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Consider the probability space ([0,1), B, λ), where B is the Borel σ -algebra on [0,1)

and λ the Lebesgue measure. Let f = 1[0,1/2) and g = 1[1/2,1) . Then for any ε > 0
there exists a finite sequence of sub-σ -algebras G j ⊂ B ( j = 1, . . . , N), such that putting
f0 = f and f j = E( f j−1|G j), j = 1, . . . , N , we have ‖ f N − g‖∞ < ε; here E(·|G j) denotes
the operator of conditional expectation given σ -algebra G j . This is a particular case of
a surprising result by Cherny and Grigoriev (2007) [1] in which f and g are arbitrary
equidistributed bounded random variables on a nonatomic probability space. The proof
given in Cherny and Grigoriev (2007) [1] is very complicated. The purpose of this note
is to give a straightforward analytic proof of the above mentioned result, motivated by
a simple geometric idea, and then show that the general result is implied by its special
case.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Cherny and Grigoriev [1] proved a law invariance theorem for L∞ dilatation monotone maps (in the nonatomic set-
ting) which has application in establishing the equivalence of a number of properties relevant to coherent risk mea-
sures.

This result was a consequence of the following statement, which is also in [1]:

Theorem 1. Let (Ω, F ,μ) be a nonatomic probability space and let f , g be equidistributed L∞(Ω, F ,μ) functions. Given ε > 0,
there exists a finite sequence Fi , 1 � i � N, of sub-σ -algebras of F such that, if f0 = f , f1 = E( f0|F1), f2 = E( f1|F2), . . . , f N =
E( f N−1|FN), then ‖ f N − g‖∞ < ε.

Recall that if h is an L1(Ω, F ,μ) function and G a sub-σ -algebra of F , then the conditional expectation of h given G ,
denoted as E(h|G), is the L1(Ω, G,μ) function h∗ , such that∫

A

h∗ dμ =
∫
A

h dμ for all A ∈ G. (1)

The existence of such h∗ (which is unique up to a zero μ-measure set) is guaranteed by the Radon–Nicodym theorem that
is applicable whenever μ is a σ -finite measure on (Ω, F ).

The following statement is a special case of one of the steps in the proof of the main result in [1].
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Fig. 1. P j = projection onto the line (cos jθ)y − (sin jθ)x = 0, θ = π
N .

Theorem 2. Consider the probability space ([0,1), B, λ), where B is the σ -algebra of Borel subsets of [0,1) and λ is the Lebesgue
measure on [0,1). Let f = 1[0,1/2) and g = 1[1/2,1) . Then it is possible, for any ε > 0, to choose an integer N > 0 and N σ -algebras
F j ⊂ B ( j = 1,2, . . . , N) in such a way that, putting f0 = f and f j = E( f j−1|F j) ( j = 1, . . . , N), we have

‖ f N − g‖∞ < ε. (2)

Theorems 1 and 2 are striking and should be of interest to any mathematician and particularly any analyst, not just
researchers in coherent risk theory. In addition, when properly interpreted physically, they have many counterintuitive
consequences, which should make them of interest to an even broader group of scientists. For example, they imply that, if
you have 2N balloons half of which are filled with air and the other half being flat, by merely connecting two balloons at a
time and allowing pressures to equalize, if N is large enough, you can transfer almost all the air from the full balloons to
the flat balloons.

However, the proof of Theorem 1 offered in [1] is very far from being transparent.
The purpose of this note is to give a straightforward analytic proof of Theorem 2, motivated by a simple geometric idea,

and then show that Theorem 1 is implied by Theorem 2.
We prove Theorem 2 in Section 2. The derivation of Theorem 1 from its special case is presented in Section 3.

2. Proof of Theorem 2

Idea of the proof. Replace f and g by the functions 2 f −1 and 2g −1, so that now g = − f . Both functions f and g belong
to L2([0,1)), and on that Hilbert space the operator of conditional expectation E(·|G), where G is an arbitrary σ -algebra of
Borel subsets of [0,1), is an orthogonal projection (onto the subspace of G -measurable L2 functions). We need, therefore, to
find a sequence of orthogonal projections P1, P2, . . . , P N (of a special form), such that∥∥P N P N−1 . . . P2 P1 f − (− f )

∥∥ < ε. (3)

Forget, for the moment, that the projections P j should be of a special form (operators of conditional expectation). Then
inequality (3) can be easily realized in the Euclidean plane R2: let f = (1,0) and let P j be the orthogonal projection onto
the line L j passing through the origin and the point (cos(π j/N), sin(π j/N)). Then ‖P N P N−1 . . . P2 P1 f − (− f )‖ → 0 as
N → ∞ (see Fig. 1).

The following proof mimics this two-dimensional construction in the infinite-dimensional Hilbert space L2([0,1)).

Proof of Theorem 2. We start with transforming the problem. As was suggested above, replace f and g by the functions
2 f − 1 and 2g − 1, respectively; furthermore, consider them as functions on the circle T = R/Z rather than on the inter-
val [0,1); and finally, rotate the circle T by 1/4, having as a result f = 1[−1/4,1/4) − 1[1/4,3/4) , g = − f . Inequality (2), which
is our goal, becomes∥∥ f N − (− f )

∥∥∞ < 2ε. (4)

Denote by F(α) (α ∈ T) the σ -algebra of all Borel subsets of T that are symmetric with respect to α (i.e., α + γ and
α − γ , for all γ ∈ T, either both belong or both do not belong to such a set).

Let h(x) = cos 2πk(x − δ). Then

E
(
h(x)

∣∣F(0)

) = 1 (
h(x) + h(−x)

) = cos(2πkδ) cos(2πkx). (5)

2
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Rotation by α gives, for all α,β ∈ T,

E
(
cos 2πk(x − β)

∣∣F(α)

) = cos
(
2πk(β − α)

)
cos

(
2πk(x − α)

)
. (6)

Hence, putting hk
0(x) = cos(2πkx) and hk

j = E(hk
j−1|F j,n), where

F j,n = F( j/2n), j = 1,2, . . . ,n, (7)

we obtain

hk
n(x) =

(
cos

kπ

n

)n

cos

(
2πk

(
x − 1

2

))
= (1 − γn,k)(−1)khk

0(x), (8)

where

0 < γn,k <
k2π2

2n
→ 0 as n → ∞. (9)

The function f = 1[−1/4,1/4) − 1[1/4,3/4) , as an element of L2(T), is even and consequently has a Fourier expansion of the
form

f (x) =
∑
k�0

ak cos(2πkx), (10)

which converges in L2(T). Moreover, ak = 0 if k is even. Truncation gives

f (x) =
∑

0�k�L, k odd

ak cos(2πkx) + r(x), (11)

where, for large enough L, ‖r‖ < θ (‖ · ‖ denotes the L2 norm) with arbitrarily small θ > 0.
It is convenient to introduce a linear operator Sn in L2(T): for all y ∈ L2(T) we put

y0 = y and y j = E(y j−1|F j,n), j = 1, . . . ,n; Sn y = yn. (12)

In view of (11) and (8),

(Sn f )(x) = −
∑

0�k�L, k odd

(1 − γn,k)ak cos(2πkx) + (Snr)(x). (13)

Here ‖Snr‖ � ‖r‖ < θ and γn,k → 0 as n → ∞ for each k (1 � k � L). Hence, for large enough n = n(θ), we have

∥∥Sn f − (− f )
∥∥ < 3θ. (14)

Let fn+1 = E(Sn f |G), where G = σ([−1/4,1/4)) is the σ -algebra generated by the partition of the circle T into two
intervals [−1/4,1/4) and [1/4,3/4). Then we have

∥∥ fn+1 − (− f )
∥∥ < 3θ (15)

(we used the G -measurability of f ). Since the function fn+1 − (− f ) has constant values on the intervals [−1/4,1/4) and
[1/4,3/4) and average 0 (which implies that its value on one of the intervals is the negative of the value on the other), its
L2 and L∞ norms are equal, so that

∥∥ fn+1 − (− f )
∥∥∞ < 3θ. (16)

Choosing θ = 2ε/3 and putting N = n + 1, we obtain (4). �
Remark. It can be shown that the above construction gives

‖ f N − g‖∞ = O
(
N−1/2) as N → ∞. (17)



702 A.Y. Gordon, J.E. Quinn / J. Math. Anal. Appl. 367 (2010) 699–704
3. Proof of Theorem 1

We want to extend now the above result to equidistributed functions. First we clarify something about what has been
proven above.

Denote by f j,n (0 � j � n + 1) the L∞ functions we actually dealt with in the proof of Theorem 2 (except for the
transformation ϕ(·) �→ 2ϕ(·) − 1, from which the proof started):

f0,n = f = 1(−1/4,1/4]; f j,n = E( f j−1,n|F j,n), j = 1,2, . . . ,n + 1. (18)

Let xi = −1/4 + i/2n (i = 0,1, . . . ,2n − 1); these points divide the circle T = R/Z into 2n open intervals 
i,n = (xi, xi+1),
i = 0,1, . . . ,2n − 1.

Each function f j,n (0 � j � n + 1) is constant on each open interval 
i,n. Indeed, for j = 0 and j = n + 1 this statement is
obvious, while for j = 1,2, . . . ,n it follows by induction from the recursive relation defining f j,n:

f j,n(x) = 1

2

(
f j−1,n(x) + f j−1,n

(
j

n
− x

))
. (19)

It follows now from (18) and the definition of the conditional expectation that if we remove from T a finite set Zn =
{x0, x1, . . . , x2n−1} (which removal does not change anything, since Zn is a zero measure set), then on the remaining set
T∗

n = ⊔2n−1
i=0 
i,n we have

f0,n = f ; f j,n = E( f j−1,n|G j,n), j = 1,2, . . . ,n + 1, (20)

where

G j,n = F j,n ∩ Ln (21)

and Ln is the finite σ -algebra of subsets of T∗
n generated by the intervals 
i,n . (In Eqs. (20) and (21) by the symbols f j,n

and F j,n we denote the restrictions of the corresponding objects to T∗
n; the second equality in (20) follows from the second

equality in (18) and the fact that f j,n , being F j,n- and Ln-measurable, is, consequently, G j,n-measurable.)

Therefore, the proof of Theorem 2 actually implies the following statement.

Proposition 1. For any ε > 0 there exist an integer n � 1 and n + 1 σ -algebras G j,n ⊂ Ln, j = 1,2, . . . ,n + 1, such that, if f and g
are the restrictions of the functions 1(−1/4,1/4] and 1(1/4,3/4] to T∗

n and the functions f j,n are defined by Eqs. (20), then

‖ fn+1,n − g‖∞ < ε. (22)

Remark. The finite set Zn is symmetric about the point j/2n, and so is the system of intervals 
i,n . The σ -algebra G j,n
(1 � j � n) is generated by the partition of T∗

n into the unions 
i,n ∪ 
k,n , in each of which the intervals 
i,n and 
k,n
are reflections of one another about the point j/2n, so the two intervals are either disjoint or identical. The corresponding
operator E(·|G j,n), applied to the function f j−1,n , replaces its (constant) values on each such pair of intervals by their
arithmetic average (so that in the case of a single interval the value does not change). The σ -algebra Gn+1,n is generated
by the partition of T∗

n into two sets: the union of intervals 
0, . . . ,
n−1 and the union of intervals 
n, . . . ,
2n−1; the
corresponding operator E(·|Gn+1,n), applied to the function fn,n , replaces its constant values on the intervals of each group
by their arithmetic average over the group.

The following statement is a consequence of Proposition 1.

Lemma 1. Let (Ω, F ,μ) be a nonatomic probability space; let f , g be two F -measurable functions on Ω and A, B ∈ F two disjoint
sets, such that μ(A) = μ(B) > 0 and

f |A ≡ c1, f |B ≡ c2; g|A ≡ c2, g|B ≡ c1; f (x) = g(x) if x /∈ A � B. (23)

Here c1, c2 ∈ R and c1 
= c2 . Then there exist n ∈ N and finite σ -algebras F1, . . . , Fn+1 ⊂ F , such that, denoting E(y|F j) by E j y and
putting v = En+1 En . . . E1 f − g, we have

‖v‖∞ < ε and v(x) = 0 if x /∈ A � B. (24)

Proof. It suffices to give a proof in the case, where Ω = A � B , μ(A) = μ(B) = 1/2, and c1 = 1, c2 = 0 (the necessary changes
in the general case are obvious). Choose the same n as in Proposition 1. Since the measure μ is nonatomic, Ω can be split
into 2n disjoint sets Ai ∈ F (i = 0,1, . . . ,2n − 1), so that μ(Ai) = 1/2n for all i and A = ⊔n−1

i=0 Ai , B = ⊔2n−1
i=n Ai . Use the

one-to-one correspondence Ai ↔ 
i,n to carry over the σ -algebras G j,n and the functions f j,n from T∗
n to Ω , thus obtaining
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σ -algebras F j and functions h j (that are constant on the sets Ai). Then we have h0 = 1A , h j = E jh j−1 ( j = 1,2, . . . ,n + 1),
and ‖hn+1 − 1B‖∞ < ε. �
Proof of Theorem 1. It is sufficient to prove the theorem for simple (i.e., having finitely many values) functions f and g .
(Indeed, for any δ > 0 there exist equidistributed simple functions f̂ , ĝ , such that ‖ f̂ − f ‖∞ < δ and ‖̂g − g‖∞ < δ. If
‖EN EN−1 . . . E1 f̂ − ĝ‖∞ < ε, then, since each operator E j is a contraction in L∞ , we have ‖EN EN−1 . . . E1 f − g‖∞ < ε + 2δ.)
Therefore, from now on we assume that f and g are simple functions.

Let X = {x ∈ Ω: f (x) 
= g(x)} (brief notation: X = { f 
= g}); let G and ν be the restrictions to X of the σ -algebra F and
the measure μ, respectively. We may assume that ν(X) > 0 – otherwise there is nothing to prove.

Lemma 2. Let (X, G, ν) be a nonatomic measure space (0 < ν(X) < ∞) and f , g be two equidistributed simple functions on it,
such that f (x) 
= g(x) for all x ∈ X. Then there exists an ( f , g)-chain, by which we understand a finite sequence of disjoint sets
B1, B2, . . . , Bk ∈ G (k � 2), such that

(i) ν(B1) = ν(B2) = · · · = ν(Bk) > 0;
(ii) both f and g are constant on each Bi ;

(iii) the sequence g1, . . . , gk of values of g on the sets Bi is a re-arrangement of the similar sequence f1, . . . , fk for f .

Proof. Let C be the finite set of all such a ∈ R that ν({ f = a}) > 0. Pick c1 ∈ C arbitrarily. There exists c2 (c2 
= c1), such
that the set A1 = { f = c1, g = c2} has a positive ν-measure. Since f and g are equidistributed, the set { f = c2} also has a
positive ν-measure, and the same is true for the set A2 = { f = c2, g = c3} with some c3 (c3 
= c2). Continuing in the same
manner, we will obtain a sequence of sets Ai = { f = ci, g = ci+1} ∈ G with ν(Ai) > 0 and ci+1 
= ci . At some step r for the
first time we will have cr+1 = cl , where 1 � l < r. All ci with l � i � r are distinct and, putting s = minl�i�r ν(Ai), we have
s > 0. Since the measure ν is nonatomic, there exist G -measurable sets Di ⊂ Ai (l � i � r) with ν(Di) = s; they form an
( f , g)-chain. �
Remark. Note that, in the last step of the above proof, there is a k (l � k � r) such that Dk = Ak (up to a set of ν-measure 0)
and, therefore, when the sets Di are removed from X , we have ν{ f = ck, g = ck+1} = 0 on the remaining set.

Corollary 1. Under the conditions of Lemma 2, there exist finitely many ( f , g)-chains B( j)
1 , B( j)

2 , . . . , B( j)
k j

( j = 1,2, . . . , r), so that all

the sets B( j)
i are disjoint and their union, up to a set of ν-measure 0, is X .

Proof. Put X0 = X . Using the construction just described and removing from X0 the sets that form the resulting ( f , g)-
chain, we obtain a smaller set X1 (X1 ∈ G), on which f and g are still equidistributed; so we can repeat the step, thus
obtaining a smaller set X2, etc. Due to the remark following Lemma 2, the finite set of all pairs (a,b) ∈ C × C for which
the set { f = a, g = b} ∩ Xi has a positive ν-measure strictly decreases as i grows; therefore, at some step r (r � 1) the
remaining set Xr will have ν-measure 0 and the process will terminate. �

Corollary 1 and the fact that any permutation is a product of transpositions imply that f can be transformed into g by a
finite sequence of elementary transformations each of which exchanges constant values of a simple function on two disjoint
sets having the same positive μ-measure. Denote those transformations by T1, T2, . . . , Tm and let

u0 = f ; uk = Tkuk−1 (1 � k � m), (25)

so that um = g .
By Lemma 1, for any ε > 0 and any k = 1,2, . . . ,m there exists a finite sequence of operators of conditional expectation

E(k)
j , j = 1,2, . . . , lk , such that their composition T̃k satisfies inequality

‖T̃kuk−1 − Tkuk−1‖∞ < ε. (26)

Let

ũ0 = f ; ũk = T̃kũk−1, k = 1,2, . . . ,m. (27)

Equalities (25) and (27) imply the identity

ũk − uk = T̃k (̃uk−1 − uk−1) + (T̃kuk−1 − Tkuk−1),

which, together with inequality (26) and the fact that each operator T̃k is a contraction in L∞ , implies by induction that
‖̃uk − uk‖∞ � kε for all k (0 � k � m). For k = m this gives
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‖T̃m T̃m−1 . . . T̃1 f − g‖∞ � mε; (28)

since ε > 0 is arbitrary, this completes the proof of Theorem 1. �
Remark. We want to indicate how Theorem 1 is used in [1]. Let (Ω, F , P ) be a nonatomic probability space with σ -
algebra F . A function f : L∞(Ω, F , P ) → R is dilatation monotone if for each sub-σ -algebra Λ of F and each random
variable X on Ω, f (E(X |Λ)) � f (X). It is clear that Theorem 1 implies that every continuous dilatation monotone map
f : L∞(Ω, F , P ) → R is law invariant. This is the main result in [1]. When combined with other results for risk measures,
it implies that, on a nonatomic probability space, convex risk measures are law invariant if and only if they are dilatation
monotone.

Acknowledgments

We are indebted to Stanislav Molchanov and Isaac Sonin for valuable discussions. We wish to thank the referee for valuable comments.

References

[1] A.S. Cherny, P.G. Grigoriev, Dilatation monotone risk measures are law invariant, Finance Stoch. 11 (2) (2007) 291–298, also see http://mech.math.msu.
su/cherny/dmli.pdf.

http://mech.math.msu.su/cherny/dmli.pdf
http://mech.math.msu.su/cherny/dmli.pdf

	Iterated conditional expectations
	Introduction
	Proof of Theorem 2
	Proof of Theorem 1
	Acknowledgments
	References


