Thermoelasticity of bodies with microstructure and microtemperatures

D. Ieşan *
Department of Mathematics, "Al.I. Cuza" University, 700506 Iaşi, Romania

Received 3 May 2007; received in revised form 27 June 2007; accepted 27 June 2007
Available online 4 July 2007

Abstract

This paper is concerned with a linear theory of thermodynamics for elastic materials with microstructure, whose microelements possess microtemperatures. It is shown that there exists the coupling of microrotation vector field with the microtemperatures even for isotropic bodies. Uniqueness and continuous dependence results are presented. The theory is used to establish the solution corresponding to a concentrated heat source acting in an unbounded continuum. © 2007 Elsevier Ltd. All rights reserved.

Keywords: Elastic bodies with microstructure; Thermoelasticity with microtemperatures; Continuous dependence results; Microstretch continua; Concentrated loads

1. Introduction

The origin of the modern theories of a continuum with microstructure goes back to papers by Ericksen and Truesdell (1958), Mindlin (1964), Eringen and Suhubi (1964) and Green and Rivlin (1964). Green (1965) has established the connection of the theory of multipolar continuum mechanics and the other theories. Much of the theoretical progress in the field is discussed in the books of Kunin (1983), Ciarletta and Ieşan (1993) and Eringen (1999). In the theory of micromorphic bodies formulated by Eringen and Suhubi $(1964,1999)$ the material particle is endowed with three deformable directors and the theory introduces nine extra degrees of freedom over the classical theory. On the basis of the theory of bodies with inner structure, Grot (1969) has established a theory of thermodynamics of elastic bodies with microstructure whose microelements possess microtemperatures. The Clausius-Duhem inequality is modified to include microtemperatures, and the firstorder moment of the energy equations are added to the usual balance laws of a continuum with microstructure. The theory of micromorphic fluids with microtemperatures has been studied in various papers (see, e.g., Koh, 1973; Riha, 1975, 1977; Verma et al., 1979). Riha (1976) has presented a study of heat conduction in materials with microtemperatures. Experimental data for the silicone rubber containing spherical aluminium particles and for human blood were found to conform closely to predicted theoretical thermal conductivity.

[^0]A theory of thermoelasticity with microtemperatures, in which the microelements can stretch and contract independently of their translations has been studied by Ieşan (2001). This is the simplest thermomechanical theory of elastic bodies that takes into account the microtemperatures and the inner structure of the materials. The theory introduces one mechanical extra degree of freedom over the classical theory. The theory of thermoelasticity with microtemperatures has been investigated by various authors. Casas and Quintanilla (2005) have studied the problem of stability. The theory of steady vibrations has been investigated by Scalia and Svanadze (2006) and Svanadze (2003, 2004).

Eringen (1999) has defined a class of micromorphic solids called microstretch solids. The material particles of these materials have seven degrees of freedom: three displacements, three microrotations and one microstretch. The microstretch continuum can model various porous media filled with gas or inviscid fluids, composite materials reinforced with chopped elastic fibers, mixtures with breathing elements and biological fluids.

In the present paper we use the results established by Grot (1969) to derive a linear theory of microstretch elastic solids with microtemperatures. This theory introduces three extra degrees of freedom over the theory presented by Ieşan (2001). A material particle is then equipped with the degrees of freedom for rigid rotations, in addition to the classical translation degrees of freedom and the microstretch. An interesting aspect in this theory is the coupling of microrotation vector with the microtemperatures even for isotropic bodies. We note that in the classical theory of Cosserat thermoelasticity for isotropic bodies, the microrotation vector is independent of the thermal field. In Section 2, we establish the field equations of the linear theory of thermoelasticity with microtemperatures. A uniqueness theorem in the dynamical theory of anisotropic bodies is presented in Section 3. In Section 4, we study the continuous dependence of solutions upon initial data and body loads. Section 5 is concerned with the effects of a concentrated heat source in a body that occupies the entire three-dimensional euclidean space.

2. Field equations

In the first part of this section we present the general balance laws of a continuum with microstructure in the form given by Grot (1969) and Eringen (1999). Then we derive the field equations of the linear theory of microstretch thermoelastic bodies with microtemperatures. The second moment of stress tensor and the microstress moment average are neglected in the balance laws since these functions appear only nonlinearly in the field equations (cf. Grot, 1969).

We consider a body that at some instant occupies the region B of the euclidean three-dimensional space and is bounded by the piecewise smooth surface ∂B. The motion of the body is referred to a fixed system of rectangular cartesian axes $O x_{i}(i=1,2,3)$. We denote by \mathbf{n} the outward unit normal of ∂B. Boldface characters stand for tensors of an order $p \geqslant 1$, and if \mathbf{v} has the order p, we write $v_{i j \ldots s}$ (p subscripts) for the components of \mathbf{v} in the cartesian coordinate frame. We shall employ the usual summation and differentiation conventions: Latin subscripts are understood to range over the integers ($1,2,3$), summation over repeated subscripts is implied and subscripts preceded by a comma denote partial differentiation with respect to the corresponding cartesian coordinate. In what follows we use a superposed dot to denote partial differentiation with respect to the time t.

Let \mathbf{u} be a displacement vector field over B. The balance of linear momentum can be written in the form

$$
\begin{equation*}
t_{j i, j}+\rho f_{i}=\rho \ddot{u}_{i}, \tag{2.1}
\end{equation*}
$$

where $t_{i j}$ is the stress tensor, ρ is the reference mass density, and f_{i} is the body force. We denote by $m_{i j k}$ the first stress moment tensor. The balance of first stress moments is given by

$$
\begin{equation*}
m_{k i j, k}+t_{j i}-s_{j i}+\rho \ell_{i j}=\rho \dot{\sigma}_{i j}, \tag{2.2}
\end{equation*}
$$

where $s_{i j}$ is the microstress tensor, $\ell_{i j}$ is the first body moment density and $\sigma_{i j}$ is the inertia per unit mass. Let e be the internal energy density per unit mass, and let ε_{i} denote the first moment of energy vector. The balance of energy and the balance of first moment of energy can be expressed as

$$
\begin{equation*}
\rho \dot{e}=t_{i j} v_{j, i}+\left(s_{i j}-t_{i j}\right) v_{j i}+m_{k i j} v_{i j, k}+q_{j, j}+\rho S \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho \dot{\varepsilon}_{i}=m_{r s i}\left(v_{s, r}-v_{s r}\right)+q_{j i, j}+q_{i}-Q_{i}+\rho G_{i}, \tag{2.4}
\end{equation*}
$$

respectively. Here v_{i} is the velocity vector, $v_{i j}$ is the microgyration tensor, q_{i} is the heat flux vector, S is the heat supply per unit mass, $q_{i j}$ is the first heat flux moment tensor, Q_{i} is the microheat flux average, and G_{i} is the first heat supply moment vector. The local from of the second law of thermodynamics is given by

$$
\begin{equation*}
\rho \dot{\eta}-\left(\frac{1}{T} q_{k}+\frac{1}{T} q_{k m} T_{m}\right)_{, k}-\frac{1}{T} \rho\left(S+G_{i} T_{i}\right) \geqslant 0, \tag{2.5}
\end{equation*}
$$

where η is the entropy density per unit mass, T is the absolute temperature, and T_{i} is the microtemperature vector.

The linear strain tensors are defined by (cf. Eringen, 1999)

$$
\begin{equation*}
\varepsilon_{i j}=u_{j, i}-\varphi_{j i}, \quad 2 \gamma_{i j}=\varphi_{i j}+\varphi_{j i}, \quad \gamma_{i j k}=\varphi_{i j, k}, \tag{2.6}
\end{equation*}
$$

where $\varphi_{i j}$ is the microdeformation tensor. The spin inertia per unit mass can be expressed as

$$
\begin{equation*}
\sigma_{r s}=i_{m s}\left(\dot{v}_{r m}+v_{r k} v_{k m}\right), \tag{2.7}
\end{equation*}
$$

where $i_{r s}\left(=i_{s r}\right)$ is the microinertia tensor. We note that in the linear theory we have

$$
\begin{equation*}
v_{i j}=\dot{\varphi}_{i j}, \quad \sigma_{r s}=i_{m s} \ddot{\varphi}_{r m} \tag{2.8}
\end{equation*}
$$

The components of surface traction t_{i}, the components of surface moments $\mu_{i j}$, the heat flux q and the heat flux moment vector Λ_{i} at regular points of ∂B are defined by

$$
\begin{equation*}
t_{i}=t_{j i} n_{j}, \quad \mu_{i j}=m_{k i j} n_{k}, \quad q=q_{j} n_{j}, \quad \Lambda_{i}=q_{j i} n_{j}, \tag{2.9}
\end{equation*}
$$

respectively.
Eringen (1999) introduced a class of bodies with microstructure called microstretch continua, which is characterized by

$$
\begin{equation*}
\varphi_{i j}=\varphi \delta_{i j}-\varepsilon_{i j k} \varphi_{k}, \quad m_{k i j}=\frac{1}{3} h_{k} \delta_{i j}-\frac{1}{2} \varepsilon_{i j r} m_{k r}, \quad \ell_{i j}=\frac{1}{3} \ell \delta_{i j}-\frac{1}{2} \varepsilon_{i j r} g_{r}, \tag{2.10}
\end{equation*}
$$

where φ is the microdilatation function, $\delta_{i j}$ is Kronecker's delta, $\varepsilon_{i j k}$ is the alternating symbol, φ_{i} is the microrotation vector, h_{j} is the microstretch vector, $m_{i j}$ is the couple stress tensor, ℓ is the external microstretch body load, and g_{r} is the body couple density. We recall that the microstress tensor $s_{i j}$ is symmetric. In the context of the linear theory of microstretch continua the balance of first stress moments (2.2) reduces to

$$
\begin{equation*}
h_{k, k}+g+\rho \ell=J \ddot{\varphi} \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{j i, j}+\varepsilon_{i r s} t_{r s}+\rho g_{i}=I_{i j} \ddot{\varphi}_{j} \tag{2.12}
\end{equation*}
$$

where $J=\rho i_{s s}, I_{r s}=\rho\left(i_{m m} \delta_{r s}-i_{r s}\right)$, and $g=t_{j j}-s_{j j}$ is the internal body force which will be defined by a constitutive relation. In the linear theory of microstretch continua, the strain tensors are

$$
\begin{equation*}
e_{i j}=u_{j, i}+\varepsilon_{j i k} \varphi_{k}, \quad \kappa_{i j}=\varphi_{j, i}, \quad \zeta_{i}=\varphi_{, i} . \tag{2.13}
\end{equation*}
$$

In view of (2.8), (2.10), and (2.13), the balance of energy (2.3) can be expressed as

$$
\begin{equation*}
\rho \dot{e}=t_{i j} \dot{e}_{i j}+m_{i j} \dot{k}_{i j}+h_{j} \dot{\zeta}_{j}-g \dot{\varphi}+q_{j, j}+\rho S . \tag{2.14}
\end{equation*}
$$

Eq. (2.4) can be written in the form

$$
\begin{equation*}
\rho \dot{\varepsilon}_{i}=m_{r s i}\left(\dot{e}_{r s}-\dot{\varphi} \delta_{r s}\right)+q_{j i, j}+q_{i}-Q_{i}+\rho G_{i} \tag{2.15}
\end{equation*}
$$

With the help of (2.14) and (2.15), the inequality (2.5) becomes

$$
\begin{align*}
& \rho\left(T \dot{\eta}-\dot{e}-T_{i} \dot{\varepsilon}_{i}\right)+t_{i j} \dot{e}_{i j}+m_{i j} \dot{k}_{i j}+h_{i} \dot{\zeta}_{i}-g \dot{\varphi}+m_{r s i}\left(\dot{e}_{r s}-\dot{\varphi} \delta_{r s}\right) T_{i}+\frac{1}{T} q_{i} T_{, i}+\frac{1}{T} T_{, i} q_{i j} T_{j}-q_{k m} T_{m, k} \\
& \quad+\left(q_{j}-Q_{j}\right) T_{j} \geqslant 0 . \tag{2.16}
\end{align*}
$$

Let us introduce the function ψ by

$$
\begin{equation*}
\psi=e+T_{i} \varepsilon_{i}-T \eta \tag{2.17}
\end{equation*}
$$

Then the inequality (2.16) can be written in the form

$$
\begin{align*}
& -\rho\left(\dot{\psi}+\dot{T} \eta-\dot{T}_{i} \varepsilon_{i}\right)+\left(t_{i j}+m_{i j s} T_{s}\right) \dot{e}_{i j}+m_{i j} \dot{k}_{i j}+h_{i} \dot{\zeta}_{i}-\left(g+m_{s s i} T_{i}\right) \dot{\varphi}+\frac{1}{T} q_{i} T_{, i}+\frac{1}{T} T_{, i} q_{i j} T_{j}-q_{k m} T_{m, k} \\
& \quad+\left(q_{j}-Q_{j}\right) T_{j} \geqslant 0 \tag{2.18}
\end{align*}
$$

We introduce the notation

$$
\begin{equation*}
\theta=T-T_{0} \tag{2.19}
\end{equation*}
$$

where T_{0} is the absolute temperature in the reference configuration. We assume that T_{0} is a given positive constant.

In the linear theory we assume that $u_{i}=\epsilon u_{i}^{\prime}, \varphi=\epsilon \varphi^{\prime}, \varphi_{i}=\epsilon \varphi_{i}^{\prime}, \theta=\epsilon \theta^{\prime}, T_{i}=\epsilon T_{i}^{\prime}$ where ϵ is a constant small enough for squares and higher powers to be neglected, and $u_{i}^{\prime}, \varphi^{\prime}, \varphi_{i}^{\prime}, \theta^{\prime}$ and T_{j}^{\prime} are independent of ϵ. We assume that in the undeformed state the functions $t_{i j}, m_{i j}, h_{i}, g, q_{i}, q_{i j}$ and Q_{i} all vanish. Without loss of generality, we can also assume that η and ε_{i} vanish in this state. In the context of the linear theory the inequality (2.18) becomes

$$
\begin{equation*}
-\rho\left(\dot{\psi}+\dot{\theta} \eta-\dot{T}_{i} \varepsilon_{i}\right)+t_{i j} \dot{e}_{i j}+m_{i j} \dot{k}_{i j}+h_{i} \dot{\zeta}_{i}-g \dot{\varphi}+\frac{1}{T_{0}} q_{i} \theta_{, i}-q_{i j} T_{j, i}+\left(q_{i}-Q_{i}\right) T_{i} \geqslant 0 \tag{2.20}
\end{equation*}
$$

In what follows we consider the linear theory of thermoelastic materials with microtemperatures. The constitutive equations are

$$
\begin{align*}
& \psi=\widehat{\psi}(A), \quad t_{i j}=\widehat{t}_{i j}(A), \quad m_{i j}=\widehat{m}_{i j}(A), \quad h_{i}=\widehat{h}_{i}(A), \\
& g=\widehat{g}(A), \quad \varepsilon_{i}=\widehat{\varepsilon}_{i}(A), \quad \eta=\widehat{\eta}(A), \quad q_{i}=\widehat{q}_{i}(A), \quad q_{i j}=\widehat{q}_{i j}(A), \tag{2.21}\\
& Q_{i}=\widehat{Q}_{i}(A),
\end{align*}
$$

where $A=\left(e_{i j}, \kappa_{i j}, \zeta_{i}, \varphi, \theta, \theta_{i,}, T_{i}, T_{i, j}\right)$. We assume that the response functions $\widehat{\psi}, \widehat{t}_{i j}, \widehat{m}_{i j}, \widehat{h}_{i}, \widehat{g}, \widehat{\varepsilon}_{i}, \widehat{\eta}, \widehat{q}_{i}, \widehat{q}_{r s}$ and \widehat{Q}_{r} are of class C^{1} on their domain $\check{\mathcal{D}}$ which is the set of all $A=\left(e_{i j}, \kappa_{i j}, \zeta_{i}, \varphi, \theta, \theta_{i j}, T_{i}, T_{i, j}\right)$.

We denote

$$
\begin{equation*}
\rho \psi=\sigma \tag{2.22}
\end{equation*}
$$

It follows from (2.20)-(2.22) that

$$
\begin{align*}
& \sigma=\widehat{\sigma}\left(e_{i j}, \kappa_{i j}, \zeta_{i}, \varphi, \theta, T_{i}\right), \\
& t_{i j}=\frac{\partial \sigma}{\partial e_{i j}}, \quad m_{i j}=\frac{\partial \sigma}{\partial \kappa_{i j}}, \quad h_{i}=\frac{\partial \sigma}{\partial \zeta_{i}}, \quad g=-\frac{\partial \sigma}{\partial \varphi}, \tag{2.23}\\
& \rho \eta=-\frac{\partial \sigma}{\partial \theta}, \quad \rho \varepsilon_{i}=\frac{\partial \sigma}{\partial T_{i}}
\end{align*}
$$

and

$$
\begin{equation*}
q_{i} \theta_{, i}-T_{0} q_{i j} T_{j, i}+T_{0}\left(q_{i}-Q_{i}\right) T_{i} \geqslant 0 \tag{2.24}
\end{equation*}
$$

In the linear theory we can take σ in the form

$$
\begin{align*}
2 \sigma= & A_{i j r s} e_{i j} e_{r s}+2 B_{i j r s} e_{i j} \kappa_{r s}+C_{i j r s} \kappa_{i j} \kappa_{r s}+2 D_{i j} e_{i j} \varphi+2 E_{i j} \kappa_{i j} \varphi+2 F_{i j k} e_{i j} \zeta_{k}-2 a_{i j} e_{i j} \theta+2 L_{i j k} e_{i j} T_{k} \\
& +2 G_{i j k} \kappa_{i j} \zeta_{k}+A_{i j} \zeta_{i} \zeta_{j}-2 b_{i j} \kappa_{i j} \theta+M_{i j k} \kappa_{i j} T_{k}+2 B_{i} \zeta_{i} \varphi-2 d_{i} \zeta_{i} \theta-2 N_{i j} \zeta_{i} T_{j}+\xi \varphi^{2}-2 F \varphi \theta \\
& +2 R_{i} \varphi T_{i}-a \theta^{2}-2 b_{i} \theta T_{i}-B_{i j} T_{i} T_{j}, \tag{2.25}
\end{align*}
$$

where the constitutive coefficients have the following symmetries:

$$
\begin{equation*}
A_{i j r s}=A_{r s i j}, \quad C_{i j r s}=C_{r s i j}, \quad A_{i j}=A_{j i}, \quad B_{i j}=B_{j i} . \tag{2.26}
\end{equation*}
$$

It follows from (2.23), (2.25) and (2.26) that

$$
\begin{align*}
& t_{i j}=A_{i j r s} e_{r s}+B_{i j r s} k_{r s}+F_{i j k} \zeta_{k}+D_{i j} \varphi+L_{i j k} T_{k}-a_{i j} \theta, \\
& m_{i j}=B_{r s i j} e_{r s}+C_{i j r s} \kappa_{r s}+G_{i j k} \zeta_{k}+E_{i j} \varphi+M_{i j k} T_{k}-b_{i j} \theta, \\
& h_{i}=F_{r s i} e_{r s}+G_{r s i} k_{r s}+A_{i j} \zeta_{j}+B_{i} \varphi-N_{i j} T_{j}-d_{i} \theta, \tag{2.27}\\
& g=-D_{i j} e_{i j}-E_{i j} k_{i j}-B_{i} \zeta_{i}-\xi \varphi-R_{i} T_{i}+F \theta, \\
& \rho \eta=a_{i j} e_{i j}+b_{i j} k_{i j}+d_{i} \zeta_{i}+F \varphi+b_{i} T_{i}+a \theta, \\
& \rho \varepsilon_{i}=L_{r s i} e_{r s}+M_{r s i} k_{r s}-N_{j i} \zeta_{j}+R_{i} \varphi-B_{i j} T_{j}-b_{i} \theta .
\end{align*}
$$

In view of (2.24), the linear approximations for q_{i}, Q_{i} and $q_{i j}$ are given by

$$
\begin{equation*}
q_{i}=k_{i j} \theta_{, j}+H_{i j} T_{j}, \quad q_{i j}=-P_{i j r s} T_{s, r}, \quad Q_{i}=\left(k_{i j}-K_{i j}\right) \theta_{j}+\left(H_{i j}-\Lambda_{i j}\right) T_{j}, \tag{2.28}
\end{equation*}
$$

where the constitutive coefficients $k_{i j}, H_{i j}, K_{i j}, \Lambda_{i j}$ and $P_{i j r s}$ satisfy the inequality

$$
\begin{equation*}
k_{i j} \theta_{i, i} \theta_{j,}+\left(H_{j i}+T_{0} K_{i j}\right) \theta_{j,} T_{i}+T_{0} \Lambda_{i j} T_{i} T_{j}+T_{0} P_{i j r s} T_{j, i} T_{s, r} \geqslant 0 \tag{2.29}
\end{equation*}
$$

By (2.17), (2.19), (2.22), (2.23) and (2.27) we find that, in the linear theory, the balance of energy (2.14) reduces to

$$
\begin{equation*}
\rho T_{0} \dot{\eta}=q_{j, j}+\rho S . \tag{2.30}
\end{equation*}
$$

In the context of the linear theory the balance of the first moment of energy (2.15) becomes

$$
\begin{equation*}
\rho \dot{\varepsilon}_{i}=q_{j i, j}+q_{i}-Q_{i}+\rho G_{i} . \tag{2.31}
\end{equation*}
$$

The basic equations of the theory are: the equations of motion (2.1), (2.11) and (2.12), the energy equations (2.30) and (2.31), the constitutive equations (2.27) and (2.28), and the geometrical equations (2.13). To these equations we must adjoin initial conditions and boundary conditions. The initial conditions are

$$
\begin{array}{ll}
u_{i}(x, 0)=u_{i}^{0}(x), & \dot{u}_{i}(x, 0)=v_{i}^{0}(x), \\
\varphi_{i}(x, 0)=\varphi_{i}^{0}(x) \tag{2.32}\\
\dot{\varphi}_{i}(x, 0)=v_{i}^{0}(x), & \varphi(x, 0)=\varphi^{0}(x), \\
\theta(x, 0)=\theta^{0}(x), & T_{i}(x, 0)=T_{i}^{0}(x), \\
x \in \bar{B}
\end{array}
$$

where $u_{i}^{0}, v_{i}^{0}, \varphi_{i}^{0}, v_{i}^{0}, \varphi^{0}, w^{0}, \theta^{0}$ and T_{i}^{0} are given. Let $S_{r},(r=1,2, \ldots, 10)$, be subsets of ∂B such that $\bar{S}_{1} \cup S_{2}=\bar{S}_{3} \cup S_{4}=\bar{S}_{5} \cup S_{6}=\bar{S}_{7} \cup S_{8}=\bar{S}_{9} \cup S_{10}=\partial B, S_{1} \cap S_{2}=S_{3} \cap S_{4}=S_{5} \cap S_{6}=S_{7} \cap S_{8}=S_{9} \cap S_{10}=\emptyset$.

From (2.9) and (2.10) we find that the components of surface moments have the form

$$
\mu_{i j}=\frac{1}{3} h \delta_{i j}-\frac{1}{2} \varepsilon_{i j r} m_{r}
$$

where

$$
\begin{equation*}
h=h_{k} n_{k}, \quad m_{i}=m_{j i} n_{j} . \tag{2.33}
\end{equation*}
$$

We consider the following boundary conditions:

$$
\begin{align*}
& u_{i}=\widetilde{u}_{i} \text { on } \bar{S}_{1} \times I, \quad \varphi_{i}=\widetilde{\varphi}_{i} \text { on } \bar{S}_{3} \times I, \quad \varphi=\widetilde{\varphi} \text { on } \bar{S}_{5} \times I, \\
& \theta=\widetilde{\theta} \text { on } \bar{S}_{7} \times I, \quad T_{i}=\widetilde{T}_{i} \text { on } \bar{S}_{9} \times I, \quad t_{j i} n_{j}=\widetilde{t}_{i} \text { on } S_{2} \times I, \\
& m_{j i} n_{j}=\widetilde{m}_{i} \text { on } S_{4} \times I, \quad h_{k} n_{k}=\widetilde{h} \text { on } S_{6} \times I, \quad q_{j} n_{j}=\widetilde{q} \text { on } S_{8} \times I, \tag{2.34}\\
& q_{k i} n_{k}=\widetilde{\Lambda}_{i} \text { on } S_{10} \times I,
\end{align*}
$$

where $\widetilde{u}_{i}, \widetilde{\varphi}_{i}, \widetilde{\varphi}, \widetilde{\theta}, \widetilde{T}_{i}, \widetilde{t}_{i}, \widetilde{m}_{i}, \widetilde{h}, \widetilde{q}$ and $\widetilde{\Lambda}_{i}$ are prescribed functions, and $I=(0, \infty)$.
We assume that: (i) f_{i}, g_{i}, ℓ, S and G_{i} are continuous on $\bar{B} \times[0, \infty)$; (ii) $\rho, I_{i j}, J, u_{i}^{0}, v_{i}^{0}, \varphi_{i}^{0}, v_{i}^{0}, \varphi^{0}, w^{0}, \theta^{0}$ and T_{i}^{0} are continuous on \bar{B}; (iii) $I_{r s}=I_{s r}$ and the constitutive coefficients satisfy the symmetry relations (2.26); (iv) the constitutive coefficients are continuous differentiable on $\bar{B} ;(\mathrm{v}) \widetilde{u}_{i}, \widetilde{\varphi}_{i}, \widetilde{\varphi}, \widetilde{\theta}$ and \widetilde{T}_{i} are continuous on $S_{1} \times I$, $S_{3} \times I, S_{5} \times I, S_{7} \times I$ and $S_{9} \times I$, respectively; (vi) $\widetilde{t}_{i}, \widetilde{m} i, \widetilde{h}, \widetilde{q}$ and $\widetilde{\Lambda}_{i}$ are continuous in time and piecewise regular on $S_{2} \times I, S_{4} \times I, S_{6} \times I, S_{8} \times I$ and $S_{10} \times I$, respectively.

Let M and N be non-negative integers. We say that f is of class $C^{M, N}$ on $B \times I$ if f is continuous on $B \times I$ and the functions

$$
\frac{\partial^{m}}{\partial x_{i} \partial x_{j} \ldots \partial x_{p}}\left(\frac{\partial^{n} f}{\partial t^{n}}\right), \quad m \in\{0,1,2, \ldots, M\}, n \in\{0,1,2, \ldots, N\}, m+n \leqslant \max \{M, N\},
$$

exist and are continuous on $B \times I$. We write C^{M} for $C^{M, M}$.
By an admissible process $p=\left\{u_{i}, \varphi_{i}, \varphi, \theta, T_{i}, e_{i j}, \kappa_{i j}, \zeta_{i}, t_{i j}, m_{i j}, h_{i}, g, \eta, \varepsilon_{i}, q_{i}, Q_{i}, q_{j i}\right\}$ we mean an ordered array of functions $u_{i}, \varphi_{i}, \varphi, \theta, T_{i}, e_{i j}, \kappa_{i j}, \zeta_{i}, t_{i j}, m_{i j}, h_{k}, g, \eta, \varepsilon_{i}, q_{j}, Q_{i}$ and $q_{j i}$ defined on $\bar{B} \times[0, \infty)$ with the following properties: (i) $u_{i}, \varphi_{i}, \varphi \in C^{2} ; \theta, T_{i} \in C^{2,1} ; e_{i j}, \kappa_{i j}, \zeta_{k} \in C^{1,0}, t_{i j}, m_{i j}, h_{k}, q_{i}, q_{j i} \in C^{1,0} ; g, Q_{i} \in C^{0} ; \eta, \varepsilon_{i} \in C^{0,1}$ on $B \times I$; (ii) $u_{i}, \dot{u}_{i}, \ddot{u}_{i}, u_{i, j}, \varphi_{i}, \dot{\varphi}_{i}, \ddot{\varphi}_{i}, \varphi_{i, j}, \varphi, \dot{\varphi}, \ddot{\varphi}, \varphi_{i, j}, \theta, \theta_{, j}, T_{i}, T_{i, j}, e_{i j}, \kappa_{i j}, \zeta_{k}, t_{i j}, t_{j i, j}, m_{j i}, m_{j i, j}, h_{i}, h_{j, j}, g, \eta, \dot{\eta}, \varepsilon_{i}, \dot{\varepsilon}_{i}, q_{i}, q_{j i}, Q_{k}, q_{j, j}$ and $q_{j i, j}$ are continuous on $\bar{B} \times[0, \infty)$.

By a solution of the mixed problem we mean an admissible process which satisfies the Eqs. (2.1), (2.11), (2.12), (2.30), (2.31), (2.27), (2.28) and (2.13) on $B \times I$, the boundary conditions (2.34) and the initial conditions (2.32).

We note that in the case of isotropic and homogeneous bodies, the constitutive equations become

$$
\begin{align*}
& t_{i j}=\lambda e_{r r} \delta_{i j}+(\mu+\kappa) e_{i j}+\mu e_{j i}+\mu_{0} \varphi \delta_{i j}-\beta_{0} \theta \delta_{i j}, \\
& m_{i j}=\alpha \kappa_{r r} \delta_{i j}+\beta \kappa_{j i}+\gamma \kappa_{i j}+b_{0} \varepsilon_{i j k} \zeta_{k}+\mu_{1} \varepsilon_{i j k} T_{k}, \\
& h_{i}=a_{0} \zeta_{i}-\mu_{2} T_{i}+b_{0} \varepsilon_{r s i} k_{r s}, \\
& g=-\mu_{0} e_{r r}-\xi \varphi+\beta_{1} \theta, \tag{2.35}\\
& \rho \eta=\beta_{0} e_{r r}+\beta_{1} \varphi+a \theta, \quad \rho \varepsilon_{i}=\mu_{1} \varepsilon_{r s i} \kappa_{r s}-\mu_{2} \zeta_{i}-b T_{i}, \\
& q_{i}=k \theta_{, i}+k_{1} T_{i}, \quad Q_{i}=\left(k_{1}-k_{2}\right) T_{i}+\left(k-k_{3}\right) \theta_{i, i}, \\
& q_{i j}=-k_{4} T_{r, r} \delta_{i j}-k_{5} T_{i, j}-k_{6} T_{j, i},
\end{align*}
$$

where $\delta_{i j}$ is the Kronecker delta and $\lambda, \mu, \kappa, \alpha, \beta, \gamma, \xi, b, a, k, \beta_{0}, \beta_{1}, a_{0}, b_{0}, \mu_{0}, \mu_{1}, \mu_{2}, k$ and $k_{s}(s=1,2, \ldots, 6)$ are prescribed constants. It follows from (2.1), (2.11), (2.12), (2.30), (2.31), (2.35), and (2.13) that the field equations of the theory of homogeneous and isotropic bodies, with $I_{i j}=I_{1} \delta_{i j}$, can be expressed as

$$
\begin{align*}
& (\mu+\kappa) \Delta u_{i}+(\lambda+\mu) u_{j, j i}+\kappa \varepsilon_{i j k} \varphi_{k, j}+\mu_{0} \varphi_{, i}-\beta_{0} \theta_{, i}+\rho f_{i}=\rho \ddot{u}_{i}, \\
& \gamma \Delta \varphi_{i}+(\alpha+\beta) \varphi_{j, j i}+\kappa \varepsilon_{i j k} u_{k, j}-2 \kappa \varphi_{i}+\mu_{1} \varepsilon_{j i k} T_{k, j}+\rho g_{i}=I_{1} \ddot{\varphi}_{i}, \\
& \left(a_{0} \Delta-\xi\right) \varphi-\mu_{0} u_{r, r}-\mu_{2} T_{j, j}+\beta_{1} \theta+\rho \ell=J \ddot{\varphi}, \tag{2.36}\\
& k \Delta \theta+k_{1} T_{j, j}-\beta_{0} T_{0} \dot{u}_{r, r}-\beta_{1} T_{0} \dot{\varphi}-c \dot{\theta}=-\rho S, \\
& k_{6} \Delta T_{i}+\left(k_{4}+k_{5}\right) T_{j, j i}+\mu_{1} \varepsilon_{r s i} \dot{\varphi}_{s, r}-\mu_{2} \dot{\varphi}_{, i}-b \dot{T}_{i}-k_{2} T_{i}-k_{3} \theta_{, i}=\rho G_{i},
\end{align*}
$$

where Δ is the Laplacian and $c=a T_{0}$. Of interest here is the coupling of microrotation with the microtemperatures. We note that the inequality (2.29) implies that (see Grot, 1969)

$$
\begin{equation*}
k \geqslant 0, \quad 3 k_{4}+k_{5}+k_{6} \geqslant 0, \quad k_{5}+k_{6} \geqslant 0, \quad k_{6}-k_{5} \geqslant 0,\left(k_{1}+T_{0} k_{3}\right)^{2} \leqslant 4 T_{0} k k_{2} . \tag{2.37}
\end{equation*}
$$

3. Uniqueness

In this section we present a uniqueness theorem in the dynamic theory of microstretch thermoelasticity with microtemperatures.

We consider the admissible process $p=\left\{u_{i}, \varphi_{i}, \varphi, \theta, T_{i}, e_{i j}, \kappa_{i j}, \zeta_{i,}, t_{i j}, m_{i j}, h_{i}, g, \eta, \varepsilon_{i}, q_{i}, Q_{i}, q_{j i}\right\}$ and introduce the functions W_{p} and \mathcal{D}_{p} on $B \times I$, defined by

$$
\begin{align*}
2 W_{p}= & A_{i j r s} e_{i j} e_{r s}+2 B_{i j r s} e_{i j} \kappa_{r s}+C_{i j r s} \kappa_{i j} \kappa_{r s}+2 D_{i j} e_{i j} \varphi+2 E_{i j} \kappa_{i j} \varphi+2 F_{i j k} e_{i j} \zeta_{k}+2 L_{i j k} e_{i j} T_{k}+2 G_{i j k} \kappa_{i j} \zeta_{k} \\
& +A_{i j} \zeta_{i} \zeta_{j}+2 B_{i} \zeta_{i} \varphi+\xi \varphi^{2} \\
2 \Gamma_{p}= & a \theta^{2}+2 b_{i} \theta T_{i}+B_{i j} T_{i} T_{j}, \\
\mathcal{D}_{p}= & k_{i j} \theta_{i,} \theta_{j}+\left(H_{j i}+T_{0} K_{i j}\right) \theta_{j, j} T_{i}+T_{0} \Lambda_{i j} T_{i} T_{j}+T_{0} P_{i j r s} T_{j, i} T_{s, r} . \tag{3.1}
\end{align*}
$$

Clearly, the entropy inequality (2.29) implies that \mathcal{D}_{p} is positive semidefinite,

$$
\begin{equation*}
\mathcal{D}_{p} \geqslant 0 \tag{3.2}
\end{equation*}
$$

for any admissible process p.
Theorem 3.1. Assume that
(i) ρ and J are strictly positive;
(ii) $I_{i j}$ is positive definite;
(iii) W_{p} is a positive semidefinite quadratic form;
(iv) Γ_{p} is positive definite for any admissible process p;
(v) the symmetry relations (2.26) hold.

Then, the mixed problem of thermoelasticity with microtemperatures has at most one solution.
Proof. With the help of the constitutive equations (2.27) and (3.1) we find that

$$
\begin{equation*}
t_{i j} \dot{e}_{i j}+m_{i j} \dot{k}_{i j}+h_{i} \dot{\zeta}_{i}-g \dot{\varphi}+\rho \dot{\eta} \theta-\rho \dot{\varepsilon}_{i} T_{i}=\dot{W}_{p}+\dot{\Gamma}_{p} . \tag{3.3}
\end{equation*}
$$

By using (2.13), (2.1), (2.11), (2.12), (2.27), (2.28), and (3.1) we obtain

$$
\begin{align*}
t_{i j} \dot{e}_{i j}+m_{i j} \dot{k}_{i j}+h_{i} \dot{\zeta}_{i}-g \dot{\varphi}+\rho \dot{\eta} \theta-\rho \dot{\varepsilon}_{i} T_{i}= & \left(t_{j i} \dot{u}_{i}+m_{j i} \dot{\varphi}_{i}+h_{j} \dot{\varphi}+\frac{1}{T_{0}} q_{j} \theta-q_{j i} T_{i}\right)_{, j} \\
& +\rho\left(f_{i} \dot{u}_{i}+g_{i} \dot{\varphi}_{i}+\ell \dot{\varphi}+\frac{1}{T_{0}} S \theta-G_{i} T_{i}\right) \\
& -\rho \ddot{u}_{i} \dot{u}_{i}-I_{i j} \ddot{\varphi}_{j} \dot{\varphi}_{i}-J \ddot{\varphi} \dot{\varphi}-\frac{1}{T_{0}} \mathcal{D}_{p} . \tag{3.4}
\end{align*}
$$

It follows from (3.3) and (3.4) that

$$
\begin{align*}
\frac{1}{2} \frac{\partial}{\partial t}\left(2 W_{p}+2 \Gamma_{p}+\rho \dot{\mathbf{u}}^{2}+I_{i j} \dot{\varphi}_{i} \dot{\varphi}_{j}+J \dot{\varphi}^{2}\right)= & \left(t_{j i} \dot{u}_{i}+m_{j i} \dot{\varphi}_{i}+h_{j} \dot{\varphi}+\frac{1}{T_{0}} q_{j} \theta-q_{j i} T_{i}\right)_{, j} \\
& +\rho\left(f_{i} \dot{u}_{i}+g_{i} \dot{\varphi}_{i}+\ell \dot{\varphi}+\frac{1}{T_{0}} S \theta-G_{i} T_{i}\right)-\frac{1}{T_{0}} \mathcal{D}_{p} . \tag{3.5}
\end{align*}
$$

We introduce the function E_{p}, associated to the process p, defined on I by

$$
\begin{equation*}
E_{p}=\frac{1}{2} \int_{B}\left(\rho \dot{\mathbf{u}}^{2}+I_{i j} \dot{\varphi}_{i} \dot{\varphi}_{j}+J \dot{\varphi}^{2}+2 W_{p}+2 \Gamma_{p}\right) \mathrm{d} v . \tag{3.6}
\end{equation*}
$$

If we integrate the relation (3.5) over B and use the divergence theorem, then we get

$$
\begin{align*}
\dot{E}_{p}= & \int_{B} \rho\left(f_{i} \dot{u}_{i}+g_{i} \dot{\varphi}_{i}+\ell \dot{\varphi}+\frac{1}{T_{0}} S \theta-G_{i} T_{i}\right) \mathrm{d} v+\int_{\partial B}\left(t_{j i} \dot{u}_{i}+m_{j i} \dot{\varphi}_{i}+h_{j} \dot{\varphi}+\frac{1}{T_{0}} q_{j} \theta-q_{j i} T_{i}\right) n_{j} \mathrm{~d} a \\
& -\frac{1}{T_{0}} \int_{B} \mathcal{D}_{p} \mathrm{~d} v . \tag{3.7}
\end{align*}
$$

Let us assume that there are two solutions of the mixed problem, $p_{\alpha}=\left\{u_{i}^{(\alpha)}, \varphi_{i}^{(\alpha)}, \varphi^{(\alpha)}\right.$, $\left.\theta^{(\alpha)}, T_{i}^{(\alpha)}, t_{i j}^{(\alpha)}, m_{i j}^{(\alpha)}, h_{i}^{(\alpha)}, g^{(\alpha)}, \eta^{(\alpha)}, \varepsilon_{i}^{(\alpha)}, q_{j}^{(\alpha)}, Q_{i}^{(\alpha)}, q_{j i}^{(\alpha)}\right\},(\alpha=1,2)$.We define the process $\pi=\left(u_{i}^{*}, \varphi_{i}^{*}, \varphi^{*}, \theta^{*}, T_{i}^{*}\right.$, $\left.t_{i j}^{*}, m_{i j}^{*}, h_{i}^{*}, g^{*}, \eta^{*}, \varepsilon_{i}^{*}, q_{j}^{*}, Q_{i}^{*}, q_{j i}^{*}\right)$ by $u_{i}^{*}=u_{i}^{(1)}-u_{i}^{(2)}, \varphi_{i}^{*}=\varphi_{i}^{(1)}-\varphi_{i}^{(2)}, \varphi^{*}=\varphi^{(1)}-\varphi^{(1)}, \quad \theta^{*}=\theta^{(1)}-\theta^{(2)}, \quad T_{i}^{*}=$ $T_{i}^{(1)}-T_{i}^{(2)}, t_{i j}^{*}=t_{i j}^{(1)}-t_{i j}^{(2)}, m_{i j}^{*}=m_{i j}^{(1)}-m_{i j}^{(2)}, h_{i}^{*}=h_{i}^{(1)}-h_{i}^{(2)}, g^{*}=g^{(1)}-g^{(2)}, \eta^{*}=\eta^{(1)}-\eta^{(2)}, \varepsilon_{i}^{*}=\varepsilon_{i}^{(1)}-\varepsilon_{i}^{(2)}$, $q_{i}^{*}=q_{i}^{(1)}-q_{i}^{(2)}, Q_{i}^{*}=Q_{i}^{(1)}-Q_{i}^{(2)}, q_{i j}^{*}=q_{i j}^{(1)}-q_{i j}^{(2)}$. Clearly, the process π corresponds to null data. Then, from (3.2) and (3.7) we obtain

$$
\dot{E}_{\pi} \leqslant 0 \quad \text { on }[0, \infty) .
$$

With the help of initial data we can see that $E_{\pi} \leqslant 0$ on I. On the basis of the hypotheses of the theorem and (3.6) we obtain $\dot{u}_{i}^{*}=0, \dot{\varphi}_{i}^{*}=0, \dot{\varphi}^{*}=0, \theta^{*}=0$ and $T_{i}^{*}=0$ on I. By using the initial data we find that $u_{i}^{*}=0$, $\varphi_{i}^{*}=0$ and $\varphi^{*}=0$ on I, and the proof is complete.

We note that the hypothesis (iv) implies that the specific heat $c=a T_{0}$ is strictly positive. Uniqueness results in various theories of thermoelasticity have been presented by Ieşan (2004).

4. Continuous dependence of solutions upon initial data and body loads

In this section we consider the linear theory of homogeneous and isotropic bodies and establish a continuous dependence result. It is convenient to have Eqs. (2.36) rewritten in non-dimensional form. We introduce the dimensionless variables

$$
\begin{align*}
& x_{i}^{\prime}=\frac{1}{\ell_{0}} x_{i}, \quad t^{\prime}=\frac{c_{1}}{\ell_{0}} t, \quad u_{i}^{\prime}=\frac{1}{\ell_{0}} u_{i}, \quad \varphi_{i}^{\prime}=\varphi_{i}, \quad \varphi^{\prime}=\varphi, \\
& \theta^{\prime}=\frac{1}{T_{0}} \theta, \quad T_{i}^{\prime}=T_{i} \ell_{0}, \tag{4.1}
\end{align*}
$$

where ℓ_{0} is a standard length and $c_{1}=\left[(\lambda+2 \mu+\kappa) / \rho_{0}\right]^{1 / 2}$. Introducing (4.1) into (2.36) and suppressing primes we find the equations

$$
\begin{align*}
& \alpha_{1} \Delta u_{i}+\left(1-\alpha_{1}\right) u_{j, j i}+\gamma_{1} \varepsilon_{i j k} \varphi_{k, j}+\gamma_{2} \varphi_{, i}-\kappa_{1} \theta_{, i}+F_{i}=\ddot{u}_{i} \\
& \alpha_{2} \Delta \varphi_{i}+\alpha_{3} \varphi_{j, j i}+\gamma_{1} \varepsilon_{i j k} u_{k, j}-2 \gamma_{1} \varphi_{i}+\kappa_{2} \varepsilon_{j i k} T_{k, j}+\Phi_{i}=I_{0} \ddot{\varphi}_{i}, \\
& \left(\alpha_{4} \Delta-\alpha_{5}\right) \varphi-\gamma_{2} u_{j, j}-\kappa_{3} T_{j, j}+\kappa_{4} \theta+H=J_{0} \ddot{\varphi}, \tag{4.2}\\
& K \Delta \theta-\kappa_{1} \dot{u}_{j, j}-\kappa_{4} \dot{\varphi}+\kappa_{5} T_{j, j}-\xi_{1} \dot{\theta}=-Q_{0}, \\
& \kappa_{6} \Delta T_{i}+\kappa_{7} T_{j, j}+\kappa_{2} \varepsilon_{r r i} \dot{\varphi}_{s, r}-\kappa_{3} \dot{\varphi}_{, i}-\xi_{2} T_{i}-\xi_{3} \dot{T}_{i}-\xi_{4} \theta_{, i}=R_{i},
\end{align*}
$$

where

$$
\begin{align*}
& \alpha_{1}=\frac{\mu+\kappa}{\rho c_{1}^{2}}, \quad \alpha_{2}=\frac{\gamma}{\ell_{0}^{2} \rho c_{1}^{2}}, \quad \alpha_{3}=\frac{\alpha+\beta}{\ell_{0}^{2} \rho c_{1}^{2}}, \quad \alpha_{4}=\frac{a_{0}}{\ell_{0}^{2} \rho c_{1}^{2}}, \quad \alpha_{5}=\frac{\xi}{\rho c_{1}^{2}}, \\
& \gamma_{1}=\frac{\kappa}{\rho c_{1}^{2}}, \quad \gamma_{2}=\frac{\mu_{0}}{\rho c_{1}^{2}}, \quad \kappa_{1}=\frac{\beta_{0}}{\rho c_{1}^{2}} T_{0}, \quad \kappa_{2}=\frac{\mu_{1}}{\rho \ell_{0}^{2} c_{1}^{2}}, \\
& \kappa_{3}=\frac{\mu_{2}}{\rho \ell_{0}^{2} c_{1}^{2}}, \quad \kappa_{4}=\frac{\beta_{1}}{\rho c_{1}^{2}} T_{0}, \quad \kappa_{5}=\frac{k_{1}}{\rho \ell_{0} c_{1}^{3}}, \quad \kappa_{6}=\frac{k_{6}}{\rho \ell_{0}^{3} c_{1}^{3}}, \\
& \kappa_{7}=\frac{1}{\rho \ell_{0}^{3} c_{1}^{3}}\left(k_{4}+k_{5}\right), \quad \kappa_{8}=\frac{1}{\rho \ell_{0}^{3} c_{1}^{3}} k_{4}, \quad I_{0}=\frac{I_{1}}{\rho \ell_{0}^{2}}, \quad J_{0}=\frac{J}{\ell_{0}^{2} \rho}, \tag{4.3}\\
& K=\frac{k}{\ell_{0} \rho c_{1}^{3}} T_{0}, \quad \xi_{1}=\frac{c}{\rho c_{1}^{2}} T_{0}, \quad \xi_{2}=\frac{k_{2}}{\rho \ell_{0} c_{1}^{3}}, \\
& \xi_{3}=\frac{b}{\rho \ell_{0}^{2} c_{1}^{2}}, \quad \xi_{4}=\frac{k_{3}}{\rho \ell_{0} c_{1}^{3}} T_{0}, \quad F_{i}=\frac{\ell_{0}}{c_{1}^{2}} f_{i}, \\
& \Phi_{i}=\frac{1}{c_{1}^{2}} g_{i}, \quad H=\frac{1}{c_{1}^{2}} \ell_{0}, \quad Q_{0}=\frac{\ell_{0}^{3}}{c_{1}^{3}} S, \quad R_{i}=\frac{1}{c_{1}^{3}} G_{i} .
\end{align*}
$$

To the equations (4.2) we add the initial conditions (2.32) and the boundary conditions

$$
\begin{equation*}
u_{i}=\widetilde{u}_{i}, \quad \varphi_{i}=\widetilde{\varphi}_{i}, \quad \varphi=\widetilde{\varphi}, \quad \theta=\widetilde{\theta}, \quad T_{i}=\widetilde{T}_{i} \quad \text { on } \partial B \times\left[0, t_{1}\right], \tag{4.4}
\end{equation*}
$$

where $\widetilde{u}_{i}, \widetilde{\varphi}_{i}, \widetilde{\varphi}, \widetilde{\theta}$ and \widetilde{T}_{i} are prescribed functions, and t_{1} is a given positive constant.
We consider two solutions $\left\{u_{i}^{(\alpha)}, \varphi_{i}^{(\alpha)}, \varphi^{(\alpha)}, \theta^{(\alpha)}, T_{i}^{(\alpha)}\right\},(\alpha=1,2)$, of the equations (4.2) corresponding to the external data systems $\mathcal{I}^{(\alpha)}=\left\{F_{i}^{(\alpha)}, \Phi_{i}^{(\alpha)}, H^{(\alpha)}, Q_{0}^{(\alpha)}, R_{i}^{(\alpha)}, \widetilde{u}_{i}, \widetilde{\varphi}_{i}, \widetilde{\varphi}, \widetilde{\theta}, \widetilde{T}_{i}, u_{i}^{0(\alpha)}, v_{i}^{0(\alpha)}, \varphi_{i}^{0(\alpha)}, \nu_{i}^{0(\alpha)}, \varphi^{0(\alpha)}, w^{0(\alpha)}, \theta^{0(\alpha)}\right.$, $\left.T_{i}^{0(\alpha)}\right\},(\alpha=1,2)$, respectively. We introduce the functions $u_{i}=u_{i}^{(1)}-u_{i}^{(2)}, \varphi_{i}=\varphi_{i}^{(1)}-\varphi_{i}^{(2)}, \varphi=\varphi^{(1)}-\varphi^{(2)}$, $\theta=\theta^{(1)}-\theta^{(2)}, T_{i}=T_{i}^{(1)}-T_{i}^{(2)}$. Obviously, $\left\{u_{i}, \varphi_{i}, \varphi, \theta, T_{i}\right\}$ is a solution of the problem corresponding to the
external data system $\mathfrak{J}=\left\{F_{i}, \Phi_{i}, H, Q_{0}, R_{i}, 0,0,0,0,0, u_{i}^{0}, v_{i}^{0}, \varphi_{i}^{0}, v_{i}^{0}, \varphi^{0}, w^{0}, T_{i}^{0}\right\}$, where $F_{i}=F_{i}^{(1)}-F_{i}^{(2)}$, $\Phi_{i}=\Phi_{i}^{(1)}-\Phi_{i}^{(2)}, \quad H=H^{(1)}-H^{(2)}, Q_{0}=Q_{0}^{(1)}-Q_{0}^{(2)}, \quad R_{i}=R_{i}^{(1)}-R_{i}^{(2)}, \quad u_{i}^{0}=u_{i}^{0(1)}-u_{i}^{0(2)}, v_{i}^{0}=v_{i}^{0(1)}-v_{i}^{0(2)}$, $v_{i}^{0}=v_{i}^{0(1)}-v_{i}^{0(2)}, \varphi^{0}=\varphi^{0(1)}-\varphi^{0(2)}, w^{0}=w^{0(1)}-w^{0(2)}, \theta^{0}=\theta^{0(1)}-\theta^{0(2)}$ and $T_{i}^{0}=T_{i}^{0(1)}-T_{i}^{0(2)}$. We denote this problem by (\mathcal{P}).

We define the function ψ on $\left[0, t_{1}\right]$ by

$$
\begin{equation*}
\psi=\frac{1}{2} \int_{B}\left(\dot{u}_{i} \dot{u}_{i}+I_{0} \dot{\varphi}_{i} \dot{\varphi}_{i}+J_{0} \dot{\varphi}^{2}+2 U+\xi_{1} \theta^{2}+\xi_{3} T_{i} T_{i}+2 \int_{0}^{t} \mathcal{D} \mathrm{~d} t\right) \mathrm{d} v, \tag{4.5}
\end{equation*}
$$

where

$$
\begin{align*}
2 U= & \left(1-2 \alpha_{1}+\gamma_{1}\right) e_{r r} e_{s s}+\alpha_{1} e_{i j} e_{i j}+\left(\alpha_{1}-\gamma_{1}\right) e_{j i} e_{i j}+2 \gamma_{2} e_{r r} \varphi \\
& +\tau \gamma_{r r} \gamma_{s s}+\left(\alpha_{3}-\tau\right) \gamma_{j i} \gamma_{i j}+\alpha_{2} \gamma_{i j} \gamma_{i j}+2 b_{1} \varepsilon_{j i k} \varphi_{, k} \gamma_{j i}+\alpha_{4} \varphi_{, i} \varphi_{, i}+\alpha_{5} \varphi^{2}, \tag{4.6}\\
\mathcal{D}= & K \theta_{, i} \theta_{, i}+\left(\kappa_{5}+\xi_{4}\right) \theta_{i,} T_{i}+\xi_{2} T_{i} T_{i} \\
& +\kappa_{8} T_{r, r} T_{s, s}+\left(\kappa_{7}-\kappa_{8}\right) T_{j, i} T_{i, j}+\kappa_{6} T_{i, j} T_{i, j} .
\end{align*}
$$

In (4.6) we have used the notations

$$
\begin{equation*}
e_{i j}=u_{j, i}+\varepsilon_{j i k} \varphi_{k}, \quad \gamma_{i j}=\varphi_{j, i}, \quad \tau=\frac{\alpha}{\rho \ell_{0}^{2} c_{1}^{2}} \tag{4.7}
\end{equation*}
$$

We note that (2.37) and (4.3) imply that

$$
\begin{equation*}
\mathcal{D} \geqslant 0 \tag{4.8}
\end{equation*}
$$

for any $T_{i}, \theta_{, j}$ and $T_{i, j}$.
In what follows we assume that the elastic potential U and the function \mathcal{D} are positive definite quadratic forms. Thus, there exist the positive constants $\lambda_{1}, \lambda_{2}, K_{1}$ and K_{2} such that

$$
\begin{align*}
& \lambda_{1}\left(e_{i j} e_{i j}+\gamma_{i j} \gamma_{i j}+\varphi_{, i} \varphi_{, i}+\varphi^{2}\right) \leqslant U \leqslant \lambda_{2}\left(e_{i j} e_{i j}+\gamma_{i j} \gamma_{i j}+\varphi_{, i} \varphi_{, i}+\varphi^{2}\right) \tag{4.9}\\
& K_{1}\left(\theta_{i, i} \theta_{, i}+T_{i} T_{i}+T_{i, j} T_{i, j}\right) \leqslant \mathcal{D} \leqslant K_{2}\left(\theta_{i, i} \theta_{, i}+T_{i} T_{i}+T_{i, j} T_{i, j}\right)
\end{align*}
$$

for all the variables $e_{i j}, \gamma_{i j}, \varphi_{, k}, \varphi, \theta_{i,}, T_{j}, T_{r, s}$ and any $t \in\left[0, t_{1}\right]$.
Theorem 4.1. Let $p=\left\{u_{i}, \varphi_{i}, \varphi, \theta, T_{i}\right\}$ be a solution of the problem (\mathcal{P}). Then

$$
\begin{equation*}
\dot{\psi}=\int_{B}\left(F_{i} \dot{u}_{i}+\Phi_{i} \dot{\varphi}_{i}+H \dot{\varphi}+Q_{0} \theta-R_{i} T_{i}\right) \mathrm{d} v \tag{4.10}
\end{equation*}
$$

Proof. We introduce the notations

$$
\begin{align*}
& \pi_{j i}=\left(1-2 \alpha_{1}+\gamma_{1}\right) e_{r r} \delta_{i j}+\alpha_{1} e_{j i}+\left(\alpha_{1}-\gamma_{1}\right) e_{i j}+\gamma_{2} \varphi \delta_{i j}-\kappa_{1} \theta \delta_{i j}, \\
& \mu_{j i}=\tau \gamma_{r r} \delta_{i j}+\left(\alpha_{3}-\tau\right) \gamma_{i j}+\alpha_{2} \gamma_{j i}+b_{1} \varepsilon_{j i k} \varphi_{, k}+\kappa_{2} \varepsilon_{j i k} T_{k}, \\
& s_{i}=\alpha_{4} \varphi_{, i}-\kappa_{3} T_{i}+b_{1} \varepsilon_{r s i} \gamma_{r s}, \quad f=-\gamma_{2} e_{r r}-\alpha_{5} \varphi+\kappa_{4} \theta, \tag{4.11}\\
& \Pi=\kappa_{1} e_{r r}+\kappa_{4} \varphi+\xi_{1} \theta, \quad \chi_{i}=\kappa_{2} \varepsilon_{r s i} \gamma_{r s}-\kappa_{3} \varphi_{, i}-\xi_{3} T_{i}, \\
& \sigma_{i}=K \theta_{, i}+\kappa_{5} T_{i}, \quad \Gamma_{i}=\left(\kappa_{5}-\xi_{2}\right) T_{i}+\left(K-\xi_{4}\right) \theta_{, i}, \\
& \lambda_{i j}=-\kappa_{8} T_{r, r} \delta_{i j}-\left(\kappa_{7}-\kappa_{8}\right) T_{i, j}-\kappa_{6} T_{j, i},
\end{align*}
$$

where $e_{i j}$ and $\gamma_{i j}$ are defined in (4.7) and $b_{1}=b_{0} /\left(\rho \ell_{0}^{2} c_{1}^{2}\right)$.
The equations (4.2) can be written in the form

$$
\begin{align*}
& \pi_{j i, j}+F_{i}=\ddot{u}_{i}, \quad \mu_{j i, j}+\varepsilon_{i j k} s_{j k}+\Phi_{i}=I_{0} \ddot{\varphi}_{i}, \\
& s_{j, j}+f+H=J_{0} \ddot{\varphi}, \quad \dot{\Pi}=\sigma_{j, j}+Q_{0} \\
& \dot{\chi}_{i}=\lambda_{j i, j}+\sigma_{i}-\Gamma_{i}+R_{i} . \tag{4.12}
\end{align*}
$$

By (4.11) and (4.6) we get

$$
\begin{equation*}
\pi_{j i} \dot{e}_{j i}+\mu_{i j} \dot{\gamma}_{i j}+s_{i} \dot{\varphi}_{, i}-f \dot{\varphi}+\dot{\Pi} \theta-\dot{\chi}_{i} T_{i}=\frac{1}{2} \frac{\partial}{\partial t}\left(2 U+\xi_{1} \theta^{2}+\xi_{3} T_{i} T_{i}\right) . \tag{4.13}
\end{equation*}
$$

On the other hand, with the aid of (4.7) and (4.12) we obtain

$$
\begin{align*}
\pi_{j i} \dot{e}_{j i}+\mu_{i j} \dot{\gamma}_{i j}+s_{i} \dot{\varphi}_{, i}-f \dot{\varphi}+\dot{\Pi} \theta-\dot{\chi}_{i} T_{i}= & \left(\pi_{j i} \dot{u}_{i}+\mu_{j i} \dot{\varphi}_{i}+s_{j} \dot{\varphi}+\sigma_{j} \theta-\lambda_{j i} T_{i}\right)_{, j}+F_{i} \dot{u}_{i}+\Phi_{i} \dot{\varphi}_{i}+H \dot{\varphi} \\
& +Q_{0} \theta-R_{i} T_{i}-\ddot{u}_{i} \dot{u}_{i}-I_{0} \ddot{\varphi}_{i} \dot{\varphi}_{i}-J_{0} \ddot{\varphi} \dot{\varphi}-\mathcal{D}, \tag{4.14}
\end{align*}
$$

where \mathcal{D} is given by (4.6). From (4.13) and (4.14) we find that

$$
\begin{align*}
& \frac{1}{2} \frac{\partial}{\partial t}\left(2 U+\xi_{1} \theta^{2}+\xi_{3} T_{i} T_{i}+\dot{u}_{i} \dot{u}_{i}+I_{0} \dot{\varphi}_{i} \dot{\varphi}_{i}+J_{0} \dot{\varphi}^{2}+2 \int_{0}^{t} \mathcal{D} \mathrm{~d} t\right) \\
& \quad=\left(\pi_{j i} \dot{u}_{i}+\mu_{j i} \dot{\varphi}_{i}+s_{j} \dot{\varphi}+\sigma_{j} \theta-\lambda_{j i} T_{i}\right)_{, j}+F_{i} \dot{u}_{i}+\Phi_{i} \dot{\varphi}_{i}+H \dot{\varphi}+Q_{0} \theta-R_{i} T_{i} . \tag{4.15}
\end{align*}
$$

If we integrate (4.15) over B and use the divergence theorem and the boundary conditions, then we obtain (4.10).

Let us introduce the functions ζ and P on $\left[0, t_{1}\right]$ by

$$
\begin{align*}
\zeta & =\left\{\int_{B}\left[\dot{u}_{i} \dot{u}_{i}+\dot{\varphi}_{i} \dot{\varphi}_{i}+\dot{\varphi}^{2}+e_{i j} e_{i j}+\gamma_{i j} \gamma_{i j}+\varphi_{, i} \varphi_{, i}+\theta^{2}+T_{i} T_{i}+\int_{0}^{t}\left(\theta_{, i} \theta_{, i}+T_{i} T_{i}+T_{j, k} T_{j, k}\right) \mathrm{d} t\right] \mathrm{d} v\right\}^{1 / 2}, \\
P & =\left[\int_{B}\left(F_{i} F_{i}+\Phi_{i} \Phi_{i}+H^{2}+Q_{0}^{2}+R_{i} R_{i}\right) \mathrm{d} v\right]^{1 / 2} . \tag{4.16}
\end{align*}
$$

Theorem 4.2. Assume that
(i) $\rho, I_{0}, J_{0}, \xi_{1}$ and ξ_{3} are strictly positive;
(ii) U and \mathcal{D} are positive definite.

Then there exist the positive constants ρ_{1} and ρ_{2} such that

$$
\begin{equation*}
\zeta(t) \leqslant \rho_{1} \zeta(0)+\rho_{2} \int_{0}^{t} P(s) \mathrm{d} s, \quad t \in\left[0, t_{1}\right) \tag{4.17}
\end{equation*}
$$

Proof. With the help of the Schwartz inequality, from (4.10) and (4.16) we obtain

$$
\begin{equation*}
\dot{\psi} \leqslant P\left[\int_{B}\left(\dot{u}_{i} \dot{u}_{i}+\dot{\varphi}_{i} \dot{\varphi}_{i}+\dot{\varphi}^{2}+\theta^{2}+T_{i} T_{i}\right) \mathrm{d} v\right]^{1 / 2} . \tag{4.18}
\end{equation*}
$$

By (4.16) and (4.18) we find

$$
\dot{\psi} \leqslant P \zeta,
$$

so that

$$
\begin{equation*}
\psi(t) \leqslant \psi(0)+\int_{0}^{t} P(s) \zeta(s) \mathrm{d} s, \quad t \in\left[0, t_{1}\right] . \tag{4.19}
\end{equation*}
$$

It follows from (4.5) and (4.9) that

$$
\begin{equation*}
\psi(t) \geqslant \tau_{1} \zeta^{2}(t), \quad \psi(0) \leqslant \tau_{2} \zeta^{2}(0), \quad t \in\left[0, t_{1}\right], \tag{4.20}
\end{equation*}
$$

where

$$
\tau_{1}=\frac{1}{2} \min \left(1, I_{0}, J_{0}, 2 \lambda_{1}, \xi_{1}, \xi_{3}, 2 K_{1}\right), \quad \tau_{2}=\frac{1}{2} \max \left(1, I_{0}, J_{0}, 2 \lambda_{2}, \xi_{1}, \xi_{3}, 2 K_{2}\right) .
$$

From (4.19) and (4.20) we obtain

$$
\begin{equation*}
\zeta^{2}(t) \leqslant \rho_{1}^{2} \zeta^{2}(0)+2 \rho_{2} \int_{0}^{t} P(s) \zeta(s) \mathrm{d} s, \quad t \in\left[0, t_{1}\right], \tag{4.21}
\end{equation*}
$$

where

$$
\rho_{1}=\left(\frac{\tau_{2}}{\tau_{1}}\right)^{1 / 2}, \quad \rho_{2}=\frac{1}{2 \tau_{1}} .
$$

With the help of the Gronwall inequality, from (4.21) we obtain the desired result.
We note that the conditions $\xi_{1}>0$ and $\xi_{3}>0$ imply that $c>0$ and $b>0$, respectively.

5. The equilibrium theory

In this section we study the equilibrium theory of thermoelastic bodies with microtemperatures. In the case of equilibrium the basic equations of the theory consist of the equations of equilibrium

$$
\begin{align*}
& t_{j i, j}+\rho f_{i}=0, \\
& m_{j i, j}+\varepsilon_{i r s} t_{r s}+\rho \ell=0, \tag{5.1}\\
& h_{j, j}+g+\rho \ell=0,
\end{align*}
$$

the balance of energy

$$
\begin{equation*}
q_{j, j}+\rho S=0, \tag{5.2}
\end{equation*}
$$

the balance of the first moment of energy

$$
\begin{equation*}
q_{j i, j}+q_{i}-Q_{i}+\rho G_{i}=0, \tag{5.3}
\end{equation*}
$$

the constitutive equations (2.27), (2.28), and the geometrical equations (2.13). In the case of the first boundaryvalue problem the boundary conditions are

$$
\begin{equation*}
u_{i}=\widetilde{u}_{i}, \quad \varphi_{i}=\widetilde{\varphi}_{i}, \quad \varphi=\widetilde{\varphi}, \quad \theta=\widetilde{\theta}, \quad T_{i}=\widetilde{T}_{i} \quad \text { on } \partial B, \tag{5.4}
\end{equation*}
$$

where $\widetilde{u}_{i}, \widetilde{\varphi}_{i}, \widetilde{\varphi}, \widetilde{\theta}$ and \widetilde{T}_{i} are given functions. In the second boundary-value problem the boundary conditions are

$$
\begin{equation*}
t_{j i} n_{j}=\widetilde{t}_{i}, \quad m_{j i} n_{j}=\widetilde{m}_{i}, \quad h_{j} n_{j}=\widetilde{h}, \quad q_{j} n_{j}=\widetilde{q}, \quad q_{j i} n_{j}=\widetilde{\Lambda}_{i} \quad \text { on } \partial B, \tag{5.5}
\end{equation*}
$$

where $\widetilde{t}_{i}, \widetilde{m}_{i}, \widetilde{h}, \widetilde{q}$ and $\widetilde{\Lambda}_{i}$ are prescribed.
Remark. In the case of equilibrium the theory is not coupled, in the sense that we can first study the problem of finding the functions θ and T_{i}, and then the problem of finding the functions u_{i}, φ_{i} and φ.

By a rigid state we mean an ordered array of functions $\left(u_{i}^{*}, \varphi_{i}^{*}, \varphi^{*}, \theta^{*}, T_{i}^{*}\right)$ of the form

$$
\begin{equation*}
u_{i}^{*}=c_{i}^{(1)}+\varepsilon_{i j k} c_{j}^{(2)} x_{k}, \quad \varphi_{i}^{*}=c_{j}^{(2)}, \quad \varphi^{*}=0, \quad \theta^{*}=c^{(3)}, \quad T_{i}^{*}=0, \tag{5.6}
\end{equation*}
$$

where $c_{i}^{(1)}, c_{i}^{(2)}$ and $c^{(3)}$ are arbitrary constants.
Now, we present a uniqueness result. Let W_{p} and \mathcal{D}_{p} be defined by (3.1).
Theorem 5.1. Assume that W_{p} and \mathcal{D}_{p} be positive definite. Then,
(i) the first boundary-value problem has at most one solution;
(ii) any two solutions of the second boundary-value problem are equal modulo a rigid state.

Proof. In view of (5.2) and (5.3) we obtain

$$
\begin{align*}
\rho\left(\frac{1}{T_{0}} S \theta-G_{i} T_{i}\right) & =-\frac{1}{T_{0}} q_{j, j} \theta+\left(q_{j i, j}+q_{i}-Q_{i}\right) T_{i} \\
& =-\left(\frac{1}{T_{0}} q_{j} \theta-q_{j i} T_{i}\right)_{, j}+\frac{1}{T_{0}} q_{j} \theta_{, j}-q_{j i} T_{i, j}+\left(q_{i}-Q_{i}\right) T_{i} . \tag{5.7}
\end{align*}
$$

With the aid of the divergence theorem, from (5.7) we find that

$$
\begin{equation*}
\int_{B} \mathcal{D}_{p} \mathrm{~d} v=\int_{B} \rho\left(S \theta-T_{0} G_{i} T_{i}\right) \mathrm{d} v+\int_{\partial B}\left(q_{j} n_{j} \theta-T_{0} q_{j i} n_{j} T_{i}\right) \mathrm{d} a . \tag{5.8}
\end{equation*}
$$

Suppose that there are two solutions. Then their difference $y=\left(\bar{u}_{i}, \bar{\varphi}_{i}, \bar{\varphi}, \bar{\theta}, \bar{T}_{i}\right)$ corresponds to null data. From (5.8) we obtain

$$
\begin{equation*}
\int_{B} \mathcal{D}_{y} \mathrm{~d} v=0 . \tag{5.9}
\end{equation*}
$$

Since \mathcal{D}_{p} is positive definite for any process p, we conclude from (5.9) that

$$
\bar{\theta}=C, \quad \bar{T}_{i}=0,
$$

where C is an arbitrary constant. In the case of the first boundary-value problem we obtain $C=0$. The remaining part of the proof is a direct consequence of the uniqueness theorem from the isothermal theory of elastic bodies (cf. Eringen, 1999).

In the equilibrium theory of homogeneous and isotropic bodies, the basic equations (2.36) become

$$
\begin{align*}
& (\mu+\kappa) \Delta u_{i}+(\lambda+\mu) u_{j, j i}+\kappa \varepsilon_{i j k} \varphi_{k, j}+\mu_{0} \varphi_{, i}-\beta_{0} \theta_{, i}=-\rho f_{i}, \\
& \gamma \Delta \varphi_{i}+(\alpha+\beta) \varphi_{j, j i}+\kappa \varepsilon_{i j k} u_{k, j}-2 \kappa \varphi_{i}+\mu_{1} \varepsilon_{j i k} T_{k, j}=-\rho g_{i}, \\
& \left(a_{0} \Delta-\xi\right) \varphi-\mu_{0} u_{j, j}-\mu_{2} T_{j, j}+\beta_{1} \theta=-\rho \ell, \\
& k \Delta \theta+k_{1} T_{j, j}=-\rho S, \\
& k_{6} \Delta T_{i}+\left(k_{4}+k_{5}\right) T_{j, j i}-k_{2} T_{i}-k_{3} \theta_{, i}=\rho G_{i} . \tag{5.10}
\end{align*}
$$

In this case, the first boundary-value problem consists in the finding of functions $u_{i}, \varphi_{i}, \varphi, \theta$ and T_{i} that satisfy the equations (5.10) on B and the conditions (5.4) on ∂B. Clearly, by (2.35) and (2.13) we can express the boundary conditions (5.5) in terms of the functions $u_{i}, \varphi_{i}, \varphi, \theta$ and T_{i}.

6. Effects of a concentrated heat source

In this section we study the effect of a concentrated heat source in an isotropic and homogeneous body that occupies the entire three-dimensional euclidean space. We consider the theory of equilibrium and assume that

$$
\begin{equation*}
f_{i}=0, \quad g_{i}=0, \quad \ell=0, \quad \rho S=M(r), \quad G_{i}=0, \tag{6.1}
\end{equation*}
$$

where M is a prescribed function, $r=\left[\left(x_{i}-y_{i}\right)\left(x_{i}-y_{i}\right)\right]^{1 / 2}$ and $\left(y_{1}, y_{2}, y_{2}\right)$ is a fixed point.
The conditions at infinity are

$$
\begin{aligned}
& u_{i}=\mathrm{O}(1), \quad \varphi_{i}=\mathrm{O}(1), \quad \varphi=\mathrm{O}\left(r^{-1}\right), \quad \theta=\mathrm{O}\left(r^{-1}\right), \quad T_{i}=\mathrm{O}\left(r^{-1}\right), \\
& u_{i, j}=\mathrm{O}\left(r^{-1}\right), \quad \varphi_{i, j}=\mathrm{O}\left(r^{-1}\right), \quad \varphi_{, i}=\mathrm{O}\left(r^{-2}\right), \quad \theta_{, j}=\mathrm{O}\left(r^{-2}\right), \quad T_{i, j}=\mathrm{O}\left(r^{-2}\right) .
\end{aligned}
$$

We note that the behaviour at infinity of displacements is the same as in classical thermoelasticity. We seek the solution in the form

$$
\begin{equation*}
u_{i}=\Psi_{, i}, \quad \varphi_{i}=0, \quad \varphi=\Phi, \quad \theta=V, \quad T_{i}=W_{, i}, \tag{6.2}
\end{equation*}
$$

where Ψ, Φ, V and W are unknown functions which depend only of the variable r. The field equations (5.10) are satisfied if Ψ, Φ, V and W satisfy the equations

$$
\begin{align*}
& d_{1} \Delta \Psi+\mu_{0} \Phi-\beta_{0} V=0 \\
& \left(a_{0} \Delta-\xi\right) \Phi-\mu_{0} \Delta \Psi-\mu_{2} \Delta W+\beta_{1} V=0, \tag{6.3}\\
& k \Delta V+k_{1} \Delta W=-M \\
& \left(d_{2} \Delta-k_{2}\right) W-k_{3} V=0,
\end{align*}
$$

where

$$
\begin{equation*}
d_{1}=\lambda+2 \mu+\kappa, \quad d_{2}=k_{4}+k_{5}+k_{6} \tag{6.4}
\end{equation*}
$$

We assume that the functions W_{p} and \mathcal{D}_{p} defined by (3.1) are positive definite. It is a simple matter to see that the positive definiteness of W_{p} and \mathcal{D}_{p} implies that

$$
a_{0}>0, \quad d_{1}>0, \quad k>0, \quad d_{2}>0, \quad \xi d_{1}-\mu_{0}^{2}>0, \quad k k_{2}-k_{1} k_{3}>0 .
$$

We introduce the notations

$$
\begin{equation*}
D_{1}=a_{0} d_{1} \Delta\left(\Delta-\ell_{1}^{2}\right), \quad D_{2}=k d_{2} \Delta\left(\Delta-\ell_{2}^{2}\right), \tag{6.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\ell_{1}=\left(\frac{\xi_{1} d_{1}-\mu_{0}^{2}}{a_{0} d_{1}}\right)^{1 / 2}, \quad \ell_{2}=\left(\frac{k k_{2}-k_{1} k_{3}}{k d_{2}}\right)^{1 / 2} \tag{6.6}
\end{equation*}
$$

Theorem 6.1. Let

$$
\begin{align*}
& \Psi=\mu_{0}\left[\left(\beta_{1} d_{2}-\mu_{2} k_{3}\right) \Delta-\beta_{1} k_{2}\right] \chi+\beta_{0}\left(a_{0} \Delta-\xi\right)\left(d_{2} \Delta-k_{2}\right) \chi, \\
& \Phi=-d_{1} \Delta\left[\left(\beta_{1} d_{2}-\mu_{2} k_{3}\right) \Delta-\beta_{1} k_{2}\right] \chi+\mu_{0} \beta_{0} \Delta\left(d_{2} \Delta-k_{2}\right) \chi, \\
& V=\left(d_{2} \Delta-k_{2}\right) D_{1} \chi, \\
& W=k_{3} D_{1} \chi, \tag{6.7}
\end{align*}
$$

where χ is a function of class C^{8} which satisfies the equation

$$
\begin{equation*}
D_{1} D_{2} \chi=-M . \tag{6.8}
\end{equation*}
$$

Then Ψ, Φ, V and W satisfy the equations (6.3).
Proof. Let us substitute the functions Ψ, Φ, V and W given by (6.7) into the left hand side of (6.3). For the first equation from (6.3) we get

$$
\begin{gathered}
d_{1} \Delta \Psi+\mu_{0} \Phi-\beta_{0} V=\mu_{0} d_{1} \Delta\left[\left(\beta_{1} d_{2}-\mu_{2} k_{3}\right) \Delta-\beta_{1} k_{2}\right] \chi+d_{1} \beta_{0}\left(a_{0} \Delta-\xi\right)\left(d_{2} \Delta-k_{2}\right) \Delta \chi-\mu_{0} d_{1} \Delta\left[\left(\beta_{1} d_{2}-\mu_{2} k_{3}\right)\right. \\
\left.\Delta-\beta_{1} k_{2}\right] \chi+\mu_{0}^{2} \beta_{0} \Delta\left(d_{2} \Delta-k_{2}\right) \chi-\beta_{0} D_{1}\left(d_{2} \Delta-k_{2}\right) \chi \\
=\Delta\left(d_{2} \Delta-k_{2}\right)\left[\mu_{0}^{2} \beta_{0}-\beta_{0} d_{1}\left(a_{0} \Delta-\xi\right)-\beta_{0} \mu^{2}+d_{1} \beta_{0}\left(a_{0} \Delta-\xi\right)\right] \chi=0 .
\end{gathered}
$$

In view of (6.8), for the third equation of (6.3) we obtain

$$
k \Delta V+k_{1} \Delta W=k \Delta D_{1}\left(k d_{2} \Delta-k k_{2}+k_{1} k_{3}\right) \chi=D_{1} D_{2} \chi=-M .
$$

Similarly, we can show that the other equations of (6.3) are satisfied.
Eq. (6.8) can be written in the form

$$
\begin{equation*}
\left(\Delta-\ell_{1}^{2}\right)\left(\Delta-\ell_{2}^{2}\right) \Delta \Delta \chi=-p_{0} M, \tag{6.9}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{0}=\left(a_{0} k d_{1} d_{2}\right)^{-1} \tag{6.10}
\end{equation*}
$$

Let us consider the functions $\psi_{j}(j=1,2,3,4)$, which satisfy the equations

$$
\begin{equation*}
\left(\Delta-\ell_{1}^{2}\right) \psi_{1}=-p_{0} M, \quad\left(\Delta-\ell_{2}^{2}\right) \psi_{2}=-p_{0} M, \quad \Delta \Delta \psi_{3}=-p_{0} M, \quad \Delta \psi_{4}=-p_{0} M . \tag{6.11}
\end{equation*}
$$

It is a simple matter to see that the solution of the equation (6.9) can be expressed in the form

$$
\begin{equation*}
\chi=a_{1} \psi_{1}+a_{2} \psi_{2}+a_{3} \psi_{3}+a_{4} \psi_{4}, \tag{6.12}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{1}=\frac{1}{\ell_{1}^{4}\left(\ell_{1}^{2}-\ell_{2}^{2}\right)}, \quad a_{2}=-\frac{1}{\ell_{2}^{4}\left(\ell_{1}^{2}-\ell_{2}^{2}\right)}, \quad a_{3}=\frac{1}{\ell_{1}^{2} \ell_{2}^{2}}, \quad a_{4}=\frac{\ell_{1}^{2}+\ell_{2}^{2}}{\ell_{1}^{4} \ell_{2}^{4}} . \tag{6.13}
\end{equation*}
$$

Let us investigate the effect of a concentrated heat source. We assume that

$$
\begin{equation*}
M=\delta(\mathbf{x}-\mathbf{y}) \tag{6.14}
\end{equation*}
$$

where $\delta(\cdot)$ is the Dirac delta and y is a fixed point. In this case, from (6.11) and (6.14) we obtain

$$
\begin{equation*}
\psi_{1}=\frac{p_{0}}{4 \pi r} \exp \left(-\ell_{1} r\right), \quad \psi_{2}=\frac{p_{0}}{4 \pi r} \exp \left(-\ell_{2} r\right), \quad \psi_{3}=\frac{p_{0}}{8 \pi} r, \quad \psi_{4}=\frac{p_{0}}{4 \pi r}, \tag{6.15}
\end{equation*}
$$

It follows from (6.12), (6.13) and (6.15) that

$$
\begin{equation*}
\chi=\frac{p_{0}}{4 \pi \ell_{1}^{4} \ell_{2}^{4}\left(\ell_{1}^{2}-\ell_{2}^{2}\right) r}\left[\ell_{2}^{4} \exp \left(-\ell_{1} r\right)-\ell_{1}^{4} \exp \left(-\ell_{2} r\right)\right]+\frac{p_{0}}{8 \pi \ell_{1}^{4} \ell_{2}^{4} r}\left[\ell_{1}^{2} \ell_{2}^{2} r^{2}+2\left(\ell_{1}^{2}+\ell_{2}^{2}\right)\right] . \tag{6.16}
\end{equation*}
$$

If we substitute the function χ given by (6.16) into (6.7) then we find that for $\mathbf{x} \neq \mathbf{y}$, we have

$$
\begin{align*}
\Psi & =\frac{p_{0}}{4 \pi r}\left[c_{11} \exp \left(-\ell_{1} r\right)+c_{12} \exp \left(-\ell_{2} r\right)+a_{3} b_{13} r^{2}+c_{13}\right], \\
\Phi & =\frac{p_{0}}{4 \pi r}\left[c_{21} \exp \left(-\ell_{1} r\right)+c_{22} \exp \left(-\ell_{2} r\right)+b_{22} a_{3}\right], \\
V & =\frac{p_{0}}{4 \pi r}\left[c_{31} \exp \left(-\ell_{2} r\right)+a_{0} a_{3} d_{1} k_{2} \ell_{1}^{2}\right], \tag{6.17}\\
W & =\frac{a_{0} d_{1} k_{3}}{4 \pi r}\left[a_{2}\left(\ell_{2}^{2}-\ell_{1}^{2}\right) \ell_{2}^{2} \exp \left(-\ell_{2} r\right)-a_{3} \ell_{1}^{2}\right],
\end{align*}
$$

where

$$
\begin{aligned}
& c_{11}=a_{1} \ell_{1}^{2} b_{11}+a_{1} \ell_{1}^{4} b_{12}+a_{1} b_{13}, \quad c_{12}=a_{2} \ell_{2}^{2} b_{11}+a_{2} \ell_{2}^{4} b_{12}+a_{2} b_{13}, \\
& c_{13}=a_{3} b_{11}+a_{4} b_{13}, \quad c_{21}=a_{1} b_{21} \ell_{1}^{4}+a_{1} b_{22} \ell_{1}^{2}, \\
& c_{22}=a_{2} b_{21} \ell_{2}^{4}+a_{2} b_{22} \ell_{2}^{2}, \quad c_{31}=a_{0} a_{2} \ell_{2}^{2}\left(\ell_{2}^{2}-\ell_{1}^{2}\right) d_{1}\left(d_{2} \ell_{2}^{2} k_{2},\right. \\
& b_{11}=\mu_{0}\left(\beta_{1} d_{2}-\mu_{2} k_{3}\right)-\beta_{0}\left(\xi d_{2}+a_{0} k_{2}\right), \quad b_{12}=a_{0} \beta_{0} d_{2}, \\
& b_{13}=\beta_{0} \xi k_{2}-\beta_{1} \mu_{0} k_{2}, \quad b_{21}=\mu_{0} \beta_{0} d_{2}-d_{1}\left(\beta_{0} d_{2}-\mu_{2} k_{3}\right), \\
& b_{22}=\left(\beta_{1} d_{1}-\mu_{0} \beta_{0}\right) k_{2} .
\end{aligned}
$$

From (6.2) and (6.17) we obtain the components of the displacements u_{i}, the function φ, the temperature θ, and the microtemperatures T_{i} which correspond to a concentrated heat source.

7. Conclusions

The results established in this paper can be summarized as follows:
(a) We have used the theory of thermodynamics of a continuum with microstructure established by Grot (1969) to derive a linear theory of microstretch elastic bodies with microtemperatures. A microelement of the continuum is equipped with the mechanical degrees of freedom for rigid rotations and microdilatation, in addition to the classical translation degrees of freedom.
(b) We have established a uniqueness result in the dynamical theory of anisotropic bodies.
(c) The filed equations of the theory of homogeneous and isotropic solids are presented. The salient feature of these equations is the coupling of microrotation vector with the microtemperatures. It is known that in the classical theory of Coserat thermoelasticity for isotropic bodies, the microrotation vector is independent of the thermal field.
(d) We have established the continuous dependence of solutions upon initial data and body loads. Consequently, the mathematical model is well posed.
(e) We have studied the effect of a concentrated heat source in an isotropic and homogeneous body that occupies the three-dimensional euclidean space.

Acknowledgements

The author thanks to reviewers for their careful reading of the manuscript and their fruitful suggestions.

References

Casas, P., Quintanilla, R., 2005. Exponential stability in thermoelasticity with microtemperatures. Int. J. Eng. Sci. 43, 33-47. Ciarletta, M., Ieşan, D., 1993. Non-Classical Elastic Solids. Longman Scientific \& Technical, London.
Ericksen, J., Truesdell, C., 1958. Exact theory of stress and strain in rods and shells. Arch. Ration. Mech. Anal. 1, 295-323.
Eringen, A.C., 1999. Microcontinuum Field Theories, I. Foundations and Solids. Springer-Verlag, New York, Berlin, Heidelberg.
Eringen, A.C., Suhubi, E.S., 1964. Nonlinear theory of simple microelastic solids. Int. J. Eng. Sci. 2, 389-403.
Green, A.E., 1965. Micro-materials and multipolar continuum mechanics. Int. J. Eng. Sci. 3, 533-537.
Green, A.E., Rivlin, R.S., 1964. Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17, 113-147.
Grot, R., 1969. Thermodynamics of a continuum with microstructure. Int. J. Eng. Sci. 7, 801-814.
Ieşan, D., 2001. On a theory of micromorphic elastic solids with microtemperatures. J. Thermal Stresses 24, 737-752.
Ieşan, D., 2004. Thermoelastic Models of Continua. Kluwer Academic Publishers, Dordrecht.
Koh, S.L., 1973. Theory of a second-order microfluid. Rheol. Acta 12, 418-430.
Kunin, I.A., 1983. Elastic Media with Microstructure. Springer-Verlag, Berlin.
Mindlin, R.D., 1964. Microstructure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51-77.
Riha, P., 1975. On the theory of heat-conducting micropolar fluids with microtemperatures. Acta Mech. 23, 1-8.
Riha, P., 1976. On the microcontinuum model of heat conduction in materials with inner structure. Int. J. Eng. Sci. 14, 529-535.
Riha, P., 1977. Poiseuille flow of microthermopolar fluids. Acta Tech. CSAV 22, 602-614.
Scalia, A., Svanadze, M., 2006. On the representation of solutions of the theory of thermoelasticity with microtemperatures. J. Thermal Stresses 29, 849-863.
Svanadze, M., 2003. Boundary value problems of the theory of thermoelasticity with microtemperatures. Proc. GAMM, PAMM 3, 188189.

Svanadze, M., 2004. Fundamental solutions of the equations of the theory of thermoelasticity with microtemperatures. J. Thermal Stresses 27, 151-170.
Verma, P.D.S., Singh, D.V., Singh, K., 1979. Hagen-Poiseuille flow of microthermopolar fluids in a circular pipe. Acta Tech. CSAV 24, 402-412.

[^0]: * Tel.: +40 232201060; fax: +40232201160.

 E-mail address: iesan@uaic.ro

