
Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 139 (1995) 163-186

Sharing out control in distributed processes"

A n n e B e r g e r o n *

LACIM, Universitk du Qubbec h Montrbal, C.P. 8888 Succ. Centre-Ville. Montrbal, Canada, H3C 3P8

Received November 1993; revised May 1994
Communicated by M. Nivat

Abstract

In this paper, we discuss the problem of distributed control of discrete processes. Given n sites
from which only partial information is available about a process, we describe how to share out
controllable events in order that the process meets a given global specification. As with many
problems involving partial observation, the solution relies on inefficient algorithms. The second
part of the paper treats the question of identifying problems that can be solved efficiently.

O. Introduction

A discrete event process is a process that changes state according to the discrete

occurrence of events. It is modeled by an au toma ton on the set ,r of possible events.

The central problem of discrete control theory is to describe how to restrict, observe,

or report the behavior of such processes [4]. These problems are usually solved by

construct ing automata , called controllers, that will simultaneously function with the

original process, and take the necessary control actions according to their state.

In this context, a control action is to prevent the occurrence of a particular event. Events

that can be prevented are called controllable. For example, in a traffic control problem, the

event 'a car crosses the intersection' can be prevented by a red signal, or a gate.

Suppose that we are given n sites, from which we can get only partial information
about a process P. We want to construct n controllers, one at each site i, that together

will prevent P from entering 'unwanted ' states. The fact that only partial information

is available at each site will impose constraints on these controllers. If the assignment

of the controllable events to the various sites is also fixed, solutions to this problem
can be found in [3, 5].

* Corresponding author E-mail: anne@lacim.uqam.ca.
This work was partially supported by grants from BNR Ltd., FCAR of Qu6bec and NSERC of Canada.

0304-3975/95/$09.50 © 1995--Elsevier Science BN. All rights reserved
SSDI 0 3 0 4 - 3 9 7 5 (9 4) 0 0 1 3 2 - 3

164 A. Bergeron / Theoretical Computer Science 139 (1995) 163 186

In this paper, we give a third solution which characterize, in a simple way, all
possible assignments of controllable events such that a solution exists. As with many
problems involving partial observation, the algorithms rely on (severely) inefficient
algorithms. In order to tackle this problem, we introduce the concept of linear
observability. We then show that, for a certain class of processes, linear observability is
equivalent to observability, thus ensuring efficient computations.

Section 1 covers basic definitions. In Sect. 2-5, we present the problem of distrib-
uted control in terms of automata, and give algorithms to find all possible assignments

of controllable events to various sites such that a solution is effective. Linear observ-

ability and its consequences are discussed in Sections 6-8.

1. Automata and discrete process

Let Z be a finite set whose elements are called events, and Z * be the set of all finite

sequences of elements of Z. An automaton A on the set E of events is given by an
arbitrary partial function - multiplicatively denoted by a dot • - called a transition
function:

" : SA X ~v'--~ SA

where SA is an arbitrary set, called the states of A.
Every transition function can be naturally extended to any sequence x in Z * in the

following way:
(i) s" 2 = s where 2 is the empty sequence,

(ii) s '(xG) = (s" x).tT whenever the right-hand side is defined.
Among the states SA, we distinguish an initial state iA and a subset FA ~-- SA of final

or marked states. We will denote by A the automaton obtained by marking all the
states of an automaton A. The language recognized by the automaton A is the set
L(A) = {x]i" x E FA}. A state s is accessible if there is at least one sequence x such that

iA'X = S. We will always assume that SA contains only accessible states.

Definition 1.1 (Partial ordering of automata). Let A and B be two automata. The

relation A ~< B holds whenever

L(A) ~ L(B) and L(2i) _~ L(B).

When both A ~< B and B ~< A, we write A ~ B.

Definition 1.2 (Product of automata). Given two automata A and B, the product A x B
has states S = SA x Sa and transition function:

. : S x 2 7 " ~ S

where (s, t) ' x = (s-x, t ' x) whenever the right hand side is defined.

The product has initial state i = (iA, iB) and marked states F = {(s,t) I s ~ FA and t e FB}.

A. Bergeron / Theoretical Computer Science 139 (1995) 163 186 165

Elementary properties of these definitions will be used throughout this paper.

Proposition 1.3. Let A, B, C and D be any automata:

(i) A x B < ~ A a n d A × B < ~ B .

(ii) A ~< B if and only i f A ,~ B x A.

(iii) C ~ < A x B i f a n d o n l y i f C < ~ A a n d C < . B .

Example 1.4. Consider the following process (Fig. 1) where tokens can be exchanged
between buffers W, A, B and C. Suppose that buffer W has capacity 3, and all others
have capacity 1. In this process, the various events can be represented by pairs of
letters, A B meaning, for example, that a token is transformed from buffer A to buffer
B. The automaton P modeling the process has 9 states, of which 8 are legal (not
exceeding any buffer capacity) and one is an alarm state, meaning an overflow of one
of the buffers. In Fig. 2, each legal state is depicted by the contents of buffers A, B and
C. For clarity, we labeled only one of the arrows when an event is reversible.

Fig. 1. Exchange of tokens between 4 buffers.

t'x 3

Fig. 2. The automaton P.

166 A. Bergeron / Theoretical Computer Science 139 (1995) 163-186

Fig. 3.

The automaton Z of legal (shaded) states, with possible moves between them, can be

thought of as the specification of the legal behavior of P. If we assume that all states
are final, it is easy to see that Z ~< P. Fig. 2 displays clearly what should be the control
actions such that only legal states are possible. For example, in the state shown in Fig.
3, the three events WA, AB and BA must be prevented, since they lead to the alarm
state.

Depending on the various states of Z, the events WA, AB, BA, AC, CA, BC, and CB
must eventually be disabled or authorized by 'controllers' (only A Wcan never lead to
an alarm state).

2. Distributed control and control automata

Let P be a discrete process, our objective is to construct automata C1 C,, such
that when they function together with P, the whole process will have a prescribed
behavior. This new process is described by the product:

P x C 1 x " " X C n or shortly P x IqCi.

Each of these automata will have to perform control actions (preventing events). This
aspect is, surprisingly, settled by the following definition.

Definition 2.1 (Control automata). A control automaton, or controller, is an automaton
with a specified subset of events 2~c, its controllable events.

That this definition captures the usual notion of a 'controller' needs some explana-
tions. Its apparent inadequacy comes from the fact that we need to formalize only
some aspects of the notion of control action. Indeed, in order to be able to control
a discrete process, we must first have the capacity to take a control action, and decide
which control action to take.

The capacity to take action is a design decision: we grant this capacity to a control-
ler by prescribing a subset of controllable events, 2~ c. The intended meaning is that
these events can be prevented by the controller.

Since we are working with automata, the decision to take action can depend only on
the state of the controller. In a given state s, the controller must decide if it will prevent
or authorize a given event tr. If the decision is to prevent it, then the event a must never
occur in state s, so s" a can, for all practical purposes, be undefined. If the decision is to
authorize it, then the controller must know what to do in case of the occurrence of a,
thus s" tr must be defined. The simplest strategy for a controller is thus to prevent an
event ~r in Sc iff s ' a is undefined.

A. Bergeron / Theoretical Computer Science 139 (1995) 163-186 167

When several controllers are working together, we are interested in the net result of
their controlling actions. In general, we will want that any event undefined in the
product be prevented. This is captured by the following definition.

Definition 2.2 (Effective products of controllers). Let C ~ C~ be n controllers, each
having a set Ec, of controllable events, the product [IC,, is effective if for each
accessible state S = (Sl, s,) of IqC~, and for each t re Z such that S ' a is undefined

we have

3 i such that si" tr is undefined and a ~ Ec,.

Definition 2.2 says that a group of controller is effective if, for each 'global ' action
that has to be prevented, at least one of the controllers was able to prevent it and did
prevent it. When the product has only one factor, we have the notion of effective
control automaton. Such an automaton has the property that if s- tr is undefined, then
a must be a controllable eventJ

Remark 2.3. Assume that an automaton P faithfully models an 'existing' process, that
is all (and only) possible sequences are defined in P. The automaton P can be viewed
as an effective controller by setting

E c = Z .

In this case, impossible events are interpreted as prevented events.
We will also consider controllers with no controllable events (i.e. Xc = 0). Such

controllers are clearly 'ineffective' in the sense that, if A x B is effective and A has no
controllable events, then B must be effective.

Algorithm 2.4 (Constraints characterizing all effective products). Given n automata
C1 Cn it is possible to characterize easily all distributions Sc, such that the

product I]Ci , is effective. Indeed, for each state S = (sl sn) of [IC~, and for each
a s E such that S" tr is undefined we must have, by definition

o-~ U ~'C~,
ieJ s

where Js = {ilsi" a is undefined}.
On the other hand, any distribution Ec, which respects all these constraints, for all

possible S and a, will yield an effective product.

Verifying that a given distribution Ec, yields an effective product I]C~ amounts to
the traversal of the graph of the automata I]Ci. If, on the other hand, the problem is to

1 Effective control automata are the control automata of [3].

168 A. Bergeron / Theoretical Computer Science 139 (1995) 163-186

distribute a set 2;c of controllable events among various sites, Algorithm 2.4 provides
a list of constraints of the form

tr must be assigned to at least one controller in the set Js-

which has at least one solution if and only if S- a is undefined implies that a e z~ c. This

solution is obtained by trivially setting Sc, = Sc . Other considerations can then be
applied in order to propose a particular architecture: minimality (a is assigned to the
least number of controllers), convenience (a is assigned to the nearest controller), etc.
An example of this kind of computation is given in Section 5.

3. Partial observation and observation automata

Suppose that we are given n sites, each having a partial view of a process P. In
Example 1.4, we could have, for instance, the two sites (see Fig. 4) where Site 1 cannot

observe exchanges between buffers B and C, and Site 2 cannot observe exchanges
between buffers W and A.

The fact that each site have only partial information about the process will impose
restrictions on the kind of automata that can function as controllers on these various
sites. By 'partial information' we will mean that, for each site i, we are given a subset

St:, of S, its unobservable events. Clearly, any automata Ci 'placed' in Site i cannot
change state upon the occurrence of events in St:,, but the obvious solution to restrict
these automata to the complement of St:, does not work. Indeed, since our objective is
ultimately to turn these automata into controllers, we must allow the possibility of
control over unobservable events. For example, one can prevent or authorize calls

dialed from a telephone without actually monitoring those calls. We will model this by
allowing the automata to ' loop' on unobservable events.

Definition 3.1 (Observation automata). An automaton O is an observation automaton

with respect to L'v, its unobservable events, if whenever s" a is defined and a ~ St: we
have s ' f f = s.

Given any automaton A, and a set of unobservable events St:, it is always possible
to construct an observation automaton greater than A, and which is minimal among

w I
i c

Fig. 4. Sites of observation of the process P.

A. Bergeron I Theoretical Computer Science 139 (1995) 163 186 169

all observation automata greater than A. This construction is basic in partial
observation problems and is a variant of the well-known determinization algorithm in

automata theory:

Algorithm 3.2 (The minimal observer construction). Let SA be the set of states of an
automaton A, with initial state i and marked states FA. Let Zu be a set of unobserv-
able events. The minimal observer O(A) with respect to Sv is defined in the following

way. The states of the automaton O(A) are nonempty subsets ~+(SA) of SA- The
initial state is:

I = {i" u I i" u is defined and u e St~ }

and the marked states of O(A) are all subsets that contain at least one marked state of
A. The transition function

° : ~ + (SA))< z~"@ ~il + (SA)

is defined with the following rule.

Let S ~_ SA. If s" a is defined in A for at least one s e S then S o a is defined and
(i) if a qD Su, S o a = {s- au Is ~ S, s" au is defined and u ~ S* }

(i i) i f a ~ 2 :v , S o a - - S

otherwise S o a is undefined.

Informally, the initial state of O(A) is the set of states reachable from the initial state
iA with unobservable sequences: the observer cannot distinguish between these states.
The construction then proceeds recursively from the initial state. Suppose the ob-
server ' thinks' it could be in any of the states of a subset S, if an observable event

occurs, we have to compute all the states reachable with unobservable sequences
from states of the form s" ~, where s is in S (see Fig. 5).

The following result summarizes the basic properties of the minimal observer
construction. Its proof can be found in [3].

Theorem 3.3. Let A be any automata, and Su be a set of events, then
(i) O(A) is an observation automata with respect to Su.

(ii) A ~< O(A).

(iii) I f X is an observation automata wrt S,v such that A ~< X, then O(A) ~< X.

S ' Sc(y
u (I

Fil l . 5.

170 A. Bergeron / Theoretical Computer Science 139 (1995) 163-186

AB "~ ~ A B ~ ~ _ ~

k9

Fig. 6. Observer for Site 1 (BC and CB unobservable).

Fig. 7. Observer for Site 2 (A W and WA unobservable).

Example 3.4 (Example 1.4 continued). In Example 1.4, we were given two sites with
the following unobservable events:

Site l: BC and CB,
Site 2: A W and WA.

Applying the observation construction, with these sets, to the specification Z (that is,
all the legal states), we get the observers of Figs. 6 and 7.

The automata of Figs. 6 and 7 are indeed observation automata, since they loop on
all their respective unobservable events. Observe that this condition does not imply
that there is a loop on each state. The 'no-loop' states are of two kinds: the event is
impossible in the process P (like the event BC in the two first states of Fig. 6); or the
event must be prevented so that the process does not enter an alarm state (like the
event BC in the last two states of Fig 6). In the latter case, we can see that, despite the
fact BC is unobservable from Site 1, the observer can decide effectively whether to
prevent or authorize it.

4. Control and partial observation

Let P be a process, a specification for the process P will be modeled by an
automaton Z ~< P. This assumption is natural since any legal and impossible sequence
of events can be removed from the specification.

A. Bergeron / Theoretical Computer Science 139 (1995) 163-186 171

Given n sites the problem of control under partial observation is to construct
n automata, one at each site, such that when these automata function simultaneously
with the process P, the global process 'meets' all specified behaviors, and all illegal
behaviors are 'prevented'. This somewhat vague statement can be formalized within

automata theory in the following way.
Suppose that C1 , Cn are n automata functioning with the process P. Consider

the product

P x I - Ic i .

If Ci must function with only the information available at site i, it must be an
observation automaton with respect to the set Su, of unobservable events at site i.
Moreover, if the global process is to meet all specified behaviors, we must have

Z~< P x H C i .

That is, any sequence defined or marked by Z, must also be defined and marked by

P x I]Ci.
On the other hand, the purpose of the automata ~ Ci is to restrict the behavior of P,

such that only sequences defined or marked by Z are defined. Thus we want also that

P x H C I < Z.

The next definition sums up these conditions.

Definition 4.1 (Observable specification). Given n sites with unobservable events Xv,,
a specification Z of a process P is observable if there exists automata C1 C, such
that

(i) C~ is an observation automaton with respect to Sv,,

(ii) Z ,~ P x l-I Ci.

The next theorem gives a general criterion for observability. It says that, in order to
establish observability, it suffices to consider the minimal observers of Z.

Theorem 4.2. Given n sites with unobservable events Xv,. Let Z be a specification of
a process P, and let ¢)~(Z) be the minimal observer with respect to Xv,, then

Z is observable if and o n l y / f Z ~ P x l-[Of(Z).

Proof. The 'if' part is obvious. On the other hand, we always have that

Z ~ P x l - [of(Z)

since Z ~< P and Z ~< Oi(Z) for each i. Suppose now that Z is observable by [ICi, then
Z ~< Ci and since each C~ is an observation automata, we have, by Theorem 3.3 (iii),

Of(Z) ~ Ci. Thus

P x I] o , (Z) ~< P x 1-I C,

172 A. Bergeron / Theoretical Computer Science 139 (1995) 163-186

yielding

P× [lc~ , (z)< z. []

Once it is established that a specification is observable, we still have the problem of

determining the distribution Sc, of controllable events among the sites in order that
the product P x 1-[Ci behaves 'operationally' like the formal specification Z, meaning
that every possible sequence of events in P, that is undefined in I]C~, is prevented by at
least one of the controllers. Assuming that P is a controller with controllable events
Z (see Remark 2.3), we can express this condition simply by stating that the product

P x I]C~ must be effective with respect to Zc,.
The following theorem states that applying Algorithms 2.4 to the set of observers

O~(Z) yields all possible solutions to the distributed control problem.

Theorem 4.3. / f Z is observable by 1-ICi, then the effectiveness of the product P x HCi
with respect to the distributions Zc, implies the effectiveness of the product P x [I Oi(Z)
with the same distribution.

Proof. Suppose that the product P x 1-IC~ is effective with respect to the distribution
Sc,. Let S = (s, sl sn) be an accessible state of P x I]O~(Z) with the sequence x.
Suppose that S'~r is undefined. Since P x 1]~3i(Z) ~ P x I]Ci, the sequence x is also
defined in P × 1-1C~ leading this automaton in state T = (s, tl t,) such that T" a is

undefined. Since the product P x I1 C, is effective, either s ' t r is undefined, or there
exists j such that t j" tr is undefined and a ~ Zc~. If s" tr is undefined, the case is settled.

In the other cases, since Oj(Z) ~< Cj, s j ' t r must also be undefined. []

These results give a method to find all possible assignments of controllable events

,Y,c, among n sites. Given a specification Z of a process P, and sets of unobservable

events Xv,, we must
(1) construct the minimal observers I]Oi(Z) using Algorithm 3.2,

(2) test the equivalence Z ,~ P x [IOi(Z),
(3) and apply Algorithm 2.4 to the product P x I]O~(Z).

Note that, since the minimal observer construction is based on a subset construc-
tion, the various automata in step (1) may yield automata that have an exponential
number of states in terms of the number of states of Z. This is a serious drawback that

will be discussed in detail in Section 6.
In certain situations, step (2) can be skipped altogether. Indeed, when all the states

of the specification are final, we have the following theorem.

Theorem 4.4. Suppose that Z = Z then the product Z x P x HOi(Z) is effective with
respect to O, X and S,c,, if and only if
(1) P x I]Oi(Z) is effective with respect to Z and Xc,,
(2) Z ,~ P × HOi(Z).

A. Bergeron / Theoretical Computer Science 139 (1995) 163-186 173

Proof. Suppose first that P xl-IOi(Z) is effective and Z ,.~ P x I]O/ (Z) . Let
S = (z, s, sl s,) be an accessible state of the product

Z x P x 1-]Oi(Z)

such that S ' a is undefined. If z ' a is defined, the effectiveness of P x I]Oi(Z) is

sufficient to show the effectiveness of the whole product. If z ' a is undefined, since

Z ~ P x I-[Of(Z), then

(s, s l , . . . , s ,) " a

must also be undefined, and again we can apply the effectiveness of P x l-[Oi(Z).
On the other hand, suppose that Z x P x I]Oi(Z) is effective. Since we assumed that

Z was a controller with Z c = 0, we can conclude immediately, by Remark 2.3, that

P × I]OI(Z) is effective. In order to show that

Z ~ P x I]Oi (Z) .

it is sufficient to show that

P x 1-Io i (z) ~< z

since the reverse inequality is always true. Let x be defined in P x I]O~(Z) and x' be
the longest prefix of x defined in Z. If x # x ' then x can be written as x 'ay. When x'
has been parsed by the product Z x P x I-[(~(Z), this product is in state

S = (z , s , s ~ s ,)

and S" a is undefined because Z" a is undefined. Since the product is effective, there is
at least one controller for which a is undefined and a is in Zc. This controller cannot

be Z, since Z has no controllable events, so it must be either P or one of the Oi(Z).
Thus x ' a is not defined in P x I]Oi (Z) and we must have x = x'.

I fx is marked by P x ~Oi (Z) , it is defined in Z. Since we assumed that Z = Z, then

x is marked by Z. []

5. An example of computation

In this section, we show a complete computat ion of all the distributions of control-
lable events for the process described in Example 1.4. We already obtained the two
observers in Section 3 (Fig. 6 and 9). Since all states are final, we have only to test the

effectiveness of

Z x P × l - I ~ i (Z).

Fortunately, this product has a simple structure (that can be identified with the

automaton Z) (see Fig. 8).
There are 15 nontrivial control constraints associated with this problem, each of

which corresponds to an arrow going to the alarm state in the process (Fig. 2). Other

174 A. Bergeron / Theoretical Computer Science 139 (1995) 163-186

Fig. 8. The product Z x P x H o i (z) .

S t~ Js = {il si'¢~ is undefined}

WA {1}

WA 11}
AB {2}
BA {1}

WA {1}
AC {2}
CA {1}

8c {1,2}
CB {1, 2}

AB {1,2}
BA {11
AC {1,2}
CA { 1}
BC {1,2}
CB {1, 2}

Fig. 9.

constraints correspond to impossible events of the process P. Fig. 9 displays all the 15
constraints, and is obtained by noting, for each state S and each undefined and
possible transition a, the sites for which the transition is undefined. This set of
constraints is easily solved and we obtain the following possible distributions:

WA, BA and CA must be assigned to the controller in Site 1,
AB and AC must be assigned to the controller in Site 2,
BC and CB can be assigned to any of two controllers.
It is interesting to note that BC and CB can be assigned to Site 1, although Site 1

cannot observe these events.

A. Bergeron / Theoretical Computer Science 139 (1995) 163-186 175

6. Linear observability

Although we obtained a computational characterization of all the solutions of
a distributed control problem, it has, as noted, the major drawback to rely on an
inefficient algorithm. Indeed, Algorithm 3.2 can - and does - lead to computational
disaster since the number of states of an observer can be exponential in the number of

states of the specification I-6, 7].
In this section, we develop some tools to investigate problems that can be solved

efficiently. These tools are of practical importance since various formalism used to
describe distributed processes are known to lead to some kind of state explosion.
Software tools have been developed to analyze those specification, and they can
handle gracefully automata that have several thousands of states 12]. With specifica-
tions of this size, however, the prospect of constructing controllers using algorithms
such as Algorithm 3.2 is completely unrealistic.

In order to develop a theory of efficiently observable processes, we first focus on
a much stronger partial order relation between automata.

Definition 6.1 (Morphisms between automta). Let A, B be automata with states SA,
SB initial states i , , iB, and final states FA, Fu. A morphism from A to B is defined by
a function f : SA ~ SB such that

(1) f(iA) = in,
(2) f(FA) -- FB,
(3) If s ' a is defined then f(s)- t r is also defined and equal to f (s ' a) , that is, the

following diagram commutes:

SAX• <f,l~> SBXE

SA f ~ S B .

When there exists a morphism from A to B, we will write

A ---, B

and we have immediately the following proposition.

Proposition 6.2. I f A -+ B then A <<. B.

IfA ~ B then the function f : S, ~ SB is unique. Occasionally, we will refer explicitly

to this function with the notation A ~ B. Whenf i s injective, A is a subautomaton of B,

and we will use the notation A ~ B. If both A ~ B and B --. A, then A and B are
isomorphic, and we will write A ~--~B. Two isomorphic automata are essentially the

same, up to a renaming of the states. Finally, if A Y--, B and B ~ C then A ~ C, by

composition of g and f.

176 A. Bergeron / Theoretical Computer Science 139 (1995) 163-186

I f A ~ B, we will no t e f (A) the image a u t o m a t o n of A. Tha t is, the states o f f (A) are

Sf (A) = {f(s) ls ~ SA}

with initial state f(iA), final states f(FA), and transit ion function:

• : S f (A) X z~ ~ S f (A)

where t" a is defined iffs" a is defined in A for at least one state s i n f - 1(0. No te that if

A has k states, t hen f (A) has at most k states. We have the decomposi t ion given by the

following proposi t ion.

Proposition 6.3• If A ~ B, then A -+f(A) ~ B.

The part ial order relation A ~ B between a u t o m a t a enjoys propert ies similar to

those in Propos i t ion 1.3.

Proposition 6.4. Let A, B, and C be any automata, then
(i) A x B ~ A a n d A × B ~ B .

(ii) A ~ B if and only if A ~-* A x B.
(iii) C ~ A x B if and only if C ~ A and C ~ B.

Proof. (i) The morph i sms are obta ined through the projections p l (s , t) = s and
p2(s,t) = t. The three propert ies of Definition 6.1 are easy consequences of the

definition of the product .

(ii) Suppose A ~ B and define the function g : S A ~ S , × s as g (s) = (s,f(s)). We

have that

(1) g(iA) = (iA,f(iA)) = (iA,iB) - - - - iA x S,
(2) if S e FA, then g(s) = (s,f(s)) e FA×B since f (s) e Fs ,
(3) if s ' a is defined then g (s) ' a is also defined and

g(s)" a = (s,f(s))" a = (s" o' ,f(s)" a) = (s" a,f(s" a)) = g(s" o')

Thus A --* A × B. Since we always have A × B ~ A, we get A ~ A × B. On the converse,

if A ~ A × B, we obtain A --* B by composi t ion through the projection A × B ~ B.
(iii) If C --* A × B, we obtain by composi t ion through the projections that C ~ A and

C ~ B. On the other hand, if both if C ~ A and if C ~ B we construct the function

h(s) = (f(s) , g(s)) which verifies the three properties. []

The next definition parallels the definition of observable specifications of Section 4.

Definition 6.5 (Linearly observable specifications). Given n sites with unobservable
events Zv,, a specification Z of a process P is linearly observable if there exists

a u t o m a t a C1, . . . , C~ such that
(i) Ci is an observat ion a u t o m a t a with respect to Zv,,

(ii) Z , - - ,P x HCi .

A. Bergeron / Theoretical Computer Science 139 (1995) 163-186 " 177

Clearly, a linearly observable specification is observable. The terminology linear
comes from the fact that we can bound the number of states of the various observers
by the number of states of the specification.

Proposition 6.6. I f Z is linearly observable, and if Z has k states, then it is linearly

observable by automata that have at most k states.

Proof. Suppose that Z is linearly observable by IqCi, so that Z--* P x I]C~. By
composing through projections, we obtain Z ~ Ci. Let us noteJ~(Z) the image of Z by
this morphism. Now, since both Z --.f/(Z) and Z ~ P we have

z P × [I f ,(z),

and fromfi(Z) ~ Ci, we get

P x I-IJ~(Z)-~ P x]-IC~

and, since this last automaton is isomorphic to Z, we finally have that

P × I-lf ,(z) z . []

Proposition 6.6 tell us that, in the presence of linear observability, there is no state
explosion of the observers Ci, and the number of states of the product P x I]Ci is equal
to the number of states of the specification Z, thus ensuring efficient computations. In
the sequel, we will want to identify conditions ensuring linear observability, or, even
better, classes of processes where it can be proved that observability is equivalent to
linear observability. Although very satisfying, such results cannot be expected in the
general case, as shown by the following example.

Example 6.7. Consider the process P defined by the automaton of Fig. 10, with the
specification Z consisting of all sequences that does not lead to the alarm state.

If the event u is unobservable, Z is observable by the observer O(Z) of Fig. 11.

Suppose that Z is linearly observable by C, then we must have Z ~ C, and

Fig. 10. The process P. Fig. 11. The observer O(Z).

1 7 8 A. Bergeron / Theoretical Computer Science 139 (1995) 163-186

f (i " a) = f (i " au) = f (i - bu) = f (i " b) since C is an observer. And sincef(i • ba) is defined,
so is f (i " a)" a, thus Z < P x C.

We have seen that if Z is linearly observable by I]Ci, then Z ~ Ci. When Z is

a subautomaton of P, and if Z is observable I] C , these morphism are sufficient to
infer linear observability.

Theorem 6.8. Let Z ~ P be a specification of a process P , / f Z is observable by [ICi,
and if, for each i, Z ~ Ci, then Z is linearly observable.

Proof. I f Z ~ P and Z ~ C~, we immediately get the relation Z --, P x I]C~. In order
to establish that P x FICi ~ Z, consider the func t ionf tha t associate to each accessible
state (s, sl s,) of P x FICi the state s. This state belongs to Z since if (s, sl s,) is

accessible by a sequence x, x is also defined in Z because Z ~ P × [ICi by observabil-
ity, and since Z is a subautomaton of P, the sequence x will reach the state s. []

7. Exchange networks

Exchanges networks are a straightforward generalization of Example 1.4, sharing

features with Petri nets and vector addition systems [8]. Additional structure on the
states of au tomata arising in this context will provide elegant and efficient ways of
obtaining observers C~, and morphisms Z ~ C~, which are a necessary condition for
linear observability.

Definition 7.1 (Exchange networks). An exchange network E is a graph whose nodes
= {Pl Pk } are called places, and vertices C are called channels. The source and

target of each channel is given by functions:

s , t : C ~ P .

A configuration is a function C : P ~ ~ which assign to each place p the number C(p)
of tokens in the place.

We will be interested in the various configurations obtained by moving tokens
along the channels. An elementary move d will correspond to the transfer of a token
from a place p~ to a place p j, if
(1) there is a channel d such that s(d) = Pl and t(d) = pj;
(2) the place p~ is not empty, that is C(p~) ~ O.

A configuration C1 is accessible from a configuration C2 if there is a sequence of
elementary moves transforming C2 into C1. Consider the set of all possible configura-
tions with N tokens in a network with k places, we call this set the simplex AN,k.This is
the set of points (nl nk) of/~k defined by the equation ~n~ = N.

A. Bergeron / Theoretical Computer Science 139 (1995) 163-186 179

We also associate to each channel d ~ (2 connecting places Pi to pj the vector

r~ = (x , xk)

whose coordinates are all 0 except, when pi ~ p j, x~ = - 1 and xj = + 1.
Given an initial configuration rg with N tokens, we can construct an associated

automaton A , on the set of events C, whose states are all accessible configurations
from cg, and whose transition function is defined by C" d = C + Yd. We say that this

au tomaton 'lives' in the simplex/1N.k. For example, if we take the network of Fig. 12,
we have the representation for the associated automaton given in Fig. 13.

Note that if a channel is a loop, the move associated with the channel in a given

configuration is defined if its source is nonempty (as the move h in Fig. 13), and is
a loop of the automaton whenever it is defined. When dealing with exchange

networks, we will always assume that all states are final.

(a~)h

 ll !iiiiiil
J r "-x

:: ~.~i~ :: i!:: i ~.~i~iii~i~!~!~:: /2

g

' n 1 I

I

Fig. 12. Example of an exchange network and the corresponding simplex d3, 3.

In 1 !

!

II3 ~ 112
, , '" ,, f _ _ _ g f _ _ _ g f r , . , ,

Fig. 13. An automaton living in the simplex 2] 3 . 3 .

180 A. Bergeron / Theoretical Computer Science 139 (1995) 163-186

Consider a network E with places P = {Pl Pk}, channels C, and source and
target functions:

s , t : C ~ P .

Let z~ = {~1 ~k'} be a partition of P. We can deduce from zc a derived network

E~ with places g, channels C, and source and target functions:

S', t ' : C --* 7z

which assign to a channel d the class in zc of s(d) and of t(d). The partition rc also
induces a linear transformation:

T~: ~k ~ ~d k'

defined by

which maps the simplex AN,k of N k onto AN,k' of N k'.

The transformations T. define morphisms between automata living in simplex:
configurations in N k are mapped onto configurations in N k' as if the places in each

class rc i were glued together, and vectors associated to moves are mapped onto vectors

associated to moves. We have the following:

Proposition 7.2. Let E be a network with places P, initial configuration ~, and asso-

ciated automaton A~¢. Let n be a partition of •, and consider the derived network E~ with

initial configuration T,(~) , and associated automaton AT.~o. Then

A~ --+ ATA~).

Proof. We will show that the function T= defines a morphism. The two first properties
are direct consequences of the definitions of associated automata: cg and T,(Cg) are the
initial states of the two automata, and all states are final.

Suppose now that d connects places Pi to p j, and that gl, and ~z~, are the classes of

Pi and pj in the partition ~. Let

v d = (x l Xk) and wd = (Yl Yk')

be the vectors associated to channel d in M k and ~k'. We have easily that

T=(Va) = Wd.

If C" d is defined in A~¢, then p~ is not empty in configuration C, thus =i, will not be
empty in configuration T~(C), thus T~(C)" d is defined. And

T , (C) ' d = T, (C) + wd = T,(C) + T,(vd) = r , (c + va) = T , (C 'd) . []

A. Bergeron / Theoretical Computer Science 139 (1995) 163-186 181

Let E be a network with places P, initial configuration cg, and associated automa-
ton A,. Consider any subautomaton Z =--* A,. Using Proposition 7.2, we can define
the automaton T,(Z) which is the image of Z by the transformation T,. And we have
Z ~ T~(Z). Fig. 14 gives an example of such a morphism, with the partition
{{Pl,P2}, {P~}} of the network in Fig. 12.

Linear transformations based on partitions give an elegant way to define observers
of specifications. The idea is that a set of unobservable events (channels) defines
a natural partition of the places in a network, obtained by identifying places connec-
ted by unobservable channels (Fig. 15).

i t l
I 1
I

h

g . . f "~.

n3

A

n 3 d.,, .," " ~" " - , , . r/l+ tt 2

h h
c e

Fig. 14. Z ~ T,,(Z).

Fig. 15. Connected components of the restriction of a network to unobservable channels (dotted arrows are
unobservable).

182 A. Bergeron / Theoretical Computer Science 139 (1995) 163-186

Proposition 7.3. Let E be a network with places P, channels C, and Z ~ A~ a sub-
automaton of the automaton associated to E with initial configuration oK. For any subset
of channels U ~ C, there exists a partition rt of P such that
(1) T~(Z) is an observation automaton with respect to U,
(2) T~(C) counts the number of tokens in each connected component of the restriction of

E t o U.

Proof. Consider the partition r~ obtained by identifying places that are in the same
connected component of the restriction of the graph E to ~3. Then, if d ~ U, s(d) and
t(d) are in the same class of the partition, and T~(vd) is the null vector, establishing that
T,(Z) is an observation automaton with respect to U.

The fact that T,(C) counts the number of tokens in each connected component of
the restriction of E to Q3 is immediate by construction. []

8. Networks with bounded capacities

We now turn to particular class of specifications in exchange network, networks
with bounded capacities. These specifications are described with inequalities of the
form:

C(p~) <~ Maxj.

That is, there is a maximum (> 0) number of tokens allowed in each place. A legal
configuration is a configuration that satisfies all these inequalities, a legal move is
a move that links two legal configuration.

In this section we prove that, if a network satisfies certain connectedness conditions,
observability of this kind of specification is equivalent to linear observability, thus
ensuring efficient computation of observers. Note that this was the case of the network
in Example 1.4, and the fact that the two observers of Figs. 6 and 7 were simple was
predictable.

We first establish the following lemma.

Lemma 8.1. I f a network with bounded capacities is strongly connected, and C~, C 2 a re

two legal configurations, then C2 is reachable from C1 by a sequence of legal moves.

Proof. The proof is based on the following observation. Given two places, Pl and
P2 such that Pl is not empty and P2 is not full, it is possible transfer a token from pl to
P2 while keeping invariant the rest of the configuration. Indeed, since the network is
strongly connected, there exists a path of channels connecting p~ to p2 (Fig. 16).

Working from the right-hand side, we find the first nonempty place p (which exists
since pt is not empty) at the left of p2 and transfer one chip from it to P2. These moves
are always possible and legal since the empty places between p and P2 have capacity at

A. Bergeron / Theoretical Computer Science 139 (1995) 163-186 183

Pl P

Fig. 16.

P2

least 1. We then repeat this kind of move until one of the chip in p~ has finally been

moved to P2.
The general argument is now easy. Assuming that two legal configurations have the

same number of tokens, each 'extra' chip in a place of the first one will correspond to
a 'hole' in the second one, and vice versa. []

Definition 8.2 (Invertible sets of channels). A sets U ~_ C of channels in a network is
invertible if, in the restriction of the network to ©, every connected component is
strongly connected.

The term invertible comes from the fact that if a token is moved along a channel
d E U, there exists a sequence of channels in U such that the token can be moved back
through them to its original position. The following lemma says that if unobservable
channels are invertible for a given site, then any two configuration that are considered
the same by an observer are linked by unobservable legal moves.

Lemma 8.3. Let U be an invertible set of channels in a network E with bounded
capacities, and ~ the partition that identifies places connected by channels in U. l f C~ , C2

are two legal configurations such that

T~(C~) = T~(C2)

then there exists a sequence of legal moves in U connecting C~ to C2.

Proof. By Proposition 7.3, T,(C) counts the number of tokens in each (strongly)
connected component of the restriction of the network to the channels in U. Thus if
T,(C~) = T,(C2), then both configurations have the same number of tokens in each
component. Applying Lemma 8.1 to each of these component yield the desired
sequence of legal moves in U. []

We are now in position to prove the main theorem of this section. It states that
when unobservable events are invertible, observability is equivalent to linear observ-
ability in networks with bounded capacities:

Theorem 8.4. Let Z be a specification of a network E with bounded capacities, and
n sites with invertible unobservable events Ui. Let TI(Z) be the observer at site i obtained
with the partition induced by U~. Then
Z is observable

Z is linearly observable
¢~ Z is linearly observable by 1~ Ti(Z).

184 A. Bergeron / Theoretical Computer Science 139 (1995) 163-186

Proof. Clearly, if Z is linearly observable by rI Ti(Z), then it is observable. In order to
show that observability implies linear observability, we will show that observability
implies

T,(Z) ~ O,(Z)

then, since Z ~ Ti(Z), applying Theorem 6.8 with the morphisms Z ~ Oi(Z), we

deduce that Z is linearly observable by lqOi(Z), thus by I] T~(Z).
We first show that

o , (z) ~ T,(Z)

by defining, for any state S of Of(Z), and any configuration C e S,

f(S) = T~(C).

For this function to be well defined, we have to show that if C~, C2 E S then

Ti(C1) = Ti(C2). This is true for the initial state I of Oi(Z) defined by

I = {c~. u] cg. u is defined and u e U* }

since any configuration in this set is of the form if" u and Ti(Cg • u) = Ti(Cg). Suppose
now that the statement is true for state S. If d is any event such that S o d is defined,
then S o d is either S or

S o d = { C" du I C ~ S, C" du is defined and u ~ U* }.

If C~, C2 ~ S o d, they can be written as

C1 = C~ "dUl

C2 = C~'du2.

where C~,C~ ~ S, and Ti(C'I) = Ti(C~). We then easily check that

Ti(C,) = T , (C '~ 'du ,)= T,(C~) + Ti(vn)= Ti(C;) + T,(vn)= T,(C2)

Thus, the funct ionfis well defined. It induces a morphism since, ifS o d is defined, then
there exists a C ~ S such that C" d is defined, thus T~(C)" d is also defined. And we have

f (So d) = T,(C" d) = T,(C)" d = f (S)" d.

In order to show that

Ti(Z) --* O,(Z)

we consider the function g defined as the inverse image of the transformation T~:

g(T~(C)) = T~- ~(T,(C)).

To prove that Ti-I (Ti(C)) is always a state of O~(Z), we first note that any state S of
O~(Z) is contained in such a set. Indeed, we know from the first part of the proof that

A. Bergeron / Theoretical Computer Science 139 (1995) 163-186 185

C1,C2 • S implies T~(C1) = Ti(C2) thus

S ~_ T i - I (T i (C) for any C in S.

Now, if C1 • Ti- I(Ti(C)) and C • S, then Ti(C1) = Ti(C) and, by Lemma 8.3, there
is a sequence of unobservable events that connects C to C1, implying C1 • S. So, for

any C in S,

S = Ti-I(T,(C)) .

The function g is thus well-defined. To prove that it induces a morphism we first
remark that if T~(C)" d is defined, then there is a configuration C' in Ti- I(T~(C)) such
that C " d is defined, implying that 7"/-I(T~(C))o d is defined in Oi(Z). Furthermore,

since Ti(C) = Ti(C'), we have

g(T , (C)) .d) = o (T , (C ') ' d) = o(T,(C' .d)) = T,- I(T,(C ' .d))

and since C " d • Ti- l (Ti(C)) o d,

T~-~(Ti(C' .d)) = T~ ~(T~(C))od = g(Ti(C))od. []

9. Final remarks

In this paper, we discussed several issues concerning distributed control of discrete
event systems. The first sections illustrate that these problems are both easy and hard:
if we skip the computational issues raised by the subset construction of Section 3, the
synthesis and proof of the local controllers are simple procedures that can be readily

implemented.
The second part of the paper addresses the hard part of the problem by restricting

drastically the type of automata that can act as controllers. Investigations in that
direction were triggered by the realization that most of the examples in the literature
behaved 'well' with respect to partial observation. Linear observability seems to be
a key concept in identifying classes of 'well behaved' problems. Although several
problems will not be solved directly by linear constructions, it will be interesting to
study problems that can be reformulated (with possibly a polynomial increase in the
number of states) as linear problems. Results like Theorem 8.4 will play a major role in

this study.

References

[-1] A. Arnold, MEC: a system for constructing and analyzing transition systems, in: J. Sifakis, ed.,
Automatic Verification of Finite State Systems, Lecture Notes in Computer Science, Vol. 407 (Springer,
Berlin, 1989) 117-132.

[2] A. Arnold, Syst6mes de transitions finis et s6mantique des processus communicants, TSI 9 (1990)
193 216.

186 .4. Bergeron / Theoretical Computer Science 139 (1995) 163-186

[3] A. Bergeron, A unified approach to control problems in discrete event processes, RAIRO Inform.
Thkor. 27 (1993) 555-573.

I4] P. Ramadge and W. Wonham, The control of discrete event systems, Proc. IEEE 77 (1989) 81-98.
[5] K. Rudie and W. Wonham, Think globally, act locally: decentralized supervisory control, IEEE Trans.

Automat. Control 37 (1992) 1692-1708.
[6] K. Rudie and J. Willems, The computational complexity of decentralized discrete-event control

problems, IMA Preprint Series # 1105, March 1993.
[7-1 J. Tsitsiklis, On the control of discrete-event dynamical systems. Mat. Control. Signals Systems 2 (1989)

95-107.
I-8] L. Yong, and W. Wonham, Control of vector discrete-event systems I - the base model, IEEE Trans.

Automat. Control 38 (1993) 1214-1227.

