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By its nature, metal fatigue has random characteristics, leading to extensive scatter in the
results. Both initiation and propagation of a fatigue crack can be seen as random processes.
This manuscript develops a numerical analysis using cohesive zone elements allowing the
use of one single model in the finite element simulation of the complete fatigue life. The
present formulation includes a damage evolution mechanism that reflects gradual degra-
dation of the cohesive strength under cyclic loading. The uncertainties inherent to the fati-
gue process are assumed to be caused by the variability of the material properties, which
are modeled using random fields. An extrapolation scheme is proposed to reduce the com-
putational time. First, the accuracy of the proposed formulation is assessed considering a
deterministic crack growth problem. Second, the effect of randomness in the material
properties on the total fatigue life of a structure is then analyzed.

� 2011 Elsevier Ltd. Open access under CC BY-NC-ND license.
1. Introduction

Fatigue is the dominant failure mode of mechanical components subject to alternating loadings, leading to fracture at a
stress level much lower than the yield stress of the material. One or several cracks initiate and propagate into the structure,
leading to sudden fracture once a critical length is reached.

The most widely used model to predict fatigue crack growth is the Paris–Erdogan equation [19] or any of its further
implementations [5,28]. They consist of a phenomenological relation between the crack growth rate (da/dn) and the stress
intensity factor range (DK). Numerical methods have been developed in order to determine the stress intensity factor of
complex structures incorporating one or several cracks, such as the finite element alternating method [27] or the extended
finite element method [15]. Such methods can be used in combination with the Paris–Erdogan equation to model fatigue
crack growth (see for instance [29,20,24]). However, specific requirements have to be met to ensure that Paris–Erdogan
equation is predictive. A long initial crack must be initially present and yielding at the crack tip must be limited. These con-
ditions do not apply to most engineering structures, where no flaw is initially present.

Cohesive zone elements are an alternative method to account for crack growth by means of finite element simulation.
Such models have been pioneered by Dugdal [4] and Barrenblatt [1]. In this context, fracture is considered a gradual phe-
nomenon, with the progressive separation of the lips of an extended crack. Cohesive elements consists of zero-thickness ele-
ments that are inserted between the bulk elements (see Fig. 1) and account for the resistance to crack opening by means of a
dedicated traction displacement law. This cohesive force dissipates, at least partially, the energy related to crack formation.
De Borst et al. [3] introduced a partition of unity based approach, which allows to model cohesive cracks independently from
the mesh.
ller).
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Nomenclature

a first parameter of the cohesive law in case of monotonic loading
b second parameter of the cohesive law in case of monotonic loading
C(�,�) covariance function
D damage parameter of a cohesive element
Dt damage in a cohesive element at the time t
E(�) average operator
K stiffness matrix of a cohesive zone element
l0 parameter monitoring the decay of the correlation between the value of the realization of a random field ele-

ments as the distance increases
N matrix of the shape functions
N1, N2 shape functions
R matrix linking the displacement in the global coordinate system to the displacement in the cohesive element

coordinate system (normal and tangential displacements)
S matrix of the material properties of a cohesive element
T0 fourth parameter of the cohesive law in case of cyclic loading
Tcoh the cohesive traction vector
Text the external traction vector
Tn stress in the normal direction
Tt stress in the tangential direction
u the displacement vector
usurface i

j denotes the displacement of the cohesive surface i in the direction j

uX
i the displacement of the node X in the direction i

V volume
x, x1, x2 spacial coordinates
Y random field
Y1, Y2, Y3 random fields used to model the material parameter of cohesive elements
a first parameter of the cohesive law in case of cyclic loading
b second parameter of the cohesive law in case of cyclic loading
c third parameter of the cohesive law in case of cyclic loading
D relative displacement between adjacent cohesive surface
ep plastic strain in a bulk element
DD1, DD2, DD3, DD4 variation of the damage over on cycle
dn normal component of the relative displacement between adjacent cohesive surfaces
dt tangential component of the relative displacement between adjacent cohesive surfaces
du test field
de symmetric gradient of the test field
f set of outcomes of an experiment
h the angle of a cohesive element with respect to the horizontal direction
ki eigenvalue of the correlation matrix
l(�) mean function
lY mean value of the random field Y
n set of independent identical distributed standard normal random variables
q(�,�) correlation function
r stress tensor
r(�) standard deviation function of the random field Y
r stress in a bulk element
ry first parameter of Voce law (yield stress)
ru second parameter of Voce law (ultimate stress)
U eigenvector of the correlation matrix
x third parameter of Voce law
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The cohesive zone elements described above are not suitable for modeling fatigue crack growth. In such cases, the param-
eters of the finite element model do no longer evolve after few cycles, leading to crack arrest. Nguyen et al. [17] extended the
cohesive law to include fatigue crack growth. In order to account for fatigue crack growth, a deterioration of the material
properties at each cycle has been introduced. During the unloading–reloading process, the cohesive law shows an hysteresis
loop, the slight decay of the stiffness simulates fatigue crack propagation. Such cohesive elements account for both the crack
initiation and the crack propagation.

Engineers are aware that the fatigue behavior of components is strongly affected by uncertainties, i.e. nominally identical
structures undergoing the same load spectrum present extensive scatter in their fatigue life. Crack initiation [13] and crack



Fig. 1. Insertion of cohesive zone elements at the interface of bulk elements.
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propagation [25] can both be seen as uncertain processes. Hence several authors have proposed a probabilistic analysis of the
fatigue life of structures. Kebir et al. [11] considered a probabilistic S–N curve to model the time to crack initiation. Proppe
and Schuëller [20] used the equivalent initial flaw size including uncertainties in both the coefficient of Paris–Erdogan equa-
tion and the length of the cracks initially introduced. The variability of the crack growth process can alternatively be modeled
using stochastic differential equations (see e.g. [22]).

The time to crack initiation, the growth rate and the final fracture process might all include uncertainties. Most of the
methods available in the literature require to set up several probabilistic models which have to be combined in order to ac-
count for all kind of uncertainties inherent to fatigue (see [12]). Cohesive elements provide an unified framework to describe
the whole fatigue life. A formulation for cohesive zone elements was developed in order to describe accurately the fatigue
behavior using a single probabilistic model (see Section 2.1 of this manuscript).

Section 2 describes the method of analysis used in this study. The formulation of a cohesive law is proposed and It includes
a damage variable which governs fatigue crack growth. Random fields are used to model the variability of material param-
eters and Samples of the random fields are generated using Monte Carlo simulation. A method reducing the computational
time of the finite element simulation of the fatigue life is proposed. Section 3 presents two numerical examples. First only
deterministic crack growth is considered. In the second example, the variability of the fatigue life is assessed, both crack ini-
tiation and propagation, respectively, are considered. The results of the simulations are presented and discussed in Section 4.
This document closes with some final remarks and an outlook for possible future extension of the model reported herein.

2. Method of analysis

A cohesive law for fatigue crack growth has been developed. It includes a memory variable that accounts for the degra-
dation of the material under alternating load. The variability of fatigue crack initiation and propagation can be modeled using
random fields. Samples are generated using Monte Carlo simulation and taken as the material parameters of the cohesive
element formulation developed in this study. Performing cycle by cycle simulation of the fatigue life would be computation-
ally prohibitive, even considering small finite element models. Hence an extrapolation scheme is proposed to speed up the
simulation time.

2.1. Cohesive law for fatigue cracks

2.1.1. General remarks
The formulation of a cohesive zone element for fatigue cracks is proposed. First the general aspects of the implementation

are discussed without accounting for the material properties. Then a cohesive law dedicated to fatigue cracks is introduced.

2.1.2. Implementation of a cohesive element
Let us consider a solid containing a cohesive surface. Using the principle of virtual work, the mechanical equilibrium can

be expressed as:
Z
V
r : dedV �

Z
Sint

Tcoh � dDdS ¼
Z

Sext

TextdudS ð1Þ
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where V, Sint and Sext are the bulk volume, the cohesive surface and the external surface, r, Tcoh and Text denote respectively
the stress tensor, the cohesive traction vector and the external traction vector, de is the symmetric gradient of the test field u.
D denotes the relative displacement between adjacent cohesive surfaces. The second terms of the left-hand side of Eq. 1 rep-
resents the contribution of cohesive elements. D can be expressed independently from the orientation of a cohesive element
as:
Fig. 2.
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where h denotes the angle of a cohesive element with respect to the horizontal (see Fig. 2), dt and dn denote respectively the
tangential and the normal component of the relative displacement between adjacent cohesive surfaces (in the coordinate
system attached to the element of interest). usurface i

j denotes the displacement of the cohesive surface i in the direction j
(i.e. in Fig. 2 the cohesive surfaces are the segments AB and CD).

Considering an element as shown in Fig. 2, the displacement of the cohesive surfaces can be related to the nodal
displacements:
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ð3Þ
where N1 and N2 denote the shape functions, uX
i is the displacement of the node X in the direction i (i being the horizontal or

vertical direction in this study, X being the node A, B, C or D in Fig. 2). Numerical integration was performed according to
Newton–Cotes scheme. Indeed, the integration points are located at the extremities of the center-line of a cohesive element,
as shown on Fig. 2a. Such integration scheme provides better robustness of the implementation by avoiding spurious oscil-
lations in the stress field of the cohesive elements [21]. Fig. 2b presents the aspect of the shape functions.

The nominal traction rates are expressed as:
_Tt

_Tn

" #
¼

@Tt
@dt

@Tt
@dn

@Tt
@dn

@Tn
@dn

" #
�

_dt

_dn

" #
¼ S �

_dt

_dn

" #
ð4Þ
where Tn and Tt respectively denote the stress in the normal and tangential direction, _dn (resp. _dt) denotes the normal (resp.
tangential) traction rate (see Eq. 2). S denotes the matrix of the material properties independently from the geometry of the
element. Using Eqs. (2)–(4) the stiffness matrix of one cohesive element can be expressed as:
K ¼
Z

S
NT � RT � S � R � NdS ð5Þ
Eq. (5) was used as the basis for implementation of a user defined element subroutine in the finite element code FEAP [23].
In this study, the cracks are loaded according to mode 1 (opening mode, the stress is perpendicular to the crack direction).

Hence the tangential stiffness was neglected and it was not implemented in the formulation proposed here.

2.1.3. Monotonic loading
The mechanical model proposed by Needleman [16] was used in the case of monotonic loading. The cohesive stress is

given by:
(a) (b)
Details about the implementation. (a) Aspect of a deformed cohesive element. Crosses denote the location of integration points. (b) Evolution of the
unctions among the center-line of an element.
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T ¼ a � d � exp � d
b

� �
ð6Þ
where a and b are material parameters. The features of the stress–displacement law are shown in Fig. 3. When a such an
element undergoes separation the cohesive force first increases, which models the resistance of material to crack propaga-
tion. If the displacement exceeds a critical value, the cohesive force decreases, which accounts for the decay of strength of the
damaged material (i.e. voids or microcracks appear ahead of the crack tip). The maximum stress is reached for d = b. The va-
lue of parameters a and b has to be selected carefully. Low values of a lead to underestimated maximum stress of the cohe-
sive law. During finite element simulations, the yield stress of the bulk material may never be reached, and lead to modeling
brittle fracture. High values of a lead to a unreasonably high value of the maximum stress of the cohesive law. This stress
may never be reached and only plastic collapse is modeled. The coefficient b indirectly influences the fracture behavior. It
monitors the repartition of stress at the crack tip. It was noticed that the stress ahead of the crack tip decreases faster with
the distance for lower values of b.

2.1.4. Unloading
Unloading of a structure can be defined as a decrease of the applied stress. However, this definition cannot be systemat-

ically generalized to the behavior of one single cohesive element. Local unloading can be caused by global unloading of the
structure, by a change in the repartition of stress as a crack propagates or by interactions between cracks. Since cohesive
element show softening, loading (resp. unloading) is defined as a increase (resp. decrease) of the separation. Eq. (6) does
not apply when unloading is considered. Indeed, the behavior of the cohesive elements has to account for irreversibility
of crack growth. The stiffness of the cohesive elements is reduced by damage and unloading occurs linearly at constant stiff-
ness so that stress vanishes when the separation is equal to zero.

2.1.5. Cyclic loading
In conventional formulations of cohesive zone elements, an unloading–reloading cycle is performed at constant stiffness.

Such formulations are dedicated to fracture mechanics only. The cohesive law presented up to now is non-dissipative, since
there is no degradation of the material properties over a cycle, leading to crack arrest after few cycles. The material law pro-
posed previously was extended to cyclic loading. It consist of a cohesive envelop describing the behavior of an element under
monotonic loading and an hysteresis loop accounts for the damage accumulation at each fatigue cycle. When a cohesive ele-
ments element undergoes unloading and then reloading, the stiffness is slightly decreased as the stress is increased. The rate
of loss of stiffness is driven by Eq. (7). When the stress at reloading reaches and exceeds the stress predicted by the cohesive
envelop (at given displacement), the behavior of the elements is according to the cohesive envelop (determined by Eq. (6)).
The history of each element is described using a scalar damage parameter whose value is within the range [0–1]:
_D ¼ a � Tb
n �maxðTn � T0;0Þc ð7Þ
where a, b, c and T0 are material parameters. The parameter T0 is the stress at which damage does no longer accumulate in
the material. In case of homogeneous reparation of the stress (at least among the crack path), the fatigue limit is equal to the
value of T0. The coefficient a monitors the rate at which damage accumulates. The coefficients b and c monitor sensitivity of
damage rate to the stress.

At any moment during cyclic loading, the normal stress in a cohesive element is equal to:
0 b
Displacement (mm)

St
re

ss
 (M

Pa
)

Cohesive envelop 

Reloading

Unloading

Aspect of the cohesive law

Fig. 3. Aspect of the traction displacement law for cohesive elements.
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Tn ¼
a
b
� ð1� DÞ � un ð8Þ
where a and b are the parameters of the cohesive envelop law, given by Eq. (6), D is the total damage accumulated in an
element and un is the relative displacement in the direction normal to the center-line of the element.

The case D = 0 correspond to virgin material. When the first loading is applied, the behavior of the element is determined
by Eq. (6) until unloading occurs. The case D = 1 corresponds to completely damaged elements, which do not transmit any
stress. Such elements correspond to the physical crack. The case D� 1 and D� 0 corresponds to the cohesive crack tip.

2.1.6. Compression
If compressive stress is applied, the crack lips should be in contact with each other. In order to limit overlapping of the

bulk elements, the cohesive elements show a penalty stiffness if the separation is less than zero. In this study, the penalty
stiffness was arbitrarily set to 10�a/b. Damage does not accumulate in elements under compression.

2.2. Random field model

A random field is a rule for assigning to any set of outcomes of an experiment f a function Y(x) = Y(x, f). x denotes spacial
coordinates (scalar or vector), but it can be extended to any other quantity (time, etc.).

The dependency towards the outcome f can be omitted. Then Y(x) is a set of functions. If coordinate x is fixed, Y(x) is a
random variable, called state of the random field. In case f is known, Y(x) is a deterministic function, called realization. If both
f and x are fixed, Y(x) is a number.

A random field has a parametric representation if an analytical expression links the random field to the spacial coordinate
and to the set f:
YðxÞ ¼ f ðx; fÞ ð9Þ
where f is any explicit analytical function. Y(x) is fully determined by the joint probability density function of the set Y. If the
later can be determined, realizations of the random field can be computed using the Monte Carlo simulation. The Gaussian
random field corresponds to the particular case where the elements of f are Gaussian distributed random variables.

The second moments of a random field provide meaningful information, i.e. its mean (Eq. (10)) and covariance (Eq. (11))
functions:
lðxÞ ¼ EðYðxÞÞ ð10Þ
Cðx1; x2Þ ¼ EððYðx1Þ � lðx1ÞÞðYðx2Þ � lðx2ÞÞÞ ð11Þ
The correlation function can be used alternatively for the covariance in order to asses the variability of a random field:
qðx1; x2Þ ¼
EðYðxÞÞ

rðx1Þ � rðx2Þ
ð12Þ
where r(x) is the standard deviation function of Y(x).
A random field is said to be homogeneous if the statistical properties do not depend on the coordinates but on the relative

distance only. In such a case, it shows a constant mean function, and the correlation (and covariance) function depend only
on the distance between points.

In practical engineering applications, a finite set of the spacial coordinate x = x1, . . . ,xn is considered. In this case, the cor-
relation function can be substituted by a quadratic symmetrical matrix of size n � n. Realizations from any Gaussian distrib-
uted homogeneous random field can be computed using the Karhunen-Loève expansion:
Y ¼ lY þ
Xn

i¼1

ffiffiffiffi
ki

p
niUi ð13Þ
where the ki (resp. Ui), i = 1, . . . ,n are the eigenvalues (resp. eigenvectors) of the correlation matrix, n = n1, . . . ,nn is a set of
independent identical distributed standard normal random variables.

The Karhunen-Loève expansion allows accurate representation of a Gaussian field with a truncation of the sum to m < n,
using the m largest eigenvalues of the correlation matrix.

2.3. Material models

This study is focused on the fatigue crack growth in aluminum 2024-T3 alloy. The plastic strain hardening is assumed to
be according to the Voce law [26]:
r ¼ ru þ ðry � ruÞ � expð�x � epÞ ð14Þ
where r is the stress, ep is the plastic strain. ry, ru and x denote material parameters. ry and ru are respectively the yield
stress and the ultimate tensile stress of the material predicted by the Voce model.
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The parameters of bulk material and of the cohesive envelop (coefficients a and b of Eq. 6) where determined by fitting the
data available in [9].

Table 1 summarizes the material properties used in all the numerical examples in this study.
The deterministic values of the coefficients of Eq. 7 are determined using the experimental values available in [14]. The

identification is done by solving an optimization problem. The absolute difference between the experimental and the numer-
ical results is measured at three different points (see Fig. 4). The method is applied to four stress levels and two different
geometries (shown in Fig. 7b). The sum of the absolute difference is then minimized.

The coefficients of Eq. 7 are modeled using random fields. a is likely to vary over several orders of magnitude. This var-
iation was described using an auxiliary random field Y:
a ¼ 10�Y1 ð15Þ
where Y1 is a one-dimensional Gaussian random field, its mean is equal to �4.4 and its standard deviation is equal to 0.75.
Samples of Y1 are generated at the center-point of the elements of the mesh. The correlation function was assumed to be:
qðxÞ ¼ exp � x
l0

� �
ð16Þ
where x denotes the distance between two elements. l0 monitors the decay of the correlation between the value of the real-
ization of a random field elements as the distance increases. High values of l0 leads to fast evolution of the parameter. The
difference of the material parameter in adjacent elements may lead to nonphysical results. Low values of l0 leads to an under-
estimation of the variability. In this study, l0 was taken equal to 10 mm.

The coefficients of the equations governing fatigue crack growth are assumed to be strongly correlated in order to de-
scribe stochastic fatigue crack growth (see for instance [7,10] for an application with Paris–Erdogan equation). In this study,
trial and error iterations showed that better results are obtained considering correlation between the parameters a, b and c
of Eq. (7). This is caused by the mathematical formulation of the increase of the damage parameter (7).
b ¼ 1
3
� ð1� 0:33 � ð5:5þ Y1ÞÞ þ Y2 ð17Þ

c ¼ 2
3
� ð1� 0:33 � ð5:5þ Y1ÞÞ þ Y3 ð18Þ
where the coefficient Y2 and Y3 are one-dimension Gaussian random fields whose mean is equal to 0 and standard deviation
is equal to 0.0035. The random field Y1 accounts for the increase of the scatter in the fatigue life when the applied stress is
Table 1
Material properties used in finite element simulations.

Young modulus (MPa) 70,000
Poisson ratio 0.3
Coefficient ry of Eq. (14) (MPa) 330
Coefficient ru of Eq. (14) (MPa) 650
Coefficient x of Eq. (14) 10
Coefficient a of Eq. (6) (MPa) 1500
Coefficient b of Eq. (14) (mm) 0.05

Fig. 4. Schematic representation of the estimation of the absolute difference between the experimental and the numerical results.
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decreased. The random fields Y2 and Y3 increases the dispersion of the results independently from the applied stress. The
coefficient T0 of Eq. (7) was set equal to 100 MPa.

2.4. Acceleration of simulations

2.4.1. General remarks
For high cycle fatigue applications, cycle by cycle finite element simulation of the complete fatigue life would be compu-

tationally prohibitive, even for small structures with a limited number of degrees of freedom. A procedure reducing the sim-
ulation time with limited loss of accuracy needs to be developed.

Two time scale can be distinguished during the fatigue life. A short time scale correspond to the evolution of the param-
eters (stress, damage, plastic strain, etc.) over one cycle. The long time scale correspond to the evolution over several cycles.
Oskay and Fish [18] used temporal homogenization to perform acceleration of convergence, using the long and short time
scale state previously.

Several authors used extrapolation of the results over one or several cycles. Jiang et al. [8] used linear extrapolation of the
parameters, based on Taylor expansion with respect to the number of applied cycles. Andrés et al. [2] developed an proce-
dure based on interpolation and extrapolation of material parameters. In this study, the proposed algorithm is derived from
the Runge–Kutta method for ordinary differential equations. It consists of several estimations of the variation of parameters
over one cycle. These data are then used for extrapolation.

2.4.2. Algorithm
Let us assume that at the instant t all the parameters describing a finite element model undergoing fatigue loading is

known (i.e. the value of plastic strains, damage, nodal displacement are given). The damage (Dt) of each cohesive element
is approximated at time t + h (h being a large number of cycles) according to the scheme described below (see Fig. 5).

� The damage in the cohesive elements is initially known (it can be read from the input/output files of a finite element soft-
ware). A finite element simulation is performed over one cycle. The damage parameter of all cohesive elements is col-
lected after and before the finite element simulation. The variation of the damage over one cycle DD1 is defined as the
difference between damage a the beginning and at the end of the simulation. Damage is then extrapolated at time
t þ h

2 according to Eq. (19).
Fig. 5.
estimat
Dtþh
2;1
¼ Dt þ

h
2
� DD1 ð19Þ
� The parameters are extrapolated according to Eq. (19) and introduced in the input file of the finite element software. A
simulation is performed over one cycle, the variation of damage is DD2 is computed, it is the difference between Dtþh

2;1
and

the value at the end of the simulation. Damage at time t þ h
2 is now extrapolated according to Eq. (20).
Dtþh
2;2
¼ Dt þ

h
2
� DD2 ð20Þ
� Another finite element simulation is performed, using data extrapolated from Eq. (20). Variation of damage over one cycle
is denoted DD3. Extrapolation at time t + h is performed according to Eq. (21).
Dtþh ¼ Dt þ h � DD3 ð21Þ
� A finite element simulation over one cycle is performed using data approximated at time t + h (according to Eq. (21)). Var-
iation of damage over one cycle, denoted DD4, is computed.
Procedure of the acceleration of convergence (Illustration of Eqs. (19)–(21)). Solid lines represent the evolution of the damage over one cycle,
e by the mean of finite element simulation. Dash lines represent the extrapolation steps.



Fig. 6. Results of the acceleration of convergence. (a) Accuracy of the method. (b) Speedup.
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� The damage in cohesive elements is eventually extrapolated using a weighted average of the variations estimated during
previous steps (Eqs. (19)–(22)):
Dtþh ¼ Dt þ
h
6
� ðDD1 þ 2 � DD2 þ 2 � DD3 þ DD4Þ ð22Þ
This procedure is also applied for the nodal displacements and plastic strains (without performing extra simulation).
Fig. 5 schematizes the procedure of acceleration of the simulations.

This procedure is successively repeated until fracture occurs. Then the input file several steps before fracture is restored,
and the extrapolation scheme is repeated with a reduce time step in order to improve the accuracy of the method.

2.4.3. Efficiency of the proposed procedure
The efficiency and accuracy of the proposed scheme were estimated on the structure shown in Fig. 7b. A crack is assume

to initiate at the central hole and propagate on the center-plane of the structure. Hence cohesive elements were inserted at
this location. The structure underwent an alternating stress with rmax = 206 MPa and rmin = 70 MPa.

The reference fatigue life was obtained with cycle to cycle finite element of the fatigue life (147,595 cycles). Then the pro-
posed algorithm was applied with several time steps.

Fig. 6a shows the accuracy of the method. The error caused by the extrapolation is less than 1%. The computation cost was
greatly reduced. The full fatigue simulation last approximately 48 h, it was reduced to about 10 min using the extrapolation
scheme.
3. Numerical examples

Two finite element models have been used to asses the accuracy of the cohesive element implementation. The first exam-
ple considers only deterministic growth of a long crack. The second example considers uncertainties, initiation and growth of
a fatigue crack.

3.1. Fatigue crack growth

McEvily and Illg [14] conducted an extensive study to investigate the crack growth rate of aluminum alloy 2024-T3. The
specimen developed in this study was modeled using the finite element method. It consist of a rectangular plate with a crack
propagating from its center (see Fig. 7a). A stress raiser was introduced at the center, it consists of a circular hole with an
initial crack perpendicular to the stress direction. Two structures are considered, the specimen A is approximately 51 mm
(2 in. in [14]) wide, the specimen B is approximately 305 mm (12 in.) wide.

The structure is subject to an alternating stress and the evolution of the crack length with respect to the number of ap-
plied cycle is estimated. The investigation of crack growth rate starts once the crack length exceeds 5.04 mm.

A finite element mesh of the structure was generated using Patran. Considering the symmetry of the structure, the two
tips of the crack were assume to propagate at the same rate. Hence, only one quarter of the specimen was modeled. Cohesive



(a) (b)
Fig. 7. Geometry of the specimens. (a) Specimen used to investigate fatigue crack growth. (b) Specimen used to investigate the total fatigue life.
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elements were initially introduced at the crack path. At each iteration, the stress, damage and opening of all the cohesive
elements are exported for each integration point for further post-processing.
3.2. Fatigue life of a structure

Illg investigated the fatigue life of specimen subject to various alternating stress levels [6]. The specimens consist of a
plate with two notches from which crack may initiate and propagate as presented on Fig. 7. The variability of the fatigue
life was investigated using a random field model in combination with the proposed cohesive zone element formulation.

Since uncertainties are considered, the structure is no longer symmetrical with respect to the y-axis (vertical axis in
Fig. 7): the material properties of cohesive elements are different. Thus a single crack may initiate at one side of the structure
and propagate through the specimen. Half of the structure was considered in the finite element simulations (the symmetry
among the crack path is still valid).

No crack is initially present in the finite element model. Cohesive elements are initially inserted along the expected crack
path (the center-line of the structure). These elements account for both crack initiation and propagation.

Several values of the pick stress have been investigated: 206, 241, 276 and 345 MPa. The minimum stress was set so that
the average stress over a cycle is equal to 138 MPa, with a linear evolution from the minimum to the maximum stress.

An adaptive time step used in the procedure of acceleration of the simulation. The initial time step was a priori set so that,
on the average, each simulation is performed in at least approximately 100 iteration (an iteration is defined as performing all
the computations described by Eqs. (19)–(22)). The precision of such a procedure is equal to the value of the time step. Once
the final fracture occurs, the situation at the beginning of the previous step is restored and the value of the time step is de-
creased. This procedure is repeated until the value of the time step is negligible with respect to the total fatigue life. Typi-
cally, the final value of the time step is less than 0.1–0.01% of the total fatigue life.
4. Results

The proposed formulation could be used successfully to model the behavior of components subject to fatigue. The
repartition of the stress predicted using cohesive elements is in good agreement with reference results obtained using
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the extended finite element method. The proposed formulation could be successfully used to model deterministic fatigue
crack growth. Finally, the uncertainties inherent to the fatigue life could be estimated.
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Fig. 8. Comparison of the stress repartition in front of the crack tip using extended finite element method and cohesive elements.
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4.1. Stress repartition

The repartition of the stress in front of the crack tip was investigated. The stress obtained with cohesive elements were
compared to results from the extended finite element method, without accounting for plasticity. The results from the cohe-
sive models were obtained after 2.2 � 104 cycles with a pick stress equal to 176 MPa. Hence all the elements are affected by
the history of the model. The results using both numerical methods show a good fit (see Fig. 8). The stress repartition differs
slightly at the crack tip according to the method used. It can be explained by the influence of the cohesive elements, which
allow a slight displacement of the node ahead of the crack tip (artificial crack opening) and also by the fact that plasticity was
not modeled with the extended finite element method.

The cohesive elements near the center of the plate (lower x-coordinates) are completely damaged, i.e. the internal dam-
age parameter is equal to one. Such elements can no longer resist to the crack growth: they do no longer transmit the stress
between the two lips of the crack (the stress is equal to zero). The elements whose x-coordinate is approximately 25 mm
correspond to the cohesive crack tip. The cohesive elements far from the crack tip do not influence the far field stress.

4.2. Fatigue crack growth

Fig. 9 shows the evolution of the crack length with respect to time, compared to the experimental results from Illg [6]. The
crack length when the fracture occurs is smaller for the specimen A than for the specimen B, i.e. qualitatively, for both the
numerical and experimental results. Results from [6] show that the crack growth rate is higher for the specimen A than for
the specimen B. The proposed approach reflects this trend. The numerical model describes accurately the crack growth for a
pick stresses of 100 and 172 MPa. However, the quality of the fit is not as good in the case of the pick stress of 68 and
206 MPa. This may be caused by the method used to determine the coefficients of Eq. (7). The crack growth rate was modeled
over a wide range of pick stress and the quality of the fit is better at the middle of the stress range than at its bounds.

4.3. Fatigue life considering uncertainties

The uncertainties inherent to the fatigue life of the structure shown in Fig. 7b have been assessed using Monte Carlo sim-
ulation with 200 samples. As explained in Section 2.2, the coefficients monitoring the damage in cohesive elements are mod-
eled with random fields. Fig. 10 shows the results of the Monte Carlo simulation. The proposed model describes accurately
the evolution of the mean of the fatigue life. The cohesive zone elements allow to describe the evolution of the fatigue life
considering uncertainties over a wide range of applied stress. The detailed results are shown in Appendix A.

5. Conclusions

Cohesive zone elements are alternatively used to the Paris–Erdogan equation for modeling components subject to fatigue
loading. They allowed to model accurately deterministic crack growth. The study was then extended to fatigue crack initi-
ation and propagation considering uncertainties. Cohesive zone elements provide an approach to model fatigue cracks from
the initiation until final fracture using a single probabilistic model. Random fields have been used to model the variability of
the material properties. The method is based on finite elements simulation and could be extended to more complex struc-
tures. In such cases, the fatigue life cannot be estimated from the SN curves and only simulations allow to model fatigue
crack initiations and propagation.
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An extrapolation scheme of the damage variable has been proposed. It allows to reduce extensively the simulation time
with acceptable accuracy of the results.

The approach has been tested against experimental results available in the literature [6,14].
Having determined the variability inherent to fatigue cracks, a target fatigue life could be assigned. The proposed model

could be used in reliability based optimization to determine the best balance between manufacturing costs and structural
reliability.
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Appendix A

A.1. Detailed results

Fig. 11 shows the histograms of the fatigue life at four stress levels. The histograms match the experimental data for the
pick stress of 206 and 345 MPa. For the pick stress of 241, the experimental values are slightly bigger than the mean of the
simulations, for the pick stress of 276 MPa, one of the experimental values are on the lower tail of the distribution.
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Fig. 11. Histograms of the fatigue life obtained for different stress levels. The solid lines show the result of the simulation, the dash lines show the
experiment results taken from [6].
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A.2. Statistics of the distribution

The reference distribution of the fatigue life has been estimated by fitting experimental values from [6] with an analytical
formula. The fatigue life is taken with a lognormal distribution. The mean value and the standard deviation are assumed to
show an exponential evolution with respect to the applied stress. First, the evolution of the mean fatigue life is determined
by fitting the data. Then the standard deviation is determined by maximizing the likelihood (over the data at all the stress
levels simultaneously). The 200 samples obtained using the Monte Carlo simulations were compared to this fit (see Fig. 12).
Both of the results correctly match. Hence cohesive zone elements are suitable to uncertainties inherent to fatigue crack ini-
tiation and fatigue crack growth. The cohesive element models could be extrapolated to any kind of geometry.
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