directions are equivalent
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gauge transformations [7]. This can be seen even
the case of a scalar field1 which has the gauge tran
formationδφ̂ = −i[φ̂, λ̂]�, where[A,B]� = A � B −
B �A is the Moyal commutator. Under a global tran
lation the scalar field transforms asδT φ = ξµ∂µφ̂.
Derivatives of the field can be rewritten using t
Moyal commutator as∂µφ̂ = −iθ−1

µν [xν, φ̂]� so that

δφ̂ = δT φ̂ with gauge parameter̂λ = −θ−1
µν ξ

µxν . The
only other field theory which has this same prope
is general relativity where local translations are ga
transformations associated to general coordinate tr
formations. This remarkable property shows that,
in general relativity, there are no local gauge invari
observables in NC theories.

An alternative approach to study NC theories ma
use of commutative fields (with its usual propertie
instead of the NC ones. They are related through
Seiberg–Witten (SW) map [1] which is presented a
series expansion inθ . In this way a local field theory is
obtained at the expense of introducing a large num
of non-renormalizable interactions [8]. Quantization
problematic due to the number of divergences that
pear. It seems that at one loop level the SW map is
a field redefinition but at higher loop orders this is n
true [9]. At the classical level, on the other side, it
possible to understand very clearly the breakdown
Lorentz invariance induced by the noncommutativ
The dispersion relation for plane waves in a magn
background gets modified so that photons do not m
with the velocity of light [10].

We can wonder how other properties of NC fie
theories show up in the commutative framework.
particular, the connection between translations
gauge transformations seems to be lost. A glo
translation on commutative fields cannot be rewrit
as a gauge transformation. We will show in this Let
that another aspect concerning gravity emerges w
commutative fields are employed. Noncommuta
field theories can be interpreted as ordinary theo
immersed in a gravitational background generated
the gauge field. Firstly we notice that the commutat
theory can be regarded as an ordinary theory cou
to a field dependent gravitational background. We w
show that theθ dependent terms in the commutati

1 For the gauge field a translation is equivalent to a ga
transformation plus a constant shift of the potential [7].
action can be interpreted as a gravitational backgro
which depends on the gauge field. We then determ
the metric which couples to real and complex sca
fields. We find that the uncharged field coupling
twice that of the charged one. So we can interp
the gauge coupling in NC theory as a particu
gravitational coupling which depends on the charge
the field. We then show that the background descr
a gravitational plane wave. We also determine
geodesics followed by a massless particle in
background. We find that its velocity differs fro
the velocity of light by an amount proportional toθ
with the deviation for the uncharged case being tw
that of the charged one. For the uncharged case
deviation is the same as that found for the gauge the
in flat space–time [10,11]. As a final check we der
these same velocities in a field theoretic context.

The action for the NC Abelian gauge theory in fl
space–time is

(2)SA = −1

4

∫
d4x F̂µν � F̂µν ,

whereF̂µν = ∂µÂν − ∂νÂµ − i[Âµ, Âν]�. For a real
scalar field in the adjoint representation ofU(1) the
flat space–time action is

(3)Sϕ = 1

2

∫
d4x D̂µϕ̂ � D̂µϕ̂,

whereD̂µϕ̂ = ∂µϕ̂ − i[Âµ, ϕ̂]�. On the other side, fo
a complex scalar field in the fundamental represe
tion ofU(1) the action is

(4)Sφ =
∫

d4x D̂µφ̂ �
(
D̂µφ̂

)†
,

with D̂µφ̂ = ∂µφ̂ − iÂµ � φ̂. The gauge transforma
tions which leave the above actions invariant are gi
by

δÂµ = D̂µλ̂, δϕ̂ = −i[ϕ̂, λ̂]�,
(5)δφ̂ = iλ̂ � φ̂, δφ̂† = −iφ̂† � λ̂.

To go to the commutative framework we apply t
SW map to the fields. We assume that there exis
conventional Abelian gauge fieldAµ with the usual
Abelian gauge transformationδAµ = ∂µΛ such that
Âµ(A)+ δ

Λ̂
Âµ(A)= Âµ(A+ δΛA). For the NC real

scalar fieldϕ̂ we assume the existence of a conv
tional uncharged scalarϕ, with gauge transforma
tion δϕ = 0, such that̂ϕ(ϕ,A)+ δ

Λ̂
ϕ̂(ϕ,A)= ϕ̂(A+
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δΛA,ϕ + δΛϕ). For the NC complex scalar field̂φ we
associate a charged scalar fieldφ along the same lines
To first order inθ we find

Âµ =Aµ − 1

2
θαβAα(∂βAµ + Fβµ),

ϕ̂ = ϕ − θαβAα∂βϕ,

(6)φ̂ = φ − 1

2
θαβAα∂βφ.

We can now expand the NC actions (2), (3) a
(4) using (1) and apply the map (6) to get t
corresponding commutative actions.

For the real scalar field we find, always to first ord
in θ ,

Sϕ = 1

2

∫
d4x

[
∂µϕ∂µϕ

(7)+ 2θµαFαν
(

−∂µϕ∂νϕ + 1

4
ηµν∂

ρϕ∂ρϕ

)]
.

It is worth to remark that the tensor inside t
parenthesis is traceless. If we now consider this s
field coupled to a gravitational background

(8)Sg,ϕ = 1

2

∫
d4x

√−g gµν∂µϕ∂νϕ,

and expand the metricgµν around the flat metricηµν ,

(9)gµν = ηµν + hµν + ηµνh,

wherehµν is traceless, we get

Sg,ϕ = 1

2

∫
d4x

(
∂µϕ∂µϕ

(10)− hµν∂µϕ∂νϕ + h∂ρϕ∂ρϕ
)
,

where indices are raised and lowered with the
metric. Since both actions, (7) and (10), have the sa
structure we can identify a linearized backgrou
gravitational field

hµν = θµαFα
ν + θναFα

µ + 1

2
ηµνθαβFαβ,

(11)h= 0.

Then, the effect of noncommutativity on the comm
tative scalar field is similar to a field dependent gra
tational field.
The same procedure can be repeated for the c
plex scalar field. After the SW map the action (4)
duces to

Sφ =
∫

d4x

[
Dµφ(Dµφ)

†

− 1

2

(
θµαFα

ν + θναFα
µ + 1

2
ηµνθαβFαβ

)

(12)×Dµφ(Dνφ)
†
]
.

Note again that the tensor inside the parenthes
traceless. Now the action for the charged scalar fi
in a linearized gravitational field is

(13)

Sg,φ =
∫

d4x
[
Dµφ(Dµφ)

† − hµνDµφ(Dνφ)
†

+ 2hDµφ(Dµφ)
†],

which has the same structure as the action (12). He
the background gravitational field in this case is

hµν = 1

2

(
θµαFα

ν + θναFα
µ
) + 1

4
ηµνθαβFαβ,

(14)h= 0.

Then charged fields feel a gravitational backgrou
which is half of that felt by the uncharged one
Therefore, the gravity coupling is now dependent
the charge of the field, being stronger for unchar
fields. Notice that the gauge field has now a dual r
it couples minimally to the charged field and also a
gravitational background.

We can now consider the gauge field. As it is w
known, the SW map gives rise to the following actio

SA = −1

4

∫
d4x

[
FµνFµν

(15)+ 2θµρFρν
(
Fµ

σFσν + 1

4
ηµνF

αβFαβ

)]
.

Again, the tensor inside the parenthesis is tracel
At this point we could be tempted to consider th
action as some gravitational action build up fro
the metric (11) or (14). Since the field streng
always appears multiplied byθ inside the metric, al
invariants constructed with it will be of orderθ . Hence,
they cannot give rise to (15), unless they appea
combinations involving the inverse ofθ . If we insist
in having an action which is polynomial inθ the best
we can do is to regard the gauge field as havin
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double role again and couple it to gravitation as in
previous case. The linearized coupling of the Maxw
action is

(16)Sg,A = −1

4

∫
d4x

(
FµνFµν + 2hµνFµρFρν

)
.

Since it does not couple to the trace part of the m
ric h remains arbitrary andhµν is given by (14). Since
the NC gauge field resembles a non-Abelian ga
field we expect that its commutative counterpart c
ple to the same gravitational field as the charged o
It should also be remarked that in this case the grav
tional field cannot be interpreted just as a fixed ba
ground since it depends on the dynamical gauge fi

Having determined the field dependent backgro
metric we can now study its properties. We w
consider the metric which couples to the charg
fields (14). To consider the metric (11) we have j
to replaceθ by 2θ . The linearized metric is then

gµν = ηµν + 1

2

(
θµαF

α
ν + θναF

α
µ

)

(17)+ 1

4
ηµνθ

αβFαβ .

The geometric quantities can be evaluated with
difficulty and we find

(18)

Rµνρσ = 1

2

[−θα[µ∂ν]∂αFσρ + θρα∂
α∂[µFν]σ

+ θσα∂ρ∂[µFα
ν]

+ θαβ(ησ [µ∂ν]∂ρFαβ − ηρ[µ∂ν]∂σFαβ)
]
,

(19)

Rµν = 1

4

(
θµ

α∂α∂
βFβν + θν

α∂α∂
βFβµ

+ 1

2
ηµνθ

αβ✷Fαβ
)
,

(20)R = 1

4
θαβ✷Fαβ .

Notice that all of them, and also the Christoff
symbol, are first order inθ . Since on-shell and in th
absence of matter∂µFµν is first order inθ , then✷Fµν
is also first order.2 This means that the Ricci tensor a
the scalar curvature both vanish but not the Riem

2 Notice that field equations for the gauge field are deriv
from (15) which is defined in flat space–time. Hence in the fi
equations and solutions the Minkowski metric is used.
tensor so that the metric (17) is not that of a flat spa
time. Then, to order zero inθ , Fµν satisfies the wave
equation and is a function ofkµxµ with k2 = 0. Hence,
the metric has all symmetries of a gravitational pla
wave.

More rigorously, we find that the noncommutati
parameter is covariantly conservedDµθ

αβ = 0. We
then have a geometry equipped with a covarian
constant two-form. Sinceθαβθαβ = 0 to first order
then the two-form is also null. The existence
this covariantly null two-form guarantees that t
metric (17) describes a pp-wave [12]. More than th
if we consider the solution for the gauge field to fi
order in θ and in the absence of matter asFµν =
k[µFν], with kµ a null vector andFµ transversal
kµFµ = 0, then∂αRµνρσ = kαRµνρσ and the complex
Riemann tensor

(21)Pµνρσ =Rµνρσ + i

2
ερσ

αβRµναβ

satisfies∂αPµνρσ = kαPµνρσ . This shows that the pp
wave is in fact a plane wave [12]. Then the metric (1
is that of a gravitational plane wave.

We can now turn our attention to the behavior o
massless particle in this background. Its geodesic
described by

ds2 =
(

1+ 1

4
θαβFαβ

)
dxµ dxµ

(22)+ θµαF
α
ν dx

µ dxν = 0.

If we consider the case where there is no noncom
tativity between space and time, that isθ0i = 0, and
calling θ ij = εijkθk , F i0 = Ei , andF ij = εijkBk , we
find to first order inθ that

(1− 
v2)(1− 2
θ · 
B)− 
θ · (
v × 
E)
(23)+ 
v2
θ · 
B − ( 
B · 
v)(
θ · 
v)= 0,

where
v is the particle velocity. Then to zeroth orde
the velocity 
v0 satisfies
v2

0 = 1 as it should. We can
now decompose all vectors into their transversal
longitudinal components with respect to
v0, 
E = 
ET +

v0EL, 
B = 
BT +
v0BL and
θ = 
θT+
v0θL. We then find
that the velocity is

(24)
v2 = 1+ 
θT · ( 
BT − 
v0 × 
ET).

Hence, a charged massless particle has its velo
changed with respect to the velocity of light b
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an amount which depends onθ . For an uncharge
massless particle

(25)
v2 = 1+ 2
θT · ( 
BT − 
v0 × 
ET),

and the correction due to the noncommutativity
twice that of a charged particle.

We can now check the consistency of these res
by going back to the original actions (7) and (1
and computing the group velocity for planes wav
Upon quantization they give the velocity of the partic
associated to the respective field. For the uncha
scalar field we get the equation of motion

(26)

(
1− 1

2
θµνFµν

)
✷ϕ − 2θµαFαν∂µ∂νϕ = 0.

If the field strength is constant we can find a pla
wave solution with the following dispersion relation

(27)

(
1− 1

2
θµνFµν

)
k2 − 2θµαFανkµkν = 0,

and using the same conventions for vectors as be
it results in

(28)

k2

ω2 = 1− 2
θT ·
(


BT − 
k
ω

× 
ET

)
,

wherekµ = (ω, 
k). We then find that the phase an
group velocities coincide and are given by (25)
expected. For the charged scalar field we have to
off the gauge coupling in order to get a plane wa
solution. In this case the equation of motion is

(29)

(
1− 1

4
θµνFµν

)
✷φ − θµαFα

ν∂µ∂νφ = 0.

In a constant field strength background the dispers
relation for a plane wave reads as in (27) withθ
replaced byθ/2. Then we must perform the sam
replacement in the phase and group velocities and
get (24). Therefore, in both pictures, noncommuta
and gravitational, we get the same results.

For the gauge field the situation is more sub
because of its double role. There is no clear way
split the action (15). What can be done is to break
the gauge field into a background plus a plane wav
in [10]. We then get the following dispersion relatio

(30)k2 − 2θµαFανkµkν = 0,

where Fα
ν is now the constant background. Th

leads to (28), that is, the dispersion relation for
uncharged scalar field. It also reproduces the re
in [10,11] when the background is purely magne
This shows the dual role of the gauge field, sin
it couples to gravitation as a charged field but
dispersion relation is that of an uncharged field.

We have seen in this Letter that it is possible to
gard noncommutative theories as conventional th
ries embedded in a gravitational background produ
by the gauge field. This brings a new connection
tween noncommutativity and gravitation. We cou
imagine that this is a peculiarity of the first order te
in theθ expansion of the SW map. If we consider t
SW map for the scalar field to second order inθ we
find that it is linear in the scalar field. A short calc
lation shows that the action (3) remains quadratic
ter the SW map and that it can be cast again in
form (8) since all terms of the form∂2ϕ∂2ϕ cancel.
Then it seems to be possible to keep the same in
pretation to all orders inθ .
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