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Abstract

A set S of pairwise nonadjacent vertices in an undirected graph G is called a stable transversal of G if S meets every maximal
(with respect to set-inclusion) clique of G. G is called strongly perfect if all its induced subgraphs (including G itself) have stable
transversals. A claw is a graph consisting of vertices a, b, c, d and edges ab, ac, ad. We characterize claw-free strongly perfect
graphs by five infinite families of forbidden induced subgraphs. This result—whose validity had been conjectured by Ravindra
[Research problems, Discrete Math. 80 (1990) 105–107]—subsumes the characterization of strongly perfect line-graphs that was
discovered earlier by Ravindra [Strongly perfect line graphs and total graphs, Finite and Infinite Sets. Colloq. Math. Soc. János
Bolyai 37 (1981) 621–633].
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Our terminology is mostly standard (see, for instance, [3]). A claw is a graph with vertices x, a, b, c and edges
xa, xb, xc. A hole is a chordless cycle of length at least four. An antihole is the complement of a hole. A hole or antihole
is said to be odd if it has an odd number of vertices; it is said to be even if it has an even number of vertices. We say
that a graph is an odd refinement of a graph F if it arises from F by repeated applications of the following operation:
choose an edge that belongs to no triangle and replace this edge by a path with an odd number of edges. (In particular,
every graph is an odd refinement of itself.)

A set S of pairwise nonadjacent vertices in a graph G is called a stable transversal of G if S meets every maximal
(with respect to set-inclusion) clique of G. Berge and Duchet [2] defined G to be strongly perfect if all its induced
subgraphs (including G itself) have stable transversals.

Theorem 1.1. A claw-free graph G is strongly perfect if and only if it contains no induced subgraph that is an odd
hole, an antihole with at least six vertices, or an odd refinement of one of the graphs F1, F2, F3 shown in Fig. 1.

Since line-graphs are claw-free, our theorem subsumes the characterization of strongly perfect line-graphs that was
discovered earlier by Ravindra [11]: a line-graph G is strongly perfect if and only if it contains no induced subgraph
that is an odd hole or an odd refinement of one of the graphs F1, F2, F3. In fact, the validity of Theorem 1.1 had been
conjectured by Ravindra [12].
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F1 F2 F3

Fig. 1. Three claw-free graphs which are not strongly perfect.

Chvátal [5] proposed calling a linear order < on the set of vertices of an undirected graph perfect if no chordless
path with vertices a, b, c, d and edges ab, bc, cd has a < b and d < c; a graph is called perfectly orderable if it admits
a perfect order. He proved [5] that

every perfectly orderable graph is strongly perfect (1)

and, later on [7], characterized the class of claw-free perfectly orderable graphs as follows:

A claw-free graph is perfectly orderable if and only if

it contains no induced subgraph that is an odd hole,

an antihole with at least six vertices, or an odd refinement of one of certain

graphs F1, . . . , F7

(such that F1, F2, F3 are as in Fig. 1).

It was this theorem and its proof that motivated our work.
It is easy to check that no odd hole has a stable transversal, no antihole with at least six vertices has a stable

transversal, and no odd refinement of one of F1, F2, F3 has a stable transversal; these observations amount to the “only
if” part of our theorem. The proof of the “if” part takes up most of the rest of this paper and begins with the following
observations:

(i) If G has connected components G1, G2, . . . , Gk , and if each Gi has a stable transversal Si , then S1 ∪S2 ∪· · ·∪Sk

is a stable transversal of G.
(ii) If x is a simplicial vertex (defined as a vertex whose neighbors form a clique) and if S is a stable transversal of

G − {x}, then either S or S ∪ {x} is a stable transversal of G.
(iii) If two vertices u, v are twins (defined as two vertices such that no vertex distinct from both of them is adjacent to

precisely one of them) and if S is a stable transversal of G − {v}, then either S or S ∪ {v} is a stable transversal
of G.

Anstee and Farber [1], Lubiw [10], and Hoffman et al. [9] proved independently a theorem that was restated by
Chvátal [7] as follows:

If G is the complement of a bipartite graph

and if G contains no induced antihole with at least six vertices

then G is perfectly orderable.

⎫⎬
⎭ (2)

An instant corollary of (2) and (1) goes as follows:

(iv) If G is the complement of a bipartite graph and if G contains no induced antihole with at least six vertices, then
G is strongly perfect.
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In proving the “if” part of our theorem, we shall proceed by induction on the number of vertices of G. The induction
hypothesis and (i)–(iv) allow us to assume that

G is connected,

G contains no simplicial vertices,

G contains no twins,

G is not the complement of a bipartite graph. (3)

Our analysis splits into two parts, depending on whether G has a clique-cutset or not; in each case, we determine the
structure of G completely.

Throughout the remainder of this paper, we reserve the letter G for a graph that is connected, contains no simplicial
vertex, contains no twins, is not the complement of a bipartite graph, and contains no induced subgraph that is an odd
hole, an antihole with at least six vertices, or an odd refinement of one of F1, F2, F3.

2. When G has no clique-cutset

In this section, we define “peculiar graphs” and “necklaces”. We prove that these graphs have stable transversals
(Theorems 2.1 and 2.2) and that every G (satisfying our assumptions) that has no clique-cutset is either a peculiar graph
or a necklace (Theorem 2.3).

Following Chvátal and Sbihi [8], we call a graph peculiar if it can be obtained as follows. Begin with a complete graph
K whose set of vertices is split into pairwise disjoint nonempty sets A1, B1, A2, B2, A3, B3. Then, for each i = 1, 2, 3,
remove at least one edge with one endpoint in Ai and the other endpoint in Bi+1 (here, subscript 4 is interpreted as 1).
Finally, add pairwise disjoint nonempty cliques K1, K2, K3 and, for each i = 1, 2, 3, make each vertex in Ki adjacent
to all the vertices in K − (Ai ∪ Bi).

Theorem 2.1. If H is peculiar then H has a stable transversal.

Proof. This is a straightforward corollary of (1) and Claim 1.1 of [7], which says “If H is peculiar then it is perfectly
orderable”. �

A vertex x is said to dominate a vertex y if each neighbor of y except possibly x (which may or may not be a neighbor
of y and is not adjacent to itself) is a neighbor of x.

The basic block in building necklaces is an elementary bead, which is a connected graph whose set of vertices can
be partitioned into pairwise disjoint nonempty cliques Q1, . . . , Qn with n�3 and n odd, so that

(i) if x ∈ Qi , y ∈ Qj and xy ∈ E, then j = i − 1 or j = i or j = i + 1;
(ii) for each i such that 2� i�n − 1, at least one of Qi−1 ∪ Qi and Qi ∪ Qi+1 is a clique;

(iii) every vertex in Q1 has a neighbor in Q2 and every vertex in Qn has a neighbor in Qn−1;
(iv) if x, y are distinct vertices in the same Qj , then one of x, y dominates the other.

We shall call Q1 and Qn the two poles of this bead; whenever convenient, we shall refer to the elementary bead simply
as Q1, . . . , Qn.

Lemma 2.1. Every elementary bead Q1, . . . , Qn has

• a stable transversal that contains a vertex from Q1 and a vertex from Qn,
• a stable transversal that contains no vertex from Q1 and no vertex from Qn.

Proof. By (iv) and since dominance is a transitive relation, each Qi includes a vertex that dominates all the other
vertices of Qi ; let xi denote this vertex. Now (iii) guarantees that Q1 ∪{x2} is a clique and that Qn ∪{xn−1} is a clique;
this observation and (ii) imply that

(v) no Qi is a maximal clique.
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Now consider an arbitrary maximal clique C of the bead. Since C is a clique, (i) guarantees that C ⊆ Qi ∪ Qi+1
for some i; since C is a maximal clique, (v) guarantees that C�Qi and C�Qi+1; in turn, maximality of C guarantees
that C includes both xi and xi+1. Thus {x1, x3, . . . , xn} is a stable transversal that contains a vertex from each of Q1
and Qn; the set {x2, x4, . . . , xn−1} is a stable transversal that contains no vertex from Q1 or Qn. �

A compound bead is a graph constructed as follows:

• Begin with pairwise disjoint graphs D1, . . . , Dn such that n�2, all except possibly one of D1, . . . , Dn are
elementary beads, and the exceptional Di (if any) is a single vertex.

• If Di is an elementary bead then let Ai and Ci denote its two poles; if Di is a single vertex, x, then set Ai =Ci ={x}.
• Add nonempty disjoint sets A, C of vertices disjoint from all of D1, . . . , Dn and make each of A ∪ A1 ∪ · · · ∪ An

and C ∪ C1 ∪ · · · ∪ Cn into a clique.

We shall call A and C the two poles of this bead.

Lemma 2.2. If H is a compound bead, then H has a stable transversal that contains no vertex from either pole of H .

Proof. Say H is made of D1, . . . , Dn and two poles A, C. Without loss of generality, we may assume that all of Di

with 1� i < n are elementary beads. For all i = 1, . . . , n− 1, let Si be a stable transversal of Di that contains no vertex
from either pole of Di . If Dn is a single vertex, x, then set Sn = {x}; if Dn is an elementary bead, then let Sn be a
stable transversal of Dn that contains vertices from both poles of Dn. To see that S1 ∪ · · · ∪ Sn is a stable transversal
of H , note that each maximal clique of H is either a maximal clique of some Di or else one of A ∪ A1 ∪ · · · ∪ An,
C ∪ C1 ∪ · · · ∪ Cn. �

Let {B1, . . . , Bk} be a set of at least two pairwise disjoint beads such that each Bi is either elementary or compound;
let Ai and Ci denote the two poles of Bi . If, for every i = 1, . . . , k, we have |Ci | = |Ai+1|, then the graph obtained by
identifying pole Ci with pole Ai+1 for every i = 1, . . . , k is called a necklace. Here, Ak+1 is interpreted as A1.

Theorem 2.2. If H is a necklace, then H has a stable transversal.

Proof. Say H is made of B1, . . . , Bk . Lemmas 2.1 and 2.2 guarantee that each Bi with i = 1, . . . , k has a stable
transversal, Si , that contains no vertex from either of its poles. To see that S1 ∪ · · · ∪ Sk is a stable transversal of H ,
note that each maximal clique of H is a maximal clique of some Bi . �

Theorem 2.3. If G has no clique-cutset, then G is either a peculiar graph or a necklace.

Our proof of Theorem 2.3 takes up the remainder of the present section.
In their Section 5, Chvátal and Sbihi [8] proved (even though not quite stated) the following result:

If a claw-free graph with no hole of length at least five
and no odd antihole
has no clique-cutset,
then it is either the complement of a bipartite graph
or a peculiar graph.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4)

This result allows us to assume that G contains a hole of length at least six.
Throughout the remainder of this section, we reserve symbols

• H for an arbitrary but fixed hole in G such that H has at least six vertices;
• w1, . . . , wk (with subscript arithmetic modulo k) for the vertices of H in their natural cyclic order;
• N for the set of all the vertices in G − H that have at least one neighbor in H .



2606 H.-Y. Wang / Discrete Mathematics 306 (2006) 2602–2629

We shall say that a vertex x is a

• 2-vertex if it has two neighbors in H and these neighbors are wi, wi+1 for some i;
• 3-vertex if it has three neighbors in H and these neighbors are wi, wi+1, wi+2 for some i;
• 4-vertex if it has four neighbors in H and these neighbors are wi , wi+1, wj , wj+1 for some i and j of different

parities.

Claim 2.1. Every vertex in N is a 2-vertex or a 3-vertex or a 4-vertex.

Justification. If x ∈ N then x is adjacent to some wi ; note that x must be adjacent to at least one of wi−1 and wi+1
(else wiwi+1wi−1x would be a claw); and that x cannot have three pairwise nonadjacent neighbors (else x would be
the center of a claw). It follows that the set of neighbors of x in H is {wi, wi+1} or {wi, wi+1, wi+2} for some i, or
{wi, wi+1, wj , wj+1} for some i and j . In the last case, i and j must have different parities (else the graph induced by
H and x would contain an odd hole).

Claim 2.2. Let x be a 2-vertex adjacent to wi and wi+1. If x has a neighbor y in N such that ywi /∈ E, then y is a
3-vertex adjacent to wi+1, wi+2, wi+3.

Justification. By Claim 2.1, y is a 2-vertex or a 3-vertex or a 4-vertex. If y is a 2-vertex, then the graph induced by H

along with x and y either contains an odd hole or is an odd refinement of F1. If y is a 3-vertex, then y, x and the two
nonadjacent neighbors of y in H form a claw unless y is adjacent to wi+1, wi+2, wi+3. If y is a 4-vertex, then y, x and
some two nonadjacent neighbors of y (both distinct from wi+1) form a claw.

Claim 2.3. For every 2-vertex x adjacent to wi and wi+1, precisely one of the following three statements holds
true:

(a) x has a neighbor in N nonadjacent to wi ,
(b) x has a neighbor in N nonadjacent to wi+1,
(c) x has a neighbor outside H ∪ N .

Justification. First, let us derive a contradiction from the assumption that all three of (a), (b), and (c) are false. Since x

is not a simplicial vertex, it must have two nonadjacent neighbors, say y and z; since y and z are nonadjacent neighbors
of a 2-vertex, at least one of them is outside H , say y /∈ H ; since (c) is false, y ∈ N ; since (a) and (b) are both false,
y is adjacent to both wi and wi+1. Now (since y and z are nonadjacent) z /∈ H , and so (since all three of (a), (b), and
(c) are false) z is a vertex in N adjacent to both wi and wi+1. To avoid a claw on wi+1wi+2yz, at least one of y and z

must be adjacent to wi+2, say zwi+2 ∈ E. Now, by Claim 2.1, z is a 3-vertex; in particular, zwi−1 /∈ E. Next, to avoid
a claw on wiwi−1yz, we must have ywi−1 ∈ E. Finally, by Claim 2.1, y is also a 3-vertex, and so

w1 . . . wi−1yxzwi+2 . . . wk

is an odd hole, a contradiction.
Next, let us derive a contradiction from the assumption that (a) and (b) are both true: x has neighbors y and z in

N such that ywi /∈ E and zwi+1 /∈ E. By Claim 2.2, y is a 3-vertex adjacent to wi+1, wi+2, wi+3 and z is a 3-vertex
adjacent to wi−2, wi−1, wi . Since ywi+1wi+3z is not a claw, y and z are nonadjacent. But then

w1 . . . wi−2zxywi+3 . . . wk

is an odd hole, a contradiction.
Finally, let us derive a contradiction from the assumption that (a) and (c) are both true: x has neighbors y and z such

that y ∈ N , ywi /∈ E, and z /∈ H ∪ N . By Claim 2.2, y is a 3-vertex adjacent to wi+1, wi+2, wi+3. But then one of
xwiyz and yzwi+1wi+3 is a claw, a contradiction.
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For each j = 1, 2, . . . , k, let Qj denote the set that consists of

• wj ;
• all the 2-vertices x adjacent to wj−1 and wj such that some 3-vertex is adjacent to x, wj , wj+1, wj+2;
• all the 2-vertices x adjacent to wj and wj+1 such that some 3-vertex is adjacent to x, wj−2, wj−1, wj ;
• all the 3-vertices adjacent to wj−1, wj , wj+1,

and let Tj denote the set that consists of

• all the 2-vertices adjacent to wj and wj+1 that have a neighbor outside H ∪ N .

In addition, let S denote the set of all the 4-vertices.

Claim 2.4. Each vertex of H ∪ N belongs to precisely one of Q1, . . . , Qk , T1, . . . , Tk, S.

Justification. Straightforward from Claims 2.1, 2.3, and 2.2.

Our next aim is to describe the structure of the graph induced by H ∪ (N − S), which we denote by M .

Claim 2.5. Let x and y be adjacent vertices in M .
If x ∈ Qj then y ∈ Qj−1 ∪ Tj−1 ∪ Qj ∪ Tj ∪ Qj+1.
If x ∈ Tj then y ∈ Qj ∪ Tj ∪ Qj+1.

Justification. If at least one of x and y belongs to H , then Claim 2.5 follows trivially from Claims 2.1 and 2.4. If both
x and y belong to N − S, then Claim 2.5 is implied by the following three claims:

(i) if x and y are adjacent 2-vertices then x and y have the same neighbors in H ;
(ii) if x is a 2-vertex adjacent to wi, wi+1 and if y is a 3-vertex adjacent to x then y ∈ Qi−1 ∪ Qi ∪ Qi+1;

(iii) if x is a 3-vertex in Qj and if y is a 3-vertex adjacent to x then y ∈ Qj−1 ∪ Qj ∪ Qj+1.

Validity of (i) and (ii) follows directly from Claim 2.2. Let us justify (iii). Trivially, y ∈ Qi for some i. Since
xwj−1wj+1y is not a claw, i must be one of j − 2, j − 1, j , j + 1, j + 2; hence symmetry allows us to assume that i

is one of j , j + 1, j + 2. If i = j + 2 then

w1 . . . wj−1xywj+3 . . . wk

is an odd hole, a contradiction.

Claim 2.5 tells us that certain pairs of vertices in M must be nonadjacent. Now we shall prove that certain pairs of
vertices in M must be adjacent:

• for each j , at least one of Qj−1 ∪ Tj−1 ∪ Qj and Qj ∪ Tj ∪ Qj+1 is a clique (Claim 2.10);
• if Tj �= ∅, then Qj ∪ Tj ∪ Qj+1 is a clique (a corollary of Claims 2.6 and 2.9).

For each j = 1, 2, . . . , k, set
j ∈ S1 if there are nonadjacent vertices xj and yj such that xj is a 3-vertex adjacent to wj−1, wj , wj+1 and yj is a

3-vertex adjacent to wj , wj+1, wj+2;
j ∈ S2 if there are adjacent vertices xj and yj such that xj is a 2-vertex adjacent to wj−1, wj and y is a 3-vertex

adjacent to wj , wj+1, wj+2;
j ∈ S3 if there are adjacent vertices xj and yj such that xj is a 3-vertex adjacent to wj−1, wj , wj+1 and yj is a

2-vertex adjacent to wj+1, wj+2.
We shall say that wjwj+1 is special if j ∈ S1 ∪ S2 ∪ S3; all the remaining edges wjwj+1 will be called normal.



2608 H.-Y. Wang / Discrete Mathematics 306 (2006) 2602–2629

Claim 2.6. If some vertex is adjacent to wj , wj+1 and not adjacent to wj−1, wj+2, then wjwj+1 is a normal edge.

Justification. Assume the contrary: some vertex z is adjacent to wj , wj+1 and not adjacent to wj−1wj+2, and yet
wjwj+1 is a special edge. We have three cases to consider.

Case 1: j ∈ S1. We must have zxj ∈ E (to avoid a claw on wj+1wj+2zxj ) and zyj ∈ E (to avoid a claw on
wjwj−1zyj ). Now z must be a 2-vertex (if zwt ∈ E and t �= j, j + 1 then zxjyjwt is a claw). But then

w1 . . . wj−1xj zyjwj+2 . . . wk

is an odd hole, a contradiction.
Case 2: j ∈ S2. We must have first zyj ∈ E (to avoid a claw on wjwj−1zyj ) and then zxj ∈ E (to avoid a claw on

yjwj+2zxj ). Now z must be a 2-vertex (if zwt ∈ E and t �= j, j + 1 then zxjwj+1wt is a claw). But then

w1 . . . wj−1xj zwj+1 . . . wk

is an odd hole, a contradiction.
Case 3: j ∈ S3. This is a mirror image of Case 2.

Claim 2.7. No two special edges share a vertex.

Justification. We only need derive a contradiction for the assumption that, for some j , both j and j + 1 belong to
S1 ∪ S2 ∪ S3. By Claim 2.6, j /∈ S3 and j + 1 /∈ S2. Four cases remain.

Case 1: j ∈ S1, j + 1 ∈ S1. We must have xjyj+1 /∈ E, for otherwise

w1 . . . wj−1xjyj+1wj+3 . . . wk

is an odd hole. Then we must have xjxj+1 ∈ E (to avoid a claw on wj+1xjxj+1yj+1) and yjyj+1 ∈ E (to avoid a
claw on wj+1yj+1xjyj ). In particular, yj �= xj+1, and so yjxj+1 ∈ E to avoid a claw on wjwj−1yjxj+1. But then

w1 . . . wj−1xjxj+1yjyj+1wj+3 . . . wk

is an odd hole, a contradiction.
Case 2: j ∈ S1, j + 1 ∈ S3. We must have xjyj+1 /∈ E (to avoid a claw on xjwj−1wj+1yj+1); now xjxj+1 ∈ E,

for otherwise

w1 . . . wj−1xjwj+1xj+1yj+1wj+3 . . . wk

is an odd hole. In particular, yj �= xj+1. Now we must have first yjxj+1 ∈ E (to avoid a claw on wj+2wj+3yjxj+1)
and then yjyj+1 ∈ E (to avoid a claw on xj+1xjyjyj+1). But then

w1 . . . wj−1xjwj+1yjyj+1wj+3 . . . wk

is an odd hole, a contradiction.
Case 3: j ∈ S2, j + 1 ∈ S1. This is a mirror image of Case 2.
Case 4: j ∈ S2, j + 1 ∈ S3. We must have xjyj+1 /∈ E for otherwise

w1 . . . wj−1xjyj+1wj+3 . . . wk

is an odd hole. Then we must have xjxj+1 /∈ E (to avoid a claw on xj+1xjwj+1yj+1) and yjyj+1 /∈ E (to avoid a claw
on yjyj+1wj+1xj ). In particular, yj �= xj+1, and so yjxj+1 ∈ E to avoid a claw on wjwj−1yjxj+1. But then

w1 . . . wj−1xjyjxj+1yj+1wj+3 . . . wk

is an odd hole, a contradiction.

Claim 2.8. Every normal edge is contained in a unique maximal clique of G.

Justification. Consider any edge wjwj+1 that extends to triangles wjwj+1x and wjwj+1y such that x and y are
nonadjacent. To avoid a claw on wjwj−1xy, at least one of x and y must be adjacent to wj−1, say xwj−1 ∈ E. Now
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x is a 3-vertex; in particular, xwj+2 /∈ E. To avoid a claw on wj+1wj+2xy, we must have ywj+2 ∈ E. Now y is also
a 3-vertex, and so j ∈ S1.

Claim 2.9. If wjwj+1 is a normal edge, then Qj ∪ Tj ∪ Qj+1 is a clique.

Justification. By virtue of Claim 2.8, we only need prove that each vertex x in Qj ∪Tj ∪Qj+1 other than wj and wj+1
is adjacent to both wj and wj+1. For this purpose, assume the contrary, say xwj+1 /∈ E. Since x ∈ Qj ∪ Tj ∪ Qj+1,
it follows that x is a 2-vertex adjacent to wj−1, wj and that some 3-vertex y is adjacent to x, wj , wj+1, wj+2. Thus
j ∈ S2, a contradiction.

Claim 2.10. For each j , at least one of Qj−1 ∪ Tj−1 ∪ Qj and Qj ∪ Tj ∪ Qj+1 is a clique.

Justification. Straight from Claims 2.7 and 2.9.

Next, we turn our attention to 4-vertices.

Claim 2.11. Let z be a 4-vertex and let C be the set of all the neighbors of z. Then there are subscripts r and s of
different parities such that

C = (Qr ∪ Tr ∪ Qr+1) ∪ (Qs ∪ Ts ∪ Qs+1)

and such that

both wrwr+1 and wsws+1 are normal edges.

Justification. By definition, z has four neighbors in H and these neighbors are wr, wr+1, ws, ws+1 for some r and
s of different parities. By Claim 2.6, each of wrwr+1 and wsws+1 is a normal edge; hence Claims 2.8 and 2.9
guarantee that both Qr ∪ Tr ∪ Qr+1 ∪ {z} and Qs ∪ Ts ∪ Qs+1 ∪ {z} are cliques. To complete the proof, we will
show that

(∗) z has no neighbors outside (Qr ∪ Tr ∪ Qr+1) ∪ (Qs ∪ Ts ∪ Qs+1).

To justify claim (∗), assume the contrary: z has a neighbor y such that

y /∈ (Qr ∪ Tr ∪ Qr+1) ∪ (Qs ∪ Ts ∪ Qs+1).

Trivially, y /∈ H . Since z, y, one of wr, wr+1 and one of ws, ws+1 do not form a claw, symmetry allows us to assume
that y is adjacent to wr and wr+1. If y is a 2-vertex then Claim 2.4 implies that y ∈ Qr ∪ Tr ∪ Qr+1; if y is a 3-vertex
then y ∈ Qr ∪ Qr+1 by definition; hence Claim 2.1 guarantees that y is a 4-vertex. Now we distinguish between two
cases.

Case 1: z and y do not have the same set of neighbors in H . In this case, the subgraph of G induced by H along
with z and y contains an odd refinement of F2, a contradiction.

Case 2: z and y do have the same set of neighbors in H . Since z and y are not twins, some vertex x is adjacent to
precisely one of them, say xz ∈ E and xy /∈ E. By Claim 2.6, both wrwr+1 and wsws+1 are normal edges; by Claim
2.8, each of them extends to a unique maximal clique; since xy /∈ E and since ywrwr+1, ywsws+1 are triangles, x must
be nonadjacent to at least one of wr, wr+1 and to at least one of ws, ws+1. But then z, x, one of wr, wr+1 and one of
ws, ws+1 induce a claw, a contradiction.

Claim 2.12. If a vertex x of H ∪ N has a neighbor y outside H ∪ N then x ∈ Ti for some i.

Justification. Note that x must be a 2-vertex: else x, its two nonadjacent neighbors on H , and y would form a claw.
By Claim 2.4, x ∈ Ti or x ∈ Qi for some i; in the latter case, x is adjacent to a 3-vertex z such that z is nonadjacent to
a neighbor w of x on H ; but then xyzw is a claw, a contradiction.
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Let us enumerate all the connected components of G − (H ∪ N) as R1, . . . , Rt ; for each i = 1, . . . , t , let Ci denote
the set of vertices outside Ri that have at least one neighbor in Ri . By a bridge of H , we shall mean

• either the subgraph of G induced by some Ri ∪ Ci

• or a 4-vertex.

Claim 2.13. The vertex-sets of all the bridges of H are pairwise disjoint and their union is the vertex-set of G− (Q1 ∪
· · · ∪ Qk).

Justification. We propose to show that

(i) C1 ∪ · · · ∪ Ct ⊆ T1 ∪ · · · ∪ Tk ,
(ii) C1, . . . , Ct are pairwise disjoint,

(iii) T1 ∪ · · · ∪ Tk ⊆ C1 ∪ · · · ∪ Ct ;
the rest will follow from Claim 2.4.
Proof of (i): Let x be a vertex in some Ci . By definition, x has a neighbor, y, in Ri and x ∈ H ∪ N . The conclusion

follows from Claim 2.12.
Proof of (ii): If a vertex belonged to Ci and Cj with i �= j then this vertex, its neighbor in Ri , its neighbor in Rj ,

and its neighbor in H would form a claw, a contradiction.
Proof of (iii): Straight from the definition of Tj .

Claim 2.14. For every i = 1, . . . , t , there are subscripts r and s of different parities such that

Ci ∩ Tr �= ∅, Ci ∩ Ts �= ∅, Ci ⊆ Tr ∪ Ts

and such that

both wrwr+1 and wsws+1 are normal edges.

Justification. Claims 2.12 and 2.4 guarantee that Ci ⊆ T1 ∪ · · · ∪ Tk . Let I denote the set of all subscripts r such that
Ci ∩ Tr �= ∅. Claim 2.6 guarantees that wrwr+1 is a normal edge whenever r ∈ I ; in turn, Claim 2.9 guarantees that
Qr ∪ Tr ∪ Qr+1 is a clique whenever r ∈ I . Since G has no clique-cutset, we have |I | > 1; to complete the proof, we
will show that

(∗) I cannot include two subscripts of the same parity.

To justify claim (∗), assume the contrary: two subscripts, r and s, in I have the same parity. Let F be the subgraph of
G induced by H along with a chordless path from Ci ∩Tr to Ci ∩Ts with all interior vertices in Ri . Clearly, F consists
of two triangles joined by three vertex-disjoint paths; two of these paths (segments of H ) are odd; hence F contains an
odd hole or an odd refinement of F1, a contradiction.

Claim 2.15. For every bridge of H , precisely four vertices in H have at least one neighbor in the bridge. These four
vertices are wr, wr+1, ws, ws+1 with r and s of different parities; both wrwr+1, ws, ws+1 are normal edges.

Justification. Straight from Claims 2.14 and 2.11.

We shall refer to the two edges wrwr+1 and wsws+1 in Claim 2.15 as the edges of attachment of the bridge. By
removing the edges of attachment of a bridge B, hole H is disconnected into two disjoint paths that we will call the
segments of B; note that, by Claim 2.15, each of the two segments has an even number of edges. (In the special case
when r = s + 1 or s = r + 1, one of the two segments consists of just a single vertex of H , and so it has no edges at all.)

By a spine of a bridge X that is induced by some Ri ∪ Ci , we shall mean a chordless path from Tr to Ts with all
internal nodes in X − (Tr ∪ Ts) and r, s as in Claim 2.14; by the spine of the bridge that is a 4-vertex x, we shall mean
the degenerate path consisting of this single vertex x.

Claim 2.16. Every spine of every bridge has an even number of edges.
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Justification. Assuming the contrary, the subgraph of G induced by the spine of the bridge and either of its two
segments would contain an odd hole, a contradiction.

Claim 2.17. No two bridges share precisely one edge of attachment.

Justification. Assume the contrary: bridge X has edges of attachment wawa+1, wbwb+1 and bridge Y has edges of
attachment wbwb+1, wcwc+1. By symmetry, we may assume that a, b, c is the cyclic order of these three (distinct)
subscripts. By Claim 2.15, edge wbwb+1 is normal; by Claim 2.8, it extends into a unique maximal clique; hence the
subgraph of G induced by any spine of X, any spine of Y , and the path wa+1 . . . wc is an odd refinement of F2, a
contradiction.

We shall say that two bridges cross if the edges of attachment of one bridge lie in different segments of the other
bridge.

Claim 2.18. No two bridges cross.

Justification. Assume the contrary: bridge X has edges of attachment wawa+1, wbwb+1, bridge Y has edges of
attachment wcwc+1, wdwd+1, and a, c, b, d is the cyclic order of these four (distinct) subscripts. By Claim 2.15,

(i) a /≡ b mod 2 and c /≡ d mod 2
symmetry allows us to assume that
(ii) a ≡ c mod 2.
Let PX be a spine of X, let x be the endpoint of PX such that xwawa+1 is a triangle, and let us consider PX oriented

towards x; let PY be a spine of Y , let y be the endpoint of PY such that ywcwc+1 is a triangle, and let us consider PY

oriented away from y. By (i), (ii), and Claim 2.16, the two triangles xwawa+1 and ywcwc+1 along with the three paths

wa+1 . . . wc,

wc+1 . . . wbPX,

PY wd+1 . . . wa

induce an odd refinement of F1, a contradiction.

Claim 2.19. If bridge X has edges of attachment wawa+1, wbwb+1, bridge Y has edges of attachment wcwc+1,

wdwd+1, and a, b, c, d is the cyclic order of these four distinct subscripts, then b, c have different parities, and d, a

have different parities.

Justification. Assume the contrary: without loss of generality, b, c have the same parity. But then the subgraph of G

induced by any spine of X, any spine of Y , and the path wa+1 . . . wd is an odd refinement of F3, a contradiction.

Three bridges are parallel if, informally speaking, two of these bridges attach to different segments of the third
bridge: more rigorously, bridges X, Y , Z are parallel if

• X has edges of attachment wawa+1, wf wf +1;
• Y has edges of attachment wbwb+1, wewe+1;
• Z has edges of attachment wcwc+1, wdwd+1, and a, b, c, d, e, f is the cyclic order of these six distinct subscripts.

Claim 2.20. No three bridges are parallel.

Justification. By Claim 2.19, a, b have different parities, b, c have different parities, and a, c have different parities,
which is impossible.

Let A(H) denote the set of all the edges of attachment of bridges of H . With this notation, Claims 2.17, 2.18, and
2.20 can be summarized as follows.
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Claim 2.21. The elements of A(H) can be enumerated, in their natural cyclic order, as

e1, f1, e2, f2, . . . , ed , fd ,

so that every bridge of H has some et and ft (with the same t) for its two edges of attachment.

Claim 2.22. Let r, s be subscripts of different parities such that r �= s + 1 and

(�) no edge on the path wrwr+1 . . . wsn+1 belongs to A(H)

and let B be the subgraph of G induced by Qr ∪ Qr+1 ∪ · · · ∪ Qs+1. Then

(a) Tr = · · · = Ts = ∅;
(b) B is an elementary bead with poles Qr , Qs+1;
(c) no vertex in B − (Qr ∪ Qs+1) has a neighbor outside B.

Justification. (a) Note that by Claim 2.13 and by definition, any vertex of Ti belongs to some bridge whose edges of
attachment include wiwi+1. The conclusion is guaranteed by assumption (�).

(b) By definition, B is connected; by Claim 2.4, sets Qr, . . . , Qs+1 are pairwise disjoint; by Claim 2.10, each Qj

is a clique. As for the four conditions in the definition of an elementary bead, (i) is guaranteed by Claim 2.5, (ii) is
guaranteed by Claim 2.10, and (iii) follows from the definition of Qj . To verify (iv), assume the contrary: there are
vertices x, y in some Qj and vertices u, v in B such that u is adjacent to x but not to y and such that v is adjacent to
y but not to x. By Claim 2.5, both u and v belong to Qj−1 ∪ Qj ∪ Qj+1. By Claim 2.10, at least one of Qj−1 ∪ Qj

and Qj ∪ Qj+1 is a clique; symmetry allows us to assume that Qj−1 ∪ Qj is a clique. Now u, v ∈ Qj+1; in turn,
Qj ∪ Qj+1 is not a clique, and so Claim 2.10 guarantees that Qj+1 ∪ Qj+2 is a clique. But then the hole xyvu and
the path wj+2 . . . wkw1 . . . wj−1 induce an odd refinement of F1, a contradiction.

(c) Consider an arbitrary vertex x in B − (Qr ∪ Qs+1). By Claim 2.13, x belongs to no bridge of H , and so all its
neighbors come from H ∪ N ; Claim 2.11 and assumption (�) guarantee that x is adjacent to no 4-vertex. But then (a)
and Claim 2.5 guarantee that all the neighbors of x come from B.

So far in our analysis, H has been an arbitrary hole with at least six vertices; from now on, we shall assume that

no hole H ′ with at least six vertices has |A(H ′)| > |A(H)|.

Claim 2.23. Let X be a bridge of H with edges of attachment wrwr+1, wsws+1. If X is not a 4-vertex, then X is an
elementary bead with poles Q′

1, Q′
n such that

• Q′
1 ⊆ Tr ,

• Q′
n ⊆ Ts ,

• no vertex in X − (Q′
1 ∪ Q′

n) has a neighbor outside X.

Justification. Claim 2.21allows us to assume (after switching subscripts if necessary) that

(i) no edge on the path wr+1 . . . ws belongs to A(H),
(ii) s + 1 �= r .

Let PX be a spine of X and let H ′ denote the hole induced by PX and ws+1 . . . wr . From (ii), it follows that H ′ has
at least six vertices. Enumerate the vertices of H ′ in their natural cyclic order as w′

1, . . . , w
′
p so that w′

1 . . . w′
n is PX

and w′
n+1 = ws+1, w′

p = wr . By Claim 2.6,

(iii) wsws+1 and wrwr+1 are normal edges of H ,
(iv) w′

nw
′
n+1 and w′

pw′
1 are normal edges of H ′;

in turn, (iii), (iv), and Claim 2.8 imply that

(v) a vertex is adjacent to ws, ws+1 if and only if it is adjacent to w′
n, w

′
n+1,

(vi) a vertex is adjacent to wr, wr+1 if and only if it is adjacent to w′
p, w′

1.
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We claim that

(vii) A(H) − {wrwr+1, wsws+1} ⊆ A(H ′).

To justify (vii), consider an arbitrary wjwj+1 in A(H) − {wrwr+1, wsws+1}. By (i), wjwj+1 is on the path
ws+1 . . . wr ; by definition, wj and wj+1 have a common neighbor y in some bridge Y of H ; by Claim 2.21, Y �= X. If
y is a 4-vertex of H , then (i) and Claim 2.21 guarantee that y is a 4-vertex of H ′, and so wjwj+1 ∈ A(H ′); else y has
a neighbor z in Y such that z /∈ H ∪ N . By definition, every neighbor of z belongs to Y ; in particular (since Y �= X), z

has no neighbor in PX. Hence z has no neighbor in H ′, and so wjwj+1 ∈ A(H ′).
In addition, we claim that

(viii) w′
nw

′
n+1, w

′
pw′

1 ∈ A(H ′).

To justify (viii), we propose to show that H ′ has a bridge with spine wr+1 . . . ws . If wr+1 = ws , then wr+1 is a
4-vertex of H ′ and we are done; hence we may assume that wr+1 �= ws . Now let wj be an arbitrary interior vertex
of wr+1wr+2 . . . ws . Since H is a hole, wj neither belongs to nor has a neighbor in ws+1 . . . wr . Since X is not a
4-vertex, n�3; (since X is a bridge of H ) wj neither belongs to nor has a neighbor in the interior of w′

1 . . . w′
n and (by

Claim 2.14) w′
1 and w′

n are distinct 2-vertices of H nonadjacent to wj . To summarize, wj neither belongs to nor has a
neighbor in H ′, and so we are done.

Define Q′
1, . . . , Q

′
p in the same way we defined Q1, . . . , Qk , except that H ′ is now used in place of H ; then let B

stand for the subgraph of G induced by Q′
1 ∪ · · · ∪ Q′

n. Claim 2.16 guarantees that n is odd; since X is not a 4-vertex,
n�3; (vii), (viii), and the assumption that |A(H ′)|� |A(H)| guarantee that no edge on the path w′

1 . . . w′
n belongs to

A(H ′). Hence H ′, 1, n − 1 satisfy assumptions of Claim 2.22 in place of H, r, s; in turn, this claim guarantees that

(ix) B is an elementary bead with poles Q′
1, Q′

n,
(x) no vertex in B − (Q′

1 ∪ Q′
n) has a neighbor outside B.

By definition, X is induced by some Ri ∪ Ci ; Claim 2.14 guarantees that

(xi) Ci ⊆ Tr ∪ Ts .

We propose to show that

(xii) Q′
2 ∪ · · · ∪ Q′

n−1 ⊆ Ri ,
(xiii) Q′

1 ⊆ Ci ∩ Tr and Q′
n ⊆ Ci ∩ Ts .

Proof of (xii): Consider an arbitrary vertex v in Q′
2 ∪ · · · ∪ Q′

n−1. By definition, v equals or is adjacent to one of
w′

2, . . . , w
′
n−1; by definition, all of w′

2, . . . , w
′
n−1 belong to Ri ; hence v ∈ X. By definition, v is adjacent to neither of

w′
n+1 nor of w′

p; hence v /∈ Tr ∪ Ts ; but then (xi) guarantees that v /∈ Ci .
Proof of (xiii): Consider an arbitrary vertex v in Q′

n. By definition, v has a neighbor in Q′
n−1; hence (xii) guarantees

that v ∈ X. By (v), every vertex in Q′
n is adjacent to w′

n+1; in particular, v is adjacent to ws+1, and so v ∈ Ci . Now
(xi) guarantees that v ∈ Tr ∪ Ts ; since v is adjacent to ws+1, we have v /∈ Tr . Hence Q′

n ⊆ Ci ∩ Ts ; a mirror image of
this argument shows that Q′

1 ⊆ Ci ∩ Tr .
From (xii), (x), and (xiii), it follows that Q′

2 ∪ · · · ∪ Q′
n−1 = Ri ; in turn, this identity, (x), and (xiii) imply that

Q′
1 ∪ Q′

n = Ci .

Claim 2.24. If H has no bridge, then G is a necklace.

Justification. Let B1 be the subgraph of G induced by Q1 ∪ Q2 ∪ Q3 and let B2 be the subgraph of G induced by
Q3 ∪ · · · ∪ Qk ∪ Q1. By of Claim 2.22(b), B1 and B2 are elementary beads with poles Q1 and Q3; by assumption
and by Claim 2.13, every vertex of G belongs to one of B1, B2. In turn, Claim 2.22(c) guarantees that every edge of G

belongs to one of B1, B2.
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Claim 2.24 allows us to assume that

H has at least one bridge.

With e1, f1, . . . , ed , fd as in Claim 2.21, let J denote the set of all subscripts j such that some et is wjwj+1 or some
ft is wj−1wj . (Note that there may be i and j such that ft = wj−1wj and et+1 = wjwj+1.)

Claim 2.25. Every two subscripts in J have the same parity.

Justification. Straight from Claims 2.19 and 2.15.

Enumerate all the sets Qj with j ∈ J in their cyclic order as A1, . . . , Am. We are going to prove that G is a necklace
made out of certain beads B1, . . . , Bm such that the two poles of each Bi are Ai and Ai+1; these beads are defined as
follows.

Each Ai is some Qr ; its successor Ai+1 (with Am+1 interpreted as A1) is some Qs+1; let Bi be the subgraph of G

induced by the union of Qr ∪ Qr+1 ∪ · · · ∪ Qs+1 and all the bridges of H with edges of attachment wrwr+1, wsws+1.

Claim 2.26. Each Bi is a bead with poles Ai, Ai+1; no vertex in Bi − (Ai ∪ Ai+1) has a neighbor outside Bi .

Justification. With r, s as in the definition of Bi , Claim 2.25 guarantees that

(a) r and s have different parities.

With e1, f1, . . . , ed , fd as in Claim 2.21, we shall distinguish between two cases.
Case 1: ft =wr−1wr and et+1 =ws+1ws+2 for some t . In this case, no edge on the path wrwr+1 . . . ws+1 is an edge

of attachment of a bridge of H , and so the desired conclusion follows from Claim 2.22.
Case 2: et = wrwr+1 and ft = wsws+1 for some t . Let D1 be the subgraph of G induced by Qr+1 ∪ · · · ∪ Qs and

enumerate all the bridges of H with edges of attachment wrwr+1, wsws+1 as D2, . . . , Dn. By Claims 2.15 and 2.9,

(b) Qr ∪ Tr ∪ Qr+1 and Qs ∪ Ts ∪ Qs+1 are cliques.

We propose to show that

(c) if r + 1 = s, then D1 is a single vertex
and the set of its neighbors is Qr ∪ Tr ∪ Ts ∪ Qs+1.

For this purpose, note that D1=Qr+1=Qs and consider an arbitrary vertex x in D1. By assumption of Case 2, if one of
the two edges wrwr+1, wsws+1 is an edge of attachment of a bridge X then the other edge is also an edge of attachment
of X; since r + 1 = s, Claim 2.21 guarantees that no 4-vertex is adjacent to both wr , wr+1 and that no 4-vertex is
adjacent to both ws , ws+1; now Claim 2.11 guarantees that no 4-vertex is adjacent to x. By Claim 2.12, no vertex outside
H ∪N is adjacent to x; in turn, Claim 2.5 guarantees that all the neighbors of x come from Qr ∪ Tr ∪D1 ∪ Ts ∪Qs+1.
Combining this observation with (b), we conclude that the set of neighbors of x is Qr ∪ Tr ∪ (D1 − {x}) ∪ Ts ∪ Qs+1.
But then we must have |D1| = 1: else any two vertices in D1 would be twins.

By Claim 2.22 (with r + 1, s − 1 in place of r, s),

(d) if r +1 �= s, then D1 is an elementary bead with poles Qr+1, Qs and no vertex in D1 − (Qr+1 ∪Qs) has a neighbor
outside D1.

By Claim 2.11,

(e) if some Dj with 1 < j �n is a single vertex, then the set of its neighbors is Qr ∪ Tr ∪ Qr+1 ∪ Qs ∪ Ts ∪ Qs+1.
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By Claim 2.23,

(f) if some Dj with 1 < j �n is not a single vertex,
then it is an elementary bead with poles Uj , Vj so that
Uj ⊆ Tr , Vj ⊆ Ts ,
and no vertex in Dj − (Uj ∪ Vj ) has a neighbor outside Dj .

Claims 2.15 and 2.8 guarantee that wrwr+1 is contained in a unique maximal clique of G. Let C denote this clique.
Since (by Claim 2.11) no two 4-vertices are adjacent, C includes at most one 4-vertex; (e) guarantees that C includes
every 4-vertex that equals some Dj with 1 < j �n; if D1 is a single vertex, then (c) guarantees that C ⊆ Qr ∪Tr ∪D1,
and so C includes no 4-vertices. We conclude that

(g) at most one Dj (with 1�j �n) is a single vertex.

By Claims 2.13 and 2.21, every vertex of Tr ∪ Ts belongs to a bridge with edges of attachment wrwr+1, wsws+1. It
follows that

(h) Tr ∪ Ts ⊆ Bi .

By Claims 2.13 and 2.4, D1, D2, . . . , Dn, Qr, Qs are pairwise vertex-disjoint; now (b)–(g) imply that Bi is a
compound bead with poles Qr, Qs+1. Finally, consider an arbitrary vertex x in Bi that has a neighbor outside Bi . From
(c)–(f) and (h) we conclude that x ∈ Qr ∪Tr ∪Qr+1∪Qs∪Ts∪Qs+1; by Claims 2.5 and 2.22(a), x /∈ Tr ∪Qr+1∪Qs∪Ts .

By Claims 2.13, 2.4, and 2.21, the m sets Bi − (Ai ∪Ai+1) are pairwise disjoint and each vertex of G belongs to one
of B1, B2, . . . , Bm. By Claims 2.5 and 2.25, no edge of G joins an Ai to an Aj with i �= j ; now Claim 2.26 guarantees
that G is a necklace.

3. When G has a clique-cutset

In this section, we define “strings”. We prove that these graphs have stable transversals (Theorem 3.1) and that every
G (satisfying our assumptions) that has a clique-cutset is a string (Theorem 3.2).

A large appendix is a graph whose set of vertices can be partitioned into sets N, P, R so that

(i) P ∪ N is a clique,
(ii) no vertex in N has a neighbor in R,

(iii) the graph induced by P ∪ R is a necklace,
(iv) P is a maximal clique in the necklace induced by P ∪ R.

We shall call N the pole of the large appendix.

Lemma 3.1. If H is a large appendix, the H has a stable transversal that contains no vertex from the pole of H .

Proof. By (iii) and Theorem 2.2, the graph induced by P ∪ R has a stable transversal, S; by (i) and (ii), each maximal
clique in H is either a subset of P ∪ R or the clique P ∪ N ; property (iv) guarantees that S meets P . Hence S is a
stable transversal of H . �

A small appendix is a graph whose set of vertices can be partitioned into sets N, P, Q, R so that

(i) the graph induced by P ∪ R is the complement of a bipartite graph,
(ii) the graph induced by P ∪ R contains no induced antihole with at least six vertices,

(iii) no vertex in P has two nonadjacent neighbors in R,
(iv) every vertex of R has a neighbor in P ,
(v) P is nonempty,
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(vi) P ∪ N is a clique,
(vii) every vertex in Q is adjacent to all the vertices in P ∪ Q ∪ R except itself,

(viii) no vertex in N has a neighbor in R.

An arbitrary subset of N that includes all the vertices of N with no neighbors in Q may be called the pole of the small
appendix.

Lemma 3.2. If H is a small appendix, then H has a stable transversal which contains no vertex from the pole of H .

Proof. The proof of Claim 2.30 in [6] shows that

(a) the subgraph of H induced by P ∪ R admits a perfect order in which all the vertices in P precede all the vertices
in R.

In [5], Chvátal proved (even though not quite stated) the following result:

(b) Given a graph H with vertices perfectly ordered in a sequence v1, . . . , vn, scan the sequence from v1 to vn and
place each vj in S if and only if none of its neighbors vi (with i < j ) has been placed in S. Then S is a stable
transversal of H .

By (a), (b), and (v), the subgraph of H induced by P ∪ R has a stable transversal, S, that includes a vertex of P . By
(vi)–(viii),

• each clique of H is contained in P ∪ Q ∪ R or in N ∪ P ∪ Q,
• each maximal clique of H that is contained in P ∪ Q ∪ R contains a maximal clique of the subgraph of H induced

by P ∪ R,
• each maximal clique of H that is contained in N ∪ P ∪ Q contains P .

Hence S is a stable transversal of H . �

Let {B0, . . . , Bk+1} be a set of pairwise disjoint graphs such that

• each of B0, Bk+1 is a small appendix or a large appendix and such that (if k > 0),
• each of B1, . . . , Bk is either an elementary bead or a compound bead.

For each i with 1� i�k, let Ai and Ci denote the two poles of Bi ; let C0 denote the pole of B0 and let Ak+1 denote
the pole of Bk+1. If, for every i = 0, . . . , k, we have |Ci | = |Ai+1|, then the graph obtained by identifying pole Ci with
pole Ai+1 for every i = 0, . . . , k is called a string.

Theorem 3.1. If H is a string, then H has a stable transversal.

Proof. Say H is made of B0, . . . , Bk+1. Lemmas 3.1 and 3.2 guarantee that each of Bi with i = 0 and i = k + 1 has a
stable transversal, Si , that contains no vertex from its pole; Lemmas 2.1 and 2.2 guarantee that each Bi with 1� i�k

has a stable transversal, Si , that contains no vertex from either of its poles. To see that S1 ∪· · ·∪Sk is a stable transversal
of H , note that each maximal clique of H is a maximal clique of some Bi . �

Theorem 3.2. If G has a clique-cutset, then G is a string.

Our proof of Theorem 3.2 takes up the remainder of the present section.
If a graph H has a clique-cutset C, then it is the union of graphs H1, H2 whose intersection is C and such that

each Hi has at least one vertex outside C. If, in addition, the clique-cutset C is minimal and H1 has no clique-cutset,
then we shall call H1 a tip of H and we shall call C a hinge of H1. These terms come from [6]. We are going to
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prove that

• G contains two vertex-disjoint tips, H1 and H2 (Claim 3.5), and that, with Ni standing for the set of all vertices
outside Hi that have at least one neighbor in Hi ;

• the subgraph of G induced by Hi ∪ Ni is a large appendix with pole Ni or a small appendix whose pole is a subset
of Ni (Claim 3.2).

Our first objective is to prove Claim 3.2; for this purpose, we begin with a claim concerning a few properties of tips
in connected claw-free graphs.

If a vertex x is adjacent to all the vertices in a set S except possibly itself (x may or may not be in S and is not
adjacent to itself), then we say that x is S-universal.

Claim 3.1. Let H� be a connected claw-free graph, let H be a tip of H�, let N be the set of all vertices outside
H that have at least one neighbor in H , let C be the hinge of H , and let Q be the set of H -universal vertices
of C. Then

(i) no vertex in C has two nonadjacent neighbors in H − C;
(ii) H is not a peculiar graph;

(iii) if H� contains no simplicial vertex, then C �= Q and (C − Q) ∪ N is a clique;
(iv) if some vertex in H − C has no neighbor in C, then H contains a hole of length at least five with two vertices

in C;
(v) if every vertex in H − C has a neighbor in C, then H contains a hole of length at most five with two

vertices in C.

Justification.

(i) If some vertex in C had two nonadjacent neighbors in H − C, then this vertex, its two nonadjacent neighbors in
H − C, and one of its neighbors outside H would form a claw, a contradiction.

(ii) It is a routine matter to verify that each nonempty clique K in a peculiar graph includes a vertex that has two
nonadjacent neighbors outside K; by (i), clique C in H lacks this property.

(iii) Since H� contains no simplicial vertex, H is not a clique; (i) guarantees that H − (C − Q) is a clique; hence
C �= Q. The proof of Claim 2.9 in [6] shows that (even if the assumption that H� contains no simplicial vertex is
dropped) all the vertices in C − Q are N -universal. Now if (C − Q) ∪ N were not a clique, then N would not be
a clique; but then an arbitrary vertex in C − Q, its neighbor in H − C, and two nonadjacent vertices in N would
form a claw, a contradiction.

(iv) Let A be a connected component of the subgraph induced in H by all the vertices with no neighbors in C; let D be
the set of all the vertices outside A with at least one neighbor in A. Since D is a cutset of H , it must contain two
nonadjacent vertices, u1 and u2. Since each ui is outside A, it has a neighbor in C; let vi denote this neighbor. By
(i), u1 and u2 have no common neighbor in C; trivially, there is a chordless path P from u1 to u2 with all internal
vertices in A. The desired hole is Pv1v2.

(v) Let x be a vertex in H − C with the smallest number of neighbors in C. Since x isnot simplicial, it has two
nonadjacent neighbors, y and z.
Case 1: y ∈ C, z /∈ C. Since z has at least as many neighbors in C as x, some vertex w in C is adjacent to z and
not to x. The desired hole is wyxz.
Case 2: y /∈ C, z /∈ C. By assumption, y has a neighbor v in C; note that v is not adjacent to z (to avoid a claw on
v, its neighbor outside H and y, z). By symmetry, some w in C is adjacent to z and not to y. If x is adjacent to at
least one of v and w, then we are back in Case 1; else the desired hole is vyxzw.

Claim 3.2. Let H be a tip of G and let N be the set of all vertices outside H that have at least one neighbor in H .
Then the subgraph of G induced by H ∪ N is either a large appendix whose pole is N or small appendix whose pole
is a subset of N .
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Justification. Let us partition the set of vertices in H as follows:

• P is the set of all the vertices in the hinge of H that are not H -universal,
• Q is the set of all the vertices in the hinge of H that are H -universal,
• R = H − (P ∪ Q).

We shall distinguish between two cases.
Case 1: H contains a hole of length at least five. By assumption of this case, H is not the complement of a bipartite

graph; in particular, Q ∪ R is not a clique; hence Q = ∅ by Claim 3.1(i). We propose to show that N, P, R satisfy the
four conditions in the definition of a large appendix.

(i) Guaranteed by Claim 3.1(iii).
(ii) Holds by definition.

(iii) Let NG(x) denote the set of neighbors of x in G and let NH (x) denote the set of neighbors of x in H . If x ∈ R,
then NH (x) = NG(x) and NH (x) ∩ N = ∅; if x ∈ P , then NG(x) = NH (x) ∪ N and (since P is a minimal cutset
of G) NH (x) ∩ R �= ∅. It follows that (since G contains no simplicial vertex) H contains no simplicial vertex
and (since G contains no twins) H contains no twins; by assumption of this case, H is not the complement of a
bipartite graph. Now Theorem 2.3 with H in place of G guarantees that H is either a peculiar graph or a necklace;
by Claim 3.1(ii), H is not peculiar.

(iv) First, let us show that

(�) H contains a hole of length at least six with two vertices in P .

By assumption of this case, H contains a hole H0 of length at least five; since G contains no odd hole, the length
of H0 is at least six. If H0 and P share two vertices, then (�) follows; hence we may assume that H0 and P share at
most one vertex. Under this assumption, Claim 3.1(i) guarantees that H0 and P are vertex-disjoint. Let P � denote
the set of all vertices in P that have at least one neighbor in H0. No vertex in P � has precisely one neighbor in
H0 (else this vertex in P � and three consecutive vertices of H0 would form a claw); this observation and Claim
3.1(i) guarantee that each vertex in P � is adjacent to precisely two vertices of H0 and that these two vertices are
adjacent. Now every two vertices in P � must have the same set of neighbors in H0 (else the subgraph of G induced
by H0 and these two vertices would either be an odd refinement of F1 or contain an odd hole), and so some vertex
of H0 has no neighbor in P . But then Claim 3.1(iv) guarantees that H contains a hole of length at least five with
two vertices in P ; since G contains no odd hole, (�) follows.
Next, let H� denote the hole featured in (�) and enumerate the vertices of H� in their natural cyclic order as
w1, . . . , wk in such a way that w2, w3 ∈ P . If (iv) failed, then some vertex x in H − P would be adjacent to both
w2 and w3; by Claim 3.1(i), x would be also adjacent to both w1 and w4; but then the subgraph of G induced by
H� and x would contain an odd hole or a claw, a contradiction.

Case 2: H contains no hole of length at least five. We propose to show that N, P, Q, R satisfy the eight conditions
in the definition of a small appendix.

(i) By the result of Chvátal and Sbihi (1988) referred to as (4) in the previous section, H is either the complement
of a bipartite graph or a peculiar graph; by Claim 3.1(ii), H is not peculiar.

(ii) Guaranteed by our assumptions on G.
(iii) Guaranteed by Claim 3.1(i).
(iv) Guaranteed by Claim 3.1(iv) and the assumption that H contains no hole of length at least five.
(v), (vi) Guaranteed by Claim 3.1(iii).

(vii), (viii) Hold by definition.

Our next objective is to prove that G contains at least two vertex-disjoint tips, which is a generalization of Claim
2.7 in [6]. Actually, we shall prove an even more general statement, Claim 3.5. Our argument relies on the
following auxiliary result, which is Claim 2.6 of [6].
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Claim 3.3. Let H be a claw-free graph whose set of vertices is partitioned into pairwise disjoint cliques R1, R2, C in
such a way that no edge of H has one endpoint in R1 and the other endpoint in R2. Let Hi denote the subgraph of H

induced by Ri ∪ C. If neither H1 nor H2 has a clique-cutset, then H is the complement of a bipartite graph.

Claim 3.4. Let H be a connected claw-free graph such that H is not the complement of a bipartite graph and H

contains no simplicial vertex. Then any two distinct tips of H are vertex-disjoint.

Justification. Consider any two distinct tips, H1 and H2, of H . Let Ci denote the hinge of Hi ; write Ri =Hi −Ci and
C = C1 ∩ C2. We propose to show that

(�) H1 ∩ H2 = C.

Since H1 and H2 are distinct, we may assume (switching subscripts if necessary) that H1 − H2 �= ∅. Now (since
C2 ∩ H1 is not a cutset of H1) R2 ∩ H1 = ∅; next (since R2 �= ∅) R2 − H1 �= ∅, and so (since C1 ∩ H2 is not a cutset
of H2) R1 ∩ H2 = ∅.

By (�), our task reduces to proving that C = ∅. For this purpose, we shall distinguish between two cases.
Case 1: C1 = C2. Here, C = C1 = C2 and, since H is connected, C �= ∅; we are going to show that this case cannot

occur.
Note that H −C has precisely two components: else there would be a claw on any vertex in C and its three neighbors

in three distinct components of H − C. Let Di denote the set of vertices in Ri that have at least one neighbor in C. If
D1 = R1 and D2 = R2, then Claim 3.3 guarantees that at least one of D1 and D2 is not a clique; if Di �= Ri for at least
one i, then Di is a cutset of Hi , and so Di is not a clique; in either case, at least one of D1 and D2 is not a clique.

Symmetry allows us to assume that D1 contains two nonadjacent vertices, u1 and u2. Let Ni denote the set of
neighbors of ui in C. By Claim 3.1(i), we have N1 ∩ N2 = ∅; in particular, no vertex in N1 ∪ N2 is H1-universal; now
Claim 3.1(iii) guarantees that N1 ∪ N2 ∪ D2 is a clique. In fact, every vertex w in D2 must be C-universal (else there
would be a claw on a neighbor of w in N1, w, u1, and some vertex in C − N1 − N2 that is not adjacent to w), and so
C ∪ D2 is a clique.

Since H2 has no clique-cutset, we must have R2 = D2. Hence C ∪ R2 is a clique. But then all the vertices of R2 are
simplicial, a contradiction.

Case 2: C1 �= C2. Here, we are going to derive a contradiction from the assumption that C �= ∅.
Since C1 and C2 are minimal clique-cutsets, each Ci − C is nonempty. Note that no vertex in R2 has a neighbor in

C1 − C and that some vertex in R2 has a neighbor in C. Hence Claim 3.1(iii) guarantees that all vertices in C1 − C are
H1-universal; in turn, Claim 3.1(i) guarantees that R1 ∪ (C1 − C) is a clique. By symmetry, R2 ∪ (C2 − C) is also a
clique.

Let H 0 denote the subgraph of H induced by R1 ∪ R2 ∪ C and let H 0
i denote the subgraph of H induced by Ri ∪ C.

Now the hypothesis of Claim 3.3 is satisfied with H 0, H 0
1 , H 0

2 in place of H , H1, H2 (in particular, if H 0
i had a

clique-cutset D, then D ∪ (Ci − C) would be a clique-cutset in Hi , a contradiction); by this claim, the set of vertices
of H 0 splits into two disjoint cliques; we may label these cliques A1 and A2 in such a way that Ri ⊆ Ai . Thus the set
of vertices of H1 ∪ H2 splits into two cliques, A1 ∪ (C1 − C) and A2 ∪ (C2 − C).

Since H is not the complement of a bipartite graph, it has a vertex outside H1 ∪ H2; in turn, since H is connected,
some vertex w outside H1 ∪ H2 must have a neighbor in C1 ∪ C2. Note that w has no neighbor in C (otherwise this
neighbor y, a neighbor of y in R1, a neighbor of y in R2, and w would form a claw); hence symmetry allows us to assume
that w has a neighbor in C1 − C. By Claim 3.1(iii), all vertices in C are H1-universal. Recalling that R1 ∪ (C1 − C) is
a clique, we conclude that H1 is a clique, and so all the vertices of R1 are simplicial, a contradiction.

Claim 3.5. LetH be a connected claw-free graph such that H contains no simplicial vertex and H is not the complement
of a bipartite graph. If H contains a clique-cutset, then it contains at least two vertex-disjoint tips.

Justification. A corollary of Claim 2.2 in [6] asserts that every connected claw-free graph with a clique-cutset contains
at least two tips; in particular, H contains at least two tips; by Claim 3.4, these two tips are vertex-disjoint.

In particular, Claim 3.5 guarantees that G contains at least two vertex-disjoint tips; Claim 3.1 (iv) and (v) guarantee
that each tip of G contains a hole with two vertices in the hinge of the tip. Throughout the remainder of this section,
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we reserve symbols

• H1 and H2 for arbitrary but fixed vertex-disjoint tips of H ,
• Ci for the hinge of Hi ,
• H 0

i for an arbitrary but fixed hole in Hi that has two vertices in Ci , and
• Ni for the set of vertices outside Hi that have at least one neighbor in Hi ,
• w1 . . . wk for an arbitrary but fixed chordless path such that

w1 is the only wj in N1 and wk is the only wj in N2,
• w0 for an arbitrary but fixed vertex in C1 ∩ H 0

1 ,
• wk+1 for an arbitrary but fixed vertex in C2 ∩ H 0

2 ,
• P for the path w0w1 . . . wkwk+1,
• N for the set of all the vertices in G − (H1 ∪ H2 ∪ P)

that have at least one neighbor in P .

The following claim guarantees that H1 ∩ N2 = ∅ and H2 ∩ N1 = ∅; in particular, P is a chordless path.

Claim 3.6. No edge of G joins a vertex of H1 to a vertex of H2.

Justification. Let u1, u2 denote the two vertices in H 0
1 ∩ C1 and let v1, v2 denote the two vertices in H 0

2 ∩ C2. If G

has an edge xy with x ∈ H1 and y ∈ H2, then trivially x ∈ C1 and y ∈ C2. Now Claim 3.1(iii) guarantees first that
{u1, u2, y} and {v1, v2, x} are cliques and then that {u1, u2, v1, v2} is a clique. But then the subgraph of G induced by
H 0

1 ∪ H 0
2 is an odd refinement of F2, a contradiction.

Claim 3.7. k is odd.

Justification. If k were even, then Claim 3.1(iii) would guarantee that the subgraph of G induced by H 0
1 ∪ H 0

2 ∪ P is
an odd refinement of F3, a contradiction.

The subsequent analysis of G resembles the analysis in the preceding section; the role played by H there is played
by P here. Claims 3.8, 3.9, 3.10, and 3.12 are like Claims 2.1, 2.2, 2.3, and 2.4, respectively. Claim 3.14 is like Claim
2.5, Claim 3.15 is like Claim 2.6, and so on until Claim 3.27, which is like Claim 2.18. In addition, Claim 3.31 is like
Claim 2.23.

We shall say that a vertex x is a

• 2-vertex if it has two neighbors in P

• and these neighbors are wi, wi+1 for some i;
• 3-vertex if it has three neighbors in P

• and these neighbors are wi, wi+1, wi+2 for some i;
• 4-vertex if it has four neighbors in P

• and these neighbors are wi, wi+1, wj , wj+1 for some i and j

such that i is odd, j is even, and i < j .

Claim 3.8. Every vertex in N is a 2-vertex or a 3-vertex or a 4-vertex.

Justification. If x is a vertex of N adjacent to some wi with 1� i�k, then it must be adjacent to at least one of wi−1
and wi+1 (else wiwi+1wi−1x would be a claw); furthermore, x cannot have three pairwise nonadjacent neighbors (else
x would be the center of a claw); by Claim 3.1(iii), if x is adjacent to w0 then it is adjacent to w1; if it is adjacent to
wk+1 then it is adjacent to wk . From these observations, it follows that the set of neighbors of x in P is {wi, wi+1}
for some i or {wi, wi+1, wi+2} for some i, or {wi, wi+1, wj , wj+1} for some i, j such that i + 2�j �k. In the last
case, i and j must have different parities (else H 0

1 , H 0
2 and w1, . . . , wi, x, wj+1, . . . , wk would induce in G an odd

refinement of F3). Now i must be odd, for otherwise H 0
1 and xwi+1 . . . wj along with w1w2 . . . wi would induce in G

an odd refinement of F2 (when i = 0) or F3 (when i�2), a contradiction.
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Claim 3.9. Let x be a 2-vertex adjacent to wi and wi+1. If x has a neighbor y in N such that ywi /∈ E, then y is a
3-vertex adjacent to wi+1, wi+2, wi+3.

Justification. By Claim 3.8, y is a 2-vertex or a 3-vertex or a 4-vertex. If y is a 2-vertex, then the graph induced by
H 0

1 ∪ H 0
2 ∪ P along with x and y contains an odd hole of length at least five, or an odd refinement of F2 or an odd

refinement of F3. If y is a 3-vertex or a 4-vertex, we argue as in the justification of Claim 2.2.

Claim 3.10. For every 2-vertex x adjacent to wi and wi+1, with 1� i�k − 1, precisely one of the following three
statements holds true:

(a) x has a neighbor in N nonadjacent to wi ,
(b) x has a neighbor in N nonadjacent to wi+1,
(c) x has a neighbor in G − (P ∪ N ∪ H1 ∪ H2).

Justification. First, let us derive a contradiction from the assumption that all three of (a), (b), and (c) are false. Since x

is not a simplicial vertex, it must have two nonadjacent neighbors, say y and z; since y and z are nonadjacent neighbors
of a 2-vertex, at least one of them is outside P , say y /∈ P ; since (c) is false, y ∈ N ∪ H1 ∪ H2. Since xw0 /∈ E and
xwk+1 /∈ E, Claim 3.1(iii) guarantees that y /∈ H1 ∪ H2; since (a) and (b) are both false, y is adjacent to both wi and
wi+1. Now (since y and z are nonadjacent) z /∈ P , and so (since all three of (a), (b), and (c) are false and by Claim
3.1(iii)) z is a vertex in N adjacent to both wi and wi+1. As in the justification of Claim 2.3 (with H replaced by P ) we
may assume that z is a 3-vertex adjacent to wi, wi+1, wi+2 and that y is a 3-vertex adjacent to wi−1, wi, wi+1. Hence

w1 . . . wi−1yxzwi+2 . . . wk

is a chordless odd path; this path along with H 0
1 and H 0

2 induces an odd refinement of F3, a contradiction.
Next, let us derive a contradiction from the assumption that (a) and (b) are both true: x has neighbors y and z in

N such that ywi /∈ E and zwi+1 /∈ E. By Claim 3.9, y is a 3-vertex adjacent to wi+1, wi+2, wi+3 and z is a 3-vertex
adjacent to wi−2, wi−1, wi . Since ywi+1wi+3z is not a claw, y and z are nonadjacent. But then

w1 . . . wi−2zxywi+3 . . . wk

is a chordless odd path; this path together with H 0
1 and H 0

2 induces an odd refinement of F3, a contradiction.
Finally, let us derive a contradiction from the assumption that (a) and (c) are both true: x has neighbors y and z such

that y ∈ N , ywi /∈ E, and z /∈ P ∪ N ∪ H1 ∪ H2. By Claim 3.9, y is a 3-vertex adjacent to wi+1, wi+2, wi+3. But then
one of xwiyz and yzwi+1wi+3 is a claw, a contradiction.

For each j = 1, 2, . . . , k, let Qj denote the set that consists of

• wj ;
• all the 2-vertices x adjacent to wj−1 and wj such that some 3-vertex is adjacent to x, wj , wj+1, wj+2;
• all the 2-vertices x adjacent to wj and wj+1 such that some 3-vertex is adjacent to x, wj−2, wj−1, wj ;
• all the 3-vertices adjacent to wj−1, wj , wj+1, and for each j = 0, 2, . . . , k, let Tj denote the set that consists of
• all the 2-vertices adjacent to wj and wj+1 that have a neighbor outside P ∪ N ∪ H1 ∪ H2.

In addition, let S denote the set of all the 4-vertices; set J1 = N1 − Q1, J2 = N2 − Qk .

Claim 3.11. Both T0 and Tk are empty.

Justification. By symmetry, we only need to prove the claim for T0. Assume the contrary, let x be a vertex of T0. Let
j be the smallest index such that there is a chordless path P ′ connecting x and wj with all internal vertices outside
P ∪ N ∪ H1 ∪ H2. If such an index j exists, then H 0

1 ∪ P ∪ P ′ either contains an odd hole or an odd refinement of
F2. Else, T0 is a clique (by Claim 3.1(iii)) cutset (by definition) of G. Let G be the union of graphs G1, G2 so that
G1 ∩G2 ⊆ T0 is a minimal cutset of G, and both H1 and H2 are subgraphs of G2. A corollary of Claim 2.2 in [6] asserts
that G1 contains a tip of G; Claim 3.1(iv) and (v) guarantee that G1 contains a hole H ′ with at least four vertices. Let
P ′ be a shortest chordless path in G1 connecting a vertex of H ′ and a vertex of G1 ∩ G2 so that no internal vertex of
P ′ belongs to G1 ∩ G2. But either H ′ ∪ P ′ ∪ H 0

1 or H ′ ∪ P ′ ∪ {w1, . . . , wk} ∪ H 0
2 induces an odd refinement of F3.
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Claim 3.12. Each vertex of P ∪ N belongs to precisely one of

Q1, . . . , Qk, T1, . . . , Tk−1, S, J1, J2.

Justification. Straightforward from Claims 3.8, 3.10, 3.9 and 3.11.

Our next aim is to describe the structure of the graph induced by P ∪ (N − S), which we denote by M .

Claim 3.13. (a) If x is a vertex in Ji , then x has no neighbor outside Hi ∪ Ni .
(b) Every vertex of Ji has a neighbor in Ci that is Hi-universal.
(c) If Hi ∪ Ni is a large appendix, then Ji is empty.

Justification. (a) Symmetry allows us to set i = 1. Let x be an arbitrary vertex of J1. Note that xw0 ∈ E (by Claim
3.1(iii)) and that x �= w1 (since x /∈ Q1). Hence, x /∈ P . Claim 3.12 guarantees that x is not a 4-vertex; since x does not
belong to Q1, it is not a 3-vertex. Thus x is a 2-vertex adjacent to w0 and w1.

Now assume that x has a neighbor y outside H1 ∪ N1. Since x /∈ Ti , it follows that y ∈ N ∪ P ∪ H2; since x is a
2-vertex, y /∈ P and y /∈ H2 (by Claim 3.1). We conclude that y ∈ N . Since y /∈ N1, we have yw0 /∈ E; now Claim 3.9
guarantees that x ∈ Q1, a contradiction.

(b) Straight from (a), Claim 3.1(iii), and the assumption that G has no simplicial vertex.
(c) By Claim 3.2 and the definition of a large appendix, Hi contains a hole with at least six vertices. Since G has no

claw, no vertex of Ci is Hi-universal. Hence, (b) implies that Ji is empty.

Claim 3.14. Let x and y be adjacent vertices in M .
If x ∈ Tj then y ∈ Qj ∪ Tj ∪ Qj+1.
If x ∈ Qj then y ∈ Qj−1 ∪ Tj−1 ∪ Qj ∪ Tj ∪ Qj+1 (1�j �k) where Q0 = J1 and Qk+1 = J2.
If x ∈ J1 then y ∈ J1 ∪ Q1; if x ∈ J2 then y ∈ J2 ∪ Qk .

Justification. If at least one of x and y belongs to P , then Claim 3.14 follows trivially from Claims 3.1(iii) 3.8, 3.11,
3.12. If both x and y belong to N − S, then Claim 3.14 is implied by Claims 3.1(iii) 3.13, 3.11, and the following three
claims:

(i) if x and y are adjacent 2-vertices then x and y have the same neighbors in P ;
(ii) if x is a 2-vertex adjacent to wi, wi+1 and if y is a 3-vertex adjacent to x then y ∈ Qi−1 ∪ Qi ∪ Qi+1;

(iii) if x is a 3-vertex in Qj and if y is a 3-vertex adjacent to x then y ∈ Qj−1 ∪ Qj ∪ Qj+1.

Validity of (i) and (ii) follows directly from Claim 3.9. Let us justify (iii). Trivially, y ∈ Qi for some i. Since
xwj−1wj+1y is not a claw, i must be one of j − 2, j − 1, j , j + 1, j + 2; hence symmetry allows us to assume that i

is one of j , j + 1, j + 2. If i = j + 2 then

w1 . . . wj−1xywj+3 . . . wk

along with H 0
1 and H 0

2 induces an odd refinement of F3, a contradiction.

Claim 3.14 tells us that certain pairs of vertices in M must be nonadjacent. Now we shall prove that certain pairs of
vertices in M must be adjacent:

• for each j =1, . . . , k, at least one of Qj−1 ∪Tj−1 ∪Qj and Qj ∪Tj ∪Qj+1 is a clique, with Q0 =J1 and Qk+1 =J2
(Claim 3.19);

• if Tj �= ∅, then Qj ∪ Tj ∪ Qj+1 is a clique (a corollary of Claims 3.15, 3.18).

For each j = 1, 2, . . . , k − 1, set
j ∈ S1 if there are nonadjacent vertices xj and yj such that xj is a 3-vertex adjacent to wj−1, wj , wj+1 and yj is a

3-vertex adjacent to wj , wj+1, wj+2;
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j ∈ S2 if there are adjacent vertices xj and yj such that xj is a 2-vertex adjacent to wj−1, wj and y is a 3-vertex
adjacent to wj , wj+1, wj+2;

j ∈ S3 if there are adjacent vertices xj and yj such that xj is a 3-vertex adjacent to wj−1, wj , wj+1 and yj is a
2-vertex adjacent to wj+1, wj+2.

We shall say that wjwj+1 is special if j ∈ S1 ∪ S2 ∪ S3; all the remaining edges wjwj+1 will be called normal.
(Note that w0w1 and wkwk+1 are neither special nor normal.)

Claim 3.15. If some vertex is adjacent to wj , wj+1 and not adjacent to wj−1, wj+2 with 1�j �k − 1, then wjwj+1
is a normal edge.

Justification. Assume the contrary: some vertex z is adjacent to wj , wj+1 and not adjacent to wj−1wj+2 with
1�j �k − 1, and yet wjwj+1 is a special edge. We have three cases to consider.

Case 1: j ∈ S1. We must have zxj ∈ E (to avoid a claw on wj+1wj+2zxj ) and zyj ∈ E (to avoid a claw on
wjwj−1zyj ). Now z must be a 2-vertex (if zwt ∈ E and t �= j, j + 1 then zxjyjwt is a claw). But then

w1 . . . wj−1xj zyjwj+2 . . . wk

along with H 0
1 and H 0

2 induces an odd refinement of F3, a contradiction.
Case 2: j ∈ S2. We must have first zyj ∈ E (to avoid a claw on wjwj−1zyj ) and then zxj ∈ E (to avoid a claw on

yjwj+2zxj ). Now z must be a 2-vertex (if zwt ∈ E and t �= j, j + 1 then zxjwj+1wt is a claw). But then

w1 . . . wj−1xj zwj+1 . . . wk

along with H 0
1 and H 0

2 induces an odd refinement of F3, a contradiction.
Case 3: j ∈ S3. This is a mirror image of Case 2.

Claim 3.16. No two special edges share a vertex.

Justification. We only need to derive a contradiction for the assumption that, for some j , both j and j + 1 belong to
S1 ∪ S2 ∪ S3. By Claim 3.15, j /∈ S3 and j + 1 /∈ S2. Four cases remain.

Case 1: j ∈ S1, j + 1 ∈ S1. We must have xjyj+1 /∈ E, for otherwise

w1 . . . wj−1xjyj+1wj+3 . . . wk

along with H 0
1 and H 0

2 induces an odd refinement of F3, a contradiction.
Then we must have xjxj+1 ∈ E (to avoid a claw on wj+1xjxj+1yj+1) and yjyj+1 ∈ E (to avoid a claw on

wj+1yj+1xjyj ). In particular, yj �= xj+1, and so yjxj+1 ∈ E to avoid a claw on wjwj−1yjxj+1. But then

w1 . . . wj−1xjxj+1yjyj+1wj+3 . . . wk

along with H 0
1 and H 0

2 induces an odd refinement of F3, a contradiction.
Case 2: j ∈ S1, j + 1 ∈ S3. We must have xjyj+1 /∈ E (to avoid a claw on xjwj−1wj+1yj+1); now xjxj+1 ∈ E,

for otherwise

w1 . . . wj−1xjwj+1xj+1yj+1wj+3 . . . wk

along with H 0
1 and H 0

2 induces an odd refinement of F3, a contradiction.
In particular, yj �= xj+1. Now we must have first yjxj+1 ∈ E (to avoid a claw on wj+2wj+3yjxj+1) and then

yjyj+1 ∈ E (to avoid a claw on xj+1xjyjyj+1). But then

w1 . . . wj−1xjwj+1yjyj+1wj+3 . . . wk

along with H 0
1 and H 0

2 induces an odd refinement of F3, a contradiction.
Case 3: j ∈ S2, j + 1 ∈ S1. This is a mirror image of Case 2.
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Case 4: j ∈ S2, j + 1 ∈ S3. We must have xjyj+1 /∈ E for otherwise

w1 . . . wj−1xjyj+1wj+3 . . . wk

along with H 0
1 and H 0

2 induces an odd refinement of F3, a contradiction.
Then we must have xjxj+1 /∈ E (to avoid a claw on xj+1xjwj+1yj+1) and yjyj+1 /∈ E (to avoid a claw on

yjyj+1wj+1xj ). In particular, yj �= xj+1, and so yjxj+1 ∈ E to avoid a claw on wjwj−1yjxj+1. But then

w1 . . . wj−1xjyjxj+1yj+1wj+3 . . . wk

along with H 0
1 and H 0

2 induces an odd refinement of F3, a contradiction.

Claim 3.17. Every normal edge is contained in a unique maximal clique of G.

Justification. Same as that of Claim 2.9 (except that now 1�j �k − 1).

Claim 3.18. If wjwj+1 is a normal edge then Qj ∪ Tj ∪ Qj+1 is a clique.

Justification. Same as that of Claim 2.9 (except that now we rely on Claim 3.17 rather than Claim 2.8 and 1�j �k−1).

Claim 3.19. Set Q0 = J1 and Qk+1 = J2.
For each j = 1, . . . , k, at least one of Qj−1 ∪ Tj−1 ∪ Qj and Qj ∪ Tj ∪ Qj+1 is a clique.

Justification. Straight from Claims 3.1(iii), 3.11, 3.16, and 3.18.

Next, we turn our attention to 4-vertices.

Claim 3.20. Let z be a 4-vertex and let C be the set of all the neighbors of z. Then there is an odd subscript r and an
even subscript s with 1�r < s�k − 1 such that

C = (Qr ∪ Tr ∪ Qr+1) ∪ (Qs ∪ Ts ∪ Qs+1)

and such that

both wrwr+1 and wsws+1 are normal edges.

Justification. Same as that of Claim 2.11 with three modifications: first, we depend on Claims 3.15, 3.17, 3.18, 3.8,
and 3.12 rather than Claims 2.6, 2.8, 2.9, 2.1, and 2.4; second, the role of H is replaced by P . Finally, indices r and s

are such that 1�r < s�k − 1, r odd and s even.

Claim 3.21. If a vertex x of P ∪ N has a neighbor outside P ∪ N ∪ H1 ∪ H2, then x ∈ Ti for some i = 1, . . . , k − 1.

Justification. Let y denote a neighbor of x outside P ∪ N ∪ H1 ∪ H2. Trivially, x must be a 2-vertex (else x, its two
nonadjacent neighbors in P , and y form a claw). By Claims 3.12 and 3.13(a), x ∈ Ti or x ∈ Qi for some i. If x ∈ Qi ,
then x is adjacent to a 3-vertex z such that z is nonadjacent to a neighbor w of x on P ; but then xyzw is a claw, a
contradiction.

Let us enumerate all the connected components of G − (P ∪ N ∪ H1 ∪ H2) as R1, . . . , Rt ; for each i = 1, . . . , t , let
Ci denote the set of vertices outside Ri that have at least one neighbor in Ri . By a bridge of P , we shall mean

• either the subgraph of G induced by some Ri ∪ Ci

• or a 4-vertex.

Claim 3.22. The vertex-sets of all the bridges of P are pairwise disjoint and their union is the vertex-set of G− (H1 ∪
J1 ∪ Q1 ∪ · · · ∪ Qk ∪ J2 ∪ H2).
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Justification. Same as that of Claim 2.13 except that the role of H is played by P and that we rely on Claims 3.12
and 3.21 instead of Claims 2.4 and 2.12.

Claim 3.23. For every i = 1, . . . , t , there is an odd subscript r and an even subscript s with 1�r < s�k − 1 such that

Ci ∩ Tr �= ∅, Ci ∩ Ts �= ∅, Ci ⊆ Tr ∪ Ts

and such that

both wrwr+1 and wsws+1 are normal edges.

Justification. Claim 3.21guarantees that Ci ⊆ T1∪· · ·∪Tk . Let I denote the set of all subscripts r such that Ci∩Tr �= ∅.
Claims 3.15, 3.18 guarantee that Qr ∪ Tr ∪ Qr+1 is a clique whenever r ∈ I .

First, let us show that |I | > 1. If I = {r}, then Tr is a clique (by Claim 3.1(iii)) cutset (by definition) of G. Let G be
the union of graphs G1, G2 so that G1 ∩ G2 ⊆ Tr is a minimal cutset of G, and both of H1 and H2 are subgraphs of
G2. A corollary of Claim 2.2 in [6] asserts that G1 contains a tip of G. By Claim 3.1(iii), G1 contains a hole H ′ with
at least four vertices. Let P ′ be a shortest chordless path in G1 connecting a vertex of H ′ and a vertex of G1 ∩ G2 so
that no internal vertex of P ′ belongs to G1 ∩ G2. But either H ′ ∪ P ′ ∪ H 0

1 or H ′ ∪ P ′ ∪ {w1, . . . , wk} ∪ H 0
2 induces

an odd refinement of F3.
Next, let us show that I cannot include two subscripts of the same parity. Assume the contrary: two subscripts, r and

s, in I have the same parity. Let F be the subgraph of G induced by H 0
1 ∪ P ∪ H 0

2 along with a chordless path P ′ from
Ci ∩ Tr to Ci ∩ Ts with all interior vertices in Ri . F contains an odd hole (when P ′ has an even number of edges) or
an odd refinement of F3 (when P ′ has an odd number of edges), a contradiction.

Hence, I = {r, s} such that r and s are of different parities. Let P ′ be a chordless path from Ci ∩ Tr to Ci ∩ Ts

with all interior vertices in Ri . If r were even, then the subgraph induced by H 0
1 ∪ {w1, . . . , wr} ∪ P ′ is either an odd

refinement of F2 or an odd refinement of F3.

Claim 3.24. For every bridge of P , precisely four vertices in P have at least one neighbor in the bridge. These four
vertices are wr, wr+1, ws, ws+1 with 1�r < s�k − 1, r odd, s even; both wrwr+1, ws, ws+1 are normal edges.

Justification. Straight from Claims 3.23 and 3.20.

We shall refer to the two edges wrwr+1 and wsws+1 in Claim 3.24 as the edges of attachment of the bridge. By
removing the edges of attachment of a bridge, P is disconnected into three disjoint even paths; two such subpaths that
contain either w0 or wk+1 are of odd lengths (by Claim 3.24); we will call them the external segments of the bridge;
we will call the third path (wr+1 . . . ws) the internal segment segment of the bridge; an internal segment has an even
length (by Claim 3.24). (In the special case when s = r + 1, the internal segment consists of just ws .)

By a spine of a bridge X that is induced by some Ri ∪ Ci , we shall mean a chordless path from Tr to Ts with all
internal nodes in X − (Tr ∪ Ts) and r, s as in Claim 3.23 (with R = Ri, C = Ci); by the spine of the bridge that is a
4-vertex x, we shall mean the degenerate path consisting of this single vertex x.

Claim 3.25. Every spine of every bridge has an even number of edges.

Justification. Assuming the contrary, the subgraph of G induced by the odd spine and the internal segment of the
bridge is an odd hole, a contradiction.

Claim 3.26. No two bridges share precisely one edge of attachment.

Justification. Assume the contrary, two bridges X and Y share one edge of attachment. By Claim 3.24 and by symmetry,
we may assume that there are mutually distinct subscripts a, b, c with 1�a < c < b�k − 1, a, c odd, b even, so that
bridge X has edges of attachment wawa+1, wbwb+1 and bridge Y has edges of attachment wcwc+1, wbwb+1. Let
x1 . . . xs be a spine of X so that x1wawa+1 form a triangle and xswbwb+1 form a triangle; let y1, . . . , yt be a spine of Y

oriented towards the neighbor of wc in this spine. Then, H 0
1 , w1, . . . , wa, x1, . . . , xs and hole wc+1, . . . , wb, y1, . . . , yt

induce in G an odd refinement of F3, a contradiction.
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We shall say that two bridges cross if exactly one of the edges of attachment of one bridge lies in the internal segment
of the other bridge.

Claim 3.27. No two bridges cross.

Justification. Assume the contrary: bridge X has edges of attachment wawa+1, wbwb+1, bridge Y has edges of
attachment wcwc+1, wdwd+1 such that a, c are odd, b, d are even, and 1�a < c < b < d �k − 1. By Claim 3.26 and
the assumption that X and Y cross, we must have a �= c and b �= d . Let x1 . . . xs be a spine of X such that x0wawa+1
form a triangle and xswbwb+1 form a triangle; let y1, . . . , yt be a spine of Y oriented towards the neighbor of wc in
this spine. Then, H 0

1 , w1, . . . , wa, x1, . . . , xs and hole wc+1, . . . , wd, y1, . . . , yt induce in G an odd refinement of F3,
a contradiction.

Two bridges are nested if both of the two edges of attachment of one bridge lie in the internal segment of the other
bridge.

Claim 3.28. No two bridges are nested.

Justification. Assume the contrary: bridge X has edges of attachment wawa+1, wbwb+1, bridge Y has edges of attach-
ment wcwc+1, wdwd+1 such that a, c are odd, b, d are even, and 1�a < c < d < b�k−1. Let x1 . . . xs be a spine of X

such that x1wawa+1 is a triangle and xswbwb+1 is a triangle; let y1, . . . , yt be a spine of Y oriented towards the neighbor
of wc in this spine. Then, H 0

1 , w1, . . . , wa, x1, . . . , xs, wb, wb−1, . . . , wd+1 and hole wc+1, . . . , wd, y1, . . . , yt induce
in G an odd refinement of F3, a contradiction.

Let A(P ) denote the set of all the edges of attachment of bridges of P . With this notation, Claims 3.26–3.28 can be
summarized as follows.

Claim 3.29. The elements of A(P ) can be enumerated, in their natural order along P from w1 to wk , as

e1, f1, e2, f2, . . . , ed , fd ,

so that every bridge of P has some et and ft (with the same t) for its two edges of attachment.

Claim 3.30. Let r, s be subscripts of different parities such that 1�r < s�k − 1 and

(�) no edge on the path wr . . . ws+1 belongs to A(P )

and let B be the subgraph of G induced by Qr ∪ Qr+1 ∪ · · · ∪ Qs+1. Then

(a) Tr = · · · Ts = ∅;
(b) B is an elementary bead with poles Qr , Qs+1;
(c) no vertex in B − (Qr ∪ Qs+1) has a neighbor outside B.

Justification. (a) Same as that of Claim 2.22(a) except that we rely on Claim 3.22 instead of Claim 2.13.
(b) Same as that of Claim 2.22(b) with the following modifications. We rely on Claims 3.12„ 3.19, 3.14 instead of

Claims 2.4, 2.10, 2.5 in proving conditions (i), (ii) and (iii) of an elementary bead. To show that condition (iv) holds
for B, assume the contrary: if there are vertices x, y in Q1 and vertices u, v in Q2 such that u is adjacent to x but not to
y and such that v is adjacent to y but not to x, then the subgraph induced by u, v, x, y along with H1 contains an odd
refinement of F2. Similarly, if there are vertices x, y in some Qk and vertices u, v in Qk−1 such that u is adjacent to x

but not to y and such that v is adjacent to y but not to x, then the subgraph induced by u, v, x, y along with H2 contains
an odd refinement of F2. For all other cases, we argue as in Claim 2.22(b) using appropriate claims listed above; the
last sentence should read “ But then the hole xyvu and paths w1 . . . wj−1, wj+2 . . . wk induce an odd refinement of
F3, a contradiction.”

(c) Consider an arbitrary vertex x in B − (Qr ∪ Qs+1). By Claim 3.22, x belongs to no bridge of P , and so all its
neighbors come from P ∪N ∪H1 ∪H2; by Claim 3.12 and by definition, x has no neighbor in H1 ∪H2; Claim 3.20 and
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assumption (�) guarantee that x is adjacent to no 4-vertex. But then (a) and Claim 3.14 guarantee that all the neighbors
of x come from B.

Claim 3.31. Let X be a bridge of P with edges of attachment wrwr+1, wsws+1 with 1�r < s�k − 1, r odd, s even.
If X is not a 4-vertex, then X is an elementary bead with poles Q′

r , Q′
r+n such that

• Q′
r ⊆ Tr ,

• Q′
r+n ⊆ Ts ,

• no vertex in X − (Q′
r ∪ Q′

r+n) has a neighbor outside X.

Justification. By Claim 3.29,

(i) no edge on the path wr+1 . . . ws belongs to A(P ).
Let PX be a spine of X and let P ′ denote the chordless path induced by PX and the two external segments w0 . . . wr

and ws+1 . . . wk+1. Enumerate the vertices of P ′ as w′
0, . . . , w

′
p+1 so that w′

i=wi for i=0, . . . , r , PX=w′
r+1, . . . , w

′
r+n,

and w′
r+n+i = ws+i for i = 1, . . . , k + 1 − s.

By Claim 3.15,

(ii) wrwr+1 and wsws+1 are normal edges of P ,
(iii) w′

rw
′
r+1 and w′

r+nw
′
r+n+1 are normal edges of P ′;

in turn, (ii), (iii), and Claim 3.17 imply that

(iv) a vertex is adjacent to wr, wr+1 if and only if it is adjacent to w′
r , w

′
r+1;

(v) a vertex is adjacent to ws, ws+1 if and only if it is adjacent to w′
r+n, w

′
r+n+1.

We claim that

(vi) w′
rw

′
r+1, w

′
r+nw

′
r+n+1 ∈ A(P ′).

To justify (vi), we propose to show that P ′ has a bridge with spine wr+1 . . . ws . If wr+1 = ws , then wr+1 is a
4-vertex of P ′ and we are done; hence we may assume that wr+1 �= ws . Now let wj be an arbitrary interior vertex of
wr+1wr+2 . . . ws . By definition, wj has no neighbor in any external segment of X. Since X is not a 4-vertex, n�3;
(since X is a bridge of H ) wj neither belongs to nor has a neighbor in the interior of w′

r+1 . . . w′
r+n and (by Claim

3.23) w′
r+1 and w′

r+n are distinct 2-vertices of P nonadjacent to wj . To summarize, wj neither belongs to nor has a
neighbor in P ′, and so we are done.

Define Q′
1, . . . , Q

′
p in the same way we defined Q1, . . . , Qk , except that P ′ is now used in place of P ; then let B

stand for the subgraph of G induced by
Q′

r+1 ∪ · · · ∪ Q′
r+n. Claim 3.25 guarantees that n is odd; since X is not a 4-vertex, n�3; Claim 3.29 and (vi)

guarantee that no edge on the path w′
r+1 . . . w′

r+n belongs to A(P ′). Hence P ′, r + 1, r + n − 1 satisfy assumptions
of Claim 3.30 in place of P, r, s; in turn, this claim guarantees that

(vii) B is an elementary bead with poles Q′
r+1, Q′

r+n;
(viii) no vertex in B − (Q′

r+1 ∪ Q′
r+n) has a neighbor outside B.

By definition, X is induced by some Ri ∪ Ci ; Claim 3.23 guarantees that

(ix) Ci ⊆ Tr ∪ Ts .

Replacing Q′
i with Q′

r+i and w′
i with w′

r+i for i =1, . . . , n and using the arguments for proving (xii), (xiii) of Claim
2.23, we conclude that

(x) Q′
r+2 ∪ · · · ∪ Q′

r+n−1 ⊆ Ri ,
(xi) Q′

r+1 ⊆ Ci ∩ Tr and Q′
r+n ⊆ Ci ∩ Ts .

From (x), (viii), and (xi), it follows that Q′
r+2 ∪ · · · ∪ Q′

r+n−1 = Ri ; in turn, this identity, (viii), and (xi) imply that
Q′

r+1 ∪ Q′
r+n = Ci .

Claim 3.32. If P has no bridge, then G is a string.
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Justification. Let B0 be the subgraph of G induced by H1 ∪ J1 ∪ Q1; let B1 be the subgraph of G induced by
Q1 ∪Q2 ∪Qk and let B2 be the subgraph of G induced by H2 ∪ J2 ∪Qk . Since P has no bridge, Claims 3.22 and 3.12
guarantee that every vertex of G belongs to precisely one of B0, B1, B2. By Claim 3.2, B0 is either a large appendix
with pole N1 or a small appendix whose pole is a subset of N1. In the former case, Claim 3.13(c) guarantees that Q1
is the pole of the large appendix; in the latter case, Claim 3.13(b) guarantees that Q1 is a pole of the small appendix.
Similarly, B2 is either a large appendix or a small appendix with pole Qk .

If k =1, then Claim 3.6 guarantees that G is a string. If k > 1, then Claim 3.30(b) guarantees that B1 is an elementary
bead with poles Q1 and Qk . In turn, Claims 3.6 and 3.30(c) guarantee that every edge of G belongs to one of B0, B1, B2.

Claim 3.32 allows us to assume that

P has at least one bridge.

With e1, f1, . . . , ed , fd as in Claim 3.29, let J denote the set of all subscripts j such that some et is wjwj+1 or some
ft is wj−1wj . (Note that there may be i and j such that ft = wj−1wj and et+1 = wjwj+1.)

Claim 3.33. If subscript j ∈ J , then 1�j �k and j is odd.

Justification. Straight from Claim 3.24.

Enumerate all the sets Qj with j ∈ J ∪ {1, k} as A1, . . . , Am+1 according to their order along P from w1 to wk .
Note that A1 = Q1 and Am+1 = Qk . We are going to prove that G is a string made out of two appendices B0, Bm+1
and certain beads B1, . . . , Bm such that the pole of B0 is A1, the pole of Bm+1 is Am+1, and the two poles of each Bi

with 1� i�m are Ai and Ai+1. These appendices and beads are defined as follows.
Let B0 be the subgraph induced by H1 ∪ J1 ∪ Q1.
Let Bm+1 be the subgraph induced by H2 ∪ J2 ∪ Qk .
For i = 1, . . . , m, Ai is some Qr ; its successor Ai+1 is some Qs+1; let Bi be the subgraph of G induced by the

union of Qr ∪ Qr+1 ∪ · · · ∪ Qs+1 and all the bridges of P with edges of attachment wrwr+1, wsws+1.

Claim 3.34.

(i) B0 is an appendix with pole A1; Bm+1 is an appendix with pole Am+1; for i = 1, . . . , m, Bi is a bead with poles
Ai, Ai+1.

(ii) No vertex in Bi − (Ai ∪ Ai+1) has a neighbor outside Bi for i = 0, . . . , m + 1, where A0 = Am+2 = ∅.

Justification. (i) By Claim 3.2, B0 is either a large appendix with pole N1 or a small appendix whose pole is a subset
of N1. In the former case, Claim 3.13(c) guarantees that Q1 is the pole of the large appendix; in the latter case, Claim
3.13(b) guarantees that Q1 is a pole of the small appendix. Similarly, Bm+1 is either a large appendix or a small appendix
with pole Qk .

For i = 1, . . . , m and with r, s as in the definition of Bi , Claim 3.33 guarantees that
(a) 1�r < s�k − 1, r is odd and s is even.
With e1, f1, . . . , ed , fd as in Claim 3.29, we shall distinguish between two cases.
Case 1: ft =wr−1wr and et+1 =ws+1ws+2 for some t . In this case, no edge on the path wrwr+1 . . . ws+1 is an edge

of attachment of a bridge of P , and so the desired conclusion follows from Claim 3.30.
Case 2: et = wrwr+1 and ft = wsws+1 for some t . Let D1 be the subgraph of G induced by Qr+1 ∪ · · · ∪ Qs and

enumerate all the bridges of P with edges of attachment wrwr+1, wsws+1 as D2, . . . , Dn. By Claims 3.24 and 3.18,
(b) Qr ∪ Tr ∪ Qr+1 and Qs ∪ Ts ∪ Qs+1 are cliques.
Replacing Claims 2.11, 2.12, 2.5 with Claims 3.20, 3.21, 3.14 in the argument for proving (c) of Claim 2.26, we

conclude that
(c) if r + 1 = s, then D1 is a single vertex and the set of its neighbors is Qr ∪ Tr ∪ Ts ∪ Qs+1.
By Claim 3.30 (with r + 1, s − 1 in place of r, s),
(d) if r + 1 �= s, then D1 is an elementary bead with poles Qr+1, Qs

and no vertex in D1 − (Qr+1 ∪ Qs) has a neighbor outside D1.
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By Claim 3.20,
(e) if some Dj with 1 < j �n is a single vertex, then the set of its neighbors is Qr ∪ Tr ∪ Qr+1 ∪ Qs ∪ Ts ∪ Qs+1.
By Claim 3.31,
(f) if some Dj with 1 < j �n is not a single vertex, then it is an elementary bead with poles Uj , Vj so that Uj ⊆ Tr ,

Vj ⊆ Ts , and no vertex in Dj − (Uj ∪ Vj ) has a neighbor outside Dj .
Using the same argument as in the proof of Claim 2.26 with Claims 2.15, 2.8, 2.11, 2.13, 2.21, in place of Claims

3.24, 3.17, 3.20, 3.22, 3.29, we conclude that
(g) at most one Dj (with 1�j �n) is a single vertex;
(h) Tr ∪ Ts ⊆ Bi .
By Claims 3.22 and 3.12, D1, D2, . . . , Dn, Qr, Qs are pairwise vertex-disjoint; now (b)–(g) imply that Bi is a

compound bead with poles Qr, Qs+1.
(ii) By Claim 3.6, by definition of a tip, and by Claim 3.13(a), it follows that no vertex of (B0 − Q1) has a neighbor

outside B0; no vertex of (Bm+1 − Qk) has a neighbor outside Bm+1. Finally, consider an arbitrary vertex x in Bi

(i ∈ {1, . . . , m}) that has a neighbor outside Bi . From (c)–(h) we conclude that x ∈ Qr ∪Tr ∪Qr+1 ∪Qs ∪Ts ∪Qs+1;
by Claims 3.14 and 3.30(a), x /∈ Tr ∪ Qr+1 ∪ Qs ∪ Ts .

Write A0 = Am+2 = ∅. By Claims 3.22, 3.12, and 3.29, the (m + 2) sets Bi − (Ai ∪ Ai+1) are pairwise disjoint and
each vertex of G belongs to one of B0, B1, . . . , Bm+1. By Claims 3.14 and 3.33, no edge of G joins an Ai to an Aj

with i �= j ; now Claim 3.34 guarantees that G is a string.
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