Operators on the space of bounded strongly measurable functions

Marian Nowak
Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, ul. Szafrana 4A, 65-516 Zielona Góra, Poland

A R T I C L E I N F O

Article history:

Received 5 November 2010
Available online 26 October 2011
Submitted by B. Cascales

Keywords:

Strongly measurable functions
Operator-valued measures σ-Smooth operators
Weakly compact operators
Weak* sequential compactness

Abstract

Let $\mathcal{L}(X, Y)$ stand for the space of all bounded linear operators between real Banach spaces $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$, and let Σ be a σ-algebra of subsets of a non-empty set Ω. Let $\mathcal{L}^{\infty}(\Sigma, X)$ denote the Banach space of all bounded strongly Σ-measurable functions $f: \Omega \rightarrow X$ equipped with the supremum norm $\|\cdot\|$. A bounded linear operator T from $\mathcal{L}^{\infty}(\Sigma, X)$ to a Banach space Y is said to be σ-smooth if $\left\|T\left(f_{n}\right)\right\|_{Y} \rightarrow 0$ whenever $\left\|f_{n}(\omega)\right\|_{X} \rightarrow 0$ for all $\omega \in \Omega$ and $\sup _{n}\left\|f_{n}\right\|<\infty$. It is shown that if an operator measure $m: \Sigma \rightarrow \mathcal{L}(X, Y)$ is variationally semi-regular (i.e., $\widetilde{m}\left(A_{n}\right) \rightarrow 0$ as $A_{n} \downarrow \emptyset$, where $\widetilde{m}(A)$ stands for the semivariation of m on $A \in \Sigma$), then the corresponding integration operator $T_{m}: \mathcal{L}^{\infty}(\Sigma, X) \rightarrow Y$ is σ-smooth. Conversely, it is proved that every σ-smooth operator $T: \mathcal{L}^{\infty}(\Sigma, X) \rightarrow Y$ admits an integral representation with respect to its representing operator measure. We prove a Banach-Steinhaus type theorem for σ-smooth operators from $\mathcal{L}^{\infty}(\Sigma, X)$ to Y. In particular, we study the topological properties of the space $\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$ of all σ-smooth functionals on $\mathcal{L}^{\infty}(\Sigma, X)$. We prove a form of a generalized Nikodým convergence theorem and characterize relative $\sigma\left(\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}, \mathcal{L}^{\infty}(\Sigma, X)\right)$-sequential compactness in $\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$. We derive a Grothendieck type theorem for $\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$. The relationships between different classes of linear operators on $\mathcal{L}^{\infty}(\Sigma, X)$ are established.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction and terminology

Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be real Banach spaces and let B_{X} stand for the closed unit ball in X. Let X^{*} and Y^{*} stand for the Banach duals of X and Y, respectively. Denote by $\mathcal{L}(X, Y)$ the space of all bounded linear operators between Banach spaces X and Y. The weak* operator topology (briefly, W*OT) is the topology on $\mathcal{L}(X, Y)$ defined by the family of seminorms $\left\{p_{y_{*}}: y^{*} \in Y^{*}\right\}$, where $p_{y^{*}}(U):=\left\|y^{*} \circ U\right\|_{X^{*}}$ for $U \in \mathcal{L}(X, Y)$.

By $\sigma(L, K)$ and $\tau(L, K)$ we will denote the weak topology and the Mackey topology on L with respect to a dual pair $\langle L, K\rangle$. For a topological vector space (L, τ) by $(L, \tau)^{*}$ we will denote its topological dual. Let \mathbb{N} and \mathbb{R} stand for the sets of natural and real numbers.

Now we recall basic terminology concerning operator measures (see [12,5,6,18,19]). Let Σ be a σ-algebra of subsets of a non-empty set Ω. An additive mapping $m: \Sigma \rightarrow \mathcal{L}(X, Y)$ is called an operator-valued measure. We define the semivariation $\widetilde{m}(A)$ of m on $A \in \Sigma$ by $\widetilde{m}(A):=\sup \left\|\Sigma m\left(A_{i}\right)\left(x_{i}\right)\right\|_{Y}$, where the supremum is taken over all finite disjoint sequences $\left(A_{i}\right)$ in Σ with $A_{i} \subset A$ and $x_{i} \in B_{X}$ for each i. By fasv $(\Sigma, \mathcal{L}(X, Y))$ we denote the set of all finitely additive measures $m: \Sigma \rightarrow$ $\mathcal{L}(X, Y)$ with finite semivariation, i.e., $\widetilde{m}(\Omega)<\infty$.

For $y^{*} \in Y^{*}$ let $m_{y^{*}}: \Sigma \rightarrow X^{*}$ be a set function defined by $m_{y^{*}}(A)(x):=\left\langle m(A)(x), y^{*}\right\rangle$ for $x \in X$. Then $m_{y^{*}}$ is an additive measure and $\tilde{m}_{y^{*}}(A)=\left|m_{y^{*}}\right|(A)$, where $\left|m_{y^{*}}\right|(A)$ stands for the variation of $m_{y^{*}}$ on $A \in \Sigma$. Moreover, for $A \in \Sigma$ we have

[^0]\[

$$
\begin{equation*}
\widetilde{m}(A)=\sup \left\{\left|m_{y^{*}}\right|(A): y^{*} \in B_{Y^{*}}\right\} \tag{1.1}
\end{equation*}
$$

\]

(see [5, Theorem 5]). Recall that an operator measure $m: \Sigma \rightarrow \mathcal{L}(X, Y)$ is said to be countably in W* OT if for each $y^{*} \in Y^{*}$, $\left\|m_{y^{*}}\left(A_{n}\right)\right\|_{X^{*}} \rightarrow 0$ whenever $A_{n} \downarrow \emptyset$ (see [5,6, p. 92]).

Following Lewis (see $[18,19])$ a measure $m: \Sigma \rightarrow \mathcal{L}(X, Y)$ is said to be variationally semi-regular if $\widetilde{m}\left(A_{n}\right) \rightarrow 0$ whenever $A_{n} \downarrow \emptyset$ and $\left(A_{n}\right) \subset \Sigma$. (Dobrakov [13] uses the term "continuous", Swartz [25,26] uses the term "strongly bounded"). Note that $m: \Sigma \rightarrow \mathcal{L}(X, Y)$ is variationally semi-regular if and only if $\widetilde{m}(\Omega)<\infty$ and the family $\left\{\left|m_{y^{*}}\right|: y^{*} \in B_{Y^{*}}\right\}$ is uniformly countably additive, i.e., the set $\left\{\left|m_{y^{*}}\right|: y^{*} \in B_{Y^{*}}\right\}$ in $\operatorname{ca}(\Sigma)$ ($=$ the Banach space of all signed countably additive measures) is relatively weakly compact (see [10, Theorem 13, p. 92]).

Note that for a measure $v: \Sigma \rightarrow X^{*}(Y=\mathbb{R})$ we have $\widetilde{v}(A)=|v|(A)$ for $A \in \Sigma$. Hence $v \in \operatorname{fasv}\left(\Sigma, X^{*}\right)$ is variationally semi-regular if and only if $|\nu|(\Omega)<\infty$ and ν is countably additive, i.e., $\left\|\nu\left(A_{n}\right)\right\|_{X^{*}} \rightarrow 0$ whenever $A_{n} \downarrow \emptyset$ (see [11, Proposition 9, p. 3]). Let $\operatorname{bva}\left(\Sigma, X^{*}\right)$ stand for the Banach space of all vector measures $v: \Sigma \rightarrow X^{*}$ of bounded variation, equipped with the norm $\|\nu\|=|\nu|(\Omega)$. By $\operatorname{bvca}\left(\Sigma, X^{*}\right)$ we denote a linear subspace of bva $\left(\Sigma, X^{*}\right)$ consisting of all those $v \in \operatorname{bva}\left(\Sigma, X^{*}\right)$ that are countably additive. For $v \in \operatorname{bvca}\left(\Sigma, X^{*}\right)$ and $x \in X$ let $v_{x}(A)=v(A)(x)$ for $A \in \Sigma$. Then $v_{x} \in \operatorname{ca}(\Sigma)$. Note that $\operatorname{bvca}(\Sigma, \mathbb{R}))=\mathrm{ca}(\Sigma)$.

By $\mathcal{S}(\Sigma, X)$ we denote the space of all X-valued Σ-simple functions $s=\sum_{i=1}^{k}\left(\mathbb{1}_{A_{i}} \otimes x_{i}\right)$, where $\left(A_{i}\right)_{i=1}^{k}$ is a disjoint sequence in $\Sigma, x_{i} \in X$ for $1 \leqslant i \leqslant k$ and $\left(\mathbb{1}_{A_{i}} \otimes x_{i}\right)(\omega)=\mathbb{1}_{A_{i}}(\omega) x_{i}$ for $\omega \in \Omega$. A function $f: \Omega \rightarrow X$ is said to be strongly Σ-measurable if there exists a sequence (s_{n}) in $\mathcal{S}(\Sigma, X)$ such that $\left\|s_{n}(\omega)-f(\omega)\right\|_{X} \rightarrow 0$ for all $\omega \in \Omega$. It is known that if $f: \Omega \rightarrow X$ is strongly Σ-measurable, then there exists a sequence $\left(s_{n}\right)$ in $\mathcal{S}(\Sigma, X)$ such that $\left\|s_{n}(\omega)-f(\omega)\right\|_{X} \rightarrow 0$ for all $\omega \in \Omega$ and $\left\|s_{n}(\omega)\right\|_{X} \leqslant\|f(\omega)\|_{X}$ for $\omega \in \Omega$ and all $n \in \mathbb{N}$ (see [12, Theorem 1.6, p. 4]). By $\mathcal{L}^{\infty}(\Sigma, X)$ we denote the Banach space of all bounded strongly Σ-measurable functions $f: \Omega \rightarrow X$, equipped with the supremum norm $\|\cdot\|$. Let $\mathcal{L}^{\infty}(\Sigma, X)^{*}$ and $\mathcal{L}^{\infty}(\Sigma, X)^{* *}$ stand for the Banach dual and the Banach bidual of $\mathcal{L}^{\infty}(\Sigma, X)$ respectively. For $f \in \mathcal{L}^{\infty}(\Sigma, X)$ and $A \in \Sigma$ let us put

$$
\|f\|_{A}=\sup _{\omega \in A}\|f(\omega)\|_{X}
$$

Let $m \in \operatorname{fasv}(\Sigma, \mathcal{L}(X, Y))$. Then for $s=\sum_{i=1}^{k}\left(\mathbb{1}_{A_{i}} \otimes x_{i}\right) \in \mathcal{S}(\Sigma, X)$ and $A \in \Sigma$ we can define the integral by the equality

$$
\int_{A} s d m:=\sum_{i=1}^{k} m\left(A \cap A_{i}\right)\left(x_{i}\right)
$$

The integral is independent of the representation chosen and is a linear operator from $\mathcal{S}(\Sigma, X)$ to Y. Moreover, for each $s \in \mathcal{S}(\Sigma, X)$ and $A \in \Sigma$ the following inequality holds:

$$
\left\|\int_{A} s d m\right\|_{Y} \leqslant\|s\|_{A} \cdot \tilde{m}(A)
$$

Assume now that $m \in \operatorname{fasv}(\Sigma, \mathcal{L}(X, Y))$ is variationally semi-regular. Let $f \in \mathcal{L}^{\infty}(\Sigma, X)$ and $A \in \Sigma$, and choose a sequence $\left(s_{n}\right)$ in $\mathcal{S}(\Sigma, X)$ such that $\left\|\left(\mathbb{1}_{A} S_{n}\right)(\omega)-\left(\mathbb{1}_{A} f\right)(\omega)\right\|_{X} \rightarrow 0$ for $\omega \in \Omega$ and $\sup _{n}\left\|s_{n}\right\|_{A} \leqslant\|f\|_{A}$. Then

$$
\left\|\int_{A} s_{n} d m\right\|_{Y} \leqslant\|f\|_{A} \cdot \tilde{m}(A)
$$

It follows that the indefinite integrals $\int_{(\cdot)} s_{n} d m$ are uniformly countably additive measures on Σ. This means that f is m-integrable and the integral of f on a set A is defined by equality:

$$
\int_{A} f d m:=\lim _{n} \int_{A} s_{n} d m
$$

(see [13, Definition 2, p. 523 and Theorem 5, p. 524]). Dobrakov [13, Example 7', pp. 524-525] showed that the assumption of semi-regularity of m on Σ is necessary for every $f \in \mathcal{L}^{\infty}(\Sigma, X)$ to be m-integrable. Define the integration operator $T_{m}: \mathcal{L}^{\infty}(\Sigma, X) \rightarrow Y$ by

$$
T_{m}(f)=\int_{\Omega} f d m
$$

In particular, for $v \in \operatorname{bvca}\left(\Sigma, X^{*}\right)$ the integration functional Φ_{ν} on $\mathcal{L}^{\infty}(\Sigma, X)$ is given by

$$
\Phi_{\nu}(f)=\int_{\Omega} f d \nu
$$

For a bounded linear operator $T: \mathcal{L}^{\infty}(\Sigma, X) \rightarrow Y$ let $m_{T}: \Sigma \rightarrow \mathcal{L}(X, Y)$ stand for its representing measure, i.e.,

$$
m_{T}(A)(x):=T\left(\mathbb{1}_{A} \otimes x\right) \quad \text { for } A \in \Sigma \text { and } x \in X
$$

Then $\tilde{m}_{T}(\Omega) \leqslant\|T\|<\infty$, i.e., $m_{T} \in \operatorname{fasv}(\Sigma, \mathcal{L}(X, Y))$. In particular, if $\Phi \in \mathcal{L}^{\infty}(\Sigma, X)^{*}$ and $\nu_{\Phi}(A)(x)=\Phi\left(\mathbb{1}_{A} \otimes x\right)$ for $A \in \Sigma, x \in X$, then $v_{\Phi} \in \operatorname{bva}\left(\Sigma, X^{*}\right)$. Then $\left(m_{T}\right)_{y^{*}}=v_{y^{*} \circ T}$ for each $y^{*} \in Y^{*}$.

Now we introduce a new class of linear operators from $\mathcal{L}^{\infty}(\Sigma, X)$ to Y.

Definition 1.1. A bounded linear operator $T: \mathcal{L}^{\infty}(\Sigma, X) \rightarrow Y$ is said to be σ-smooth if $\left\|T\left(f_{n}\right)\right\|_{Y} \rightarrow 0$ whenever $\left\|f_{n}(\omega)\right\|_{X} \rightarrow 0$ for all $\omega \in \Omega$ and $\sup _{n}\left\|f_{n}\right\|<\infty$.

By $\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$ we will denote the space of all σ-smooth functionals on $\mathcal{L}^{\infty}(\Sigma, X)$.
Note that if $X=\mathbb{R}$ then the space $\mathcal{L}^{\infty}(\Sigma, \mathbb{R})$ coincides with the Dedekind σ-complete Banach lattice $\mathcal{L}^{\infty}(\Sigma)(=B(\Sigma))$ of all bounded Σ-measurable real functions defined on Ω, and $\mathcal{L}^{\infty}(\Sigma, \mathbb{R})_{c}^{*}$ coincides with the σ-order continuous dual $\mathcal{L}^{\infty}(\Sigma)_{c}^{*}$ of $\mathcal{L}^{\infty}(\Sigma)$ (see [2, § 13.1]).

In Section 2 we show that if $m \in \operatorname{fasv}(\Sigma, \mathcal{L}(X, Y))$ is variationally semi-regular, then the corresponding integration operator $T_{m}: \mathcal{L}^{\infty}(\Sigma, X) \rightarrow Y$ is σ-smooth. Conversely, it is shown that every σ-smooth operator $T: \mathcal{L}^{\infty}(\Sigma, X) \rightarrow Y$ admits an integral representation with respect to its representing measure. We prove a Banach-Steinhaus type theorem for σ-smooth operators $T: \mathcal{L}^{\infty}(\Sigma, X) \rightarrow Y$. In Section 3 we study the topological properties of the space $\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$. We prove a form of a generalized Nikodým convergence theorem for $\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$. As an application we characterize relatively $\sigma\left(\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}, \mathcal{L}^{\infty}(\Sigma, X)\right)$-sequentially compact subsets of $\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$. We derive a Grothendieck type theorem saying that $\sigma\left(\mathcal{L}^{\infty}(\Sigma, X)^{*}, \mathcal{L}^{\infty}(\Sigma, X)\right)$-convergent sequences in $\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$ are $\sigma\left(\mathcal{L}^{\infty}(\Sigma, X)^{*}, \mathcal{L}^{\infty}(\Sigma, X)^{* *}\right)$-convergent. In Section 4 we establish the relationships between different classes of linear operators on $\mathcal{L}^{\infty}(\Sigma, X)$.
2. σ-smooth operators on $\mathcal{L}^{\infty}(\Sigma, X)$

In this section we establish the relationships between σ-smooth operators $T: \mathcal{L}^{\infty}(\Sigma, X) \rightarrow Y$ and their representing measures $m: \Sigma \rightarrow \mathcal{L}(X, Y)$.

Assume $m \in \operatorname{fasv}(\Sigma, \mathcal{L}(X, Y))$ be variationally semi-regular, and let

$$
T_{m}(f)=\int_{\Omega} f d m \quad \text { for all } f \in \mathcal{L}^{\infty}(\Sigma, X)
$$

For every $A \in \Sigma$ let us put

$$
\left(T_{m}\right)_{A}(f)=T_{m}\left(\mathbb{1}_{A} f\right)=\int_{A} f d m
$$

and

$$
\left\|\left(T_{m}\right)_{A}\right\|=\sup \left\{\left\|\int_{A} f d m\right\|_{Y}: f \in \mathcal{L}^{\infty}(\Sigma, X) \text { and }\|f\| \leqslant 1\right\} .
$$

Then for each $y^{*} \in Y^{*}$ we have

$$
\begin{equation*}
y^{*}\left(T_{m}(f)\right)=\int_{\Omega} f d m_{y^{*}} \quad \text { for all } f \in \mathcal{L}^{\infty}(\Sigma, X) \tag{2.1}
\end{equation*}
$$

The following lemma will be useful.

Lemma 2.1. Let $m \in \operatorname{fasv}(\Sigma, \mathcal{L}(X, Y))$ be variationally semi-regular. Then for every $A \in \Sigma$ we have $\widetilde{m}(A)=\left\|\left(T_{m}\right)_{A}\right\|$.

Proof. Let $A \in \Sigma$. Then

$$
\tilde{m}(A)=\sup \left\{\left\|\int_{A} s d m\right\|_{Y}: s \in \mathcal{S}(\Sigma, X),\|s\| \leqslant 1\right\} .
$$

Hence $\widetilde{m}(A) \leqslant\left\|\left(T_{m}\right)_{A}\right\|$. Now let $f \in \mathcal{L}^{\infty}(\Sigma, X)$ with $\|f\| \leqslant 1$. Then there exists a sequence $\left(s_{n}\right)$ in $\mathcal{S}(\Sigma, X)$ such that $\left\|s_{n}(\omega)-f(\omega)\right\|_{X} \rightarrow 0$ for each $\omega \in \Omega$ and $\left\|s_{n}(\omega)\right\|_{X} \leqslant\|f(\omega)\|_{X}$ for each $\omega \in \Omega$ and $n \in \mathbb{N}$. Hence sup $n s_{n}\|\leqslant\| f \| \leqslant 1$ and $\left(T_{m}\right)_{A}(f)=\int_{A} f d m=\lim _{n} \int_{A} s_{n} d m$. Fix $\varepsilon>0$ and choose $n_{\varepsilon} \in \mathbb{N}$ such that $\left\|\int_{A} f d m-\int_{A} s_{n_{\varepsilon}} d m\right\|_{Y} \leqslant \varepsilon$. Hence

$$
\left\|\int_{A} f d m\right\|_{Y} \leqslant\left\|\int_{A} f d m-\int_{A} s_{n_{\varepsilon}} d m\right\|_{Y}+\left\|\int_{A} s_{n_{\varepsilon}} d m\right\|_{Y} \leqslant \varepsilon+\widetilde{m}(A)
$$

It follows that $\left\|\left(T_{m}\right)_{A}\right\| \leqslant \tilde{m}(A)$.
Now we are ready to prove our main results.
Proposition 2.2. Assume that $m \in \operatorname{fasv}(\Sigma, \mathcal{L}(X, Y))$ is variationally semi-regular. Then the integration operator $T_{m}: \mathcal{L}^{\infty}(\Sigma, X) \rightarrow Y$ is σ-smooth.

Proof. By Lemma 2.1 we have that $\left\|T_{m}\right\|=\widetilde{m}(\Omega)<\infty$. Since m is variationally semi-regular, in view of (1.1) the set $\left\{\left|m_{y^{*}}\right|: y^{*} \in B_{Y^{*}}\right\}$ is uniformly countably additive. Hence there exists $\mu \in \mathrm{ca}^{+}(\Sigma)$ such that the family $\left\{\left|m_{y^{*}}\right|: y^{*} \in B_{Y^{*}}\right\}$ is uniformly μ-continuous, i.e., $\tilde{m}\left(A_{n}\right) \rightarrow 0$ whenever $\mu\left(A_{n}\right) \rightarrow 0$ (see [10, Theorem 13, p. 92]).

Assume that $\left(f_{n}\right)$ is a sequence in $\mathcal{L}^{\infty}(\Sigma, X)$ such that $\left\|f_{n}(\omega)\right\|_{X} \rightarrow 0$ for all $\omega \in \Omega$ and $a=\sup _{n}\left\|f_{n}\right\|<\infty$, and let $\varepsilon>0$ be given. For $\eta=\frac{\varepsilon}{2\left\|T_{m}\right\|}>0$ and $n \in \mathbb{N}$ let us put

$$
A_{n}(\eta)=\left\{\omega \in \Omega:\left\|f_{n}(\omega)\right\|_{X} \geqslant \eta\right\} .
$$

Then $\mu\left(A_{n}(\eta)\right) \rightarrow 0$. Hence $\widetilde{m}\left(A_{n}(\eta)\right) \rightarrow 0$, and by Lemma 2.1 we have

$$
\left\|\left(T_{m}\right)_{A_{n}(\eta)}\right\|=\sup \left\{\left\|T_{m}\left(\mathbb{1}_{A_{n}(\eta)} f\right)\right\|_{Y}:\|f\| \leqslant 1\right\} \underset{n}{\longrightarrow} 0 .
$$

Hence there exists $n_{\varepsilon} \in \mathbb{N}$ such that for $n \geqslant n_{\varepsilon}$ we get

$$
\left\|T_{m}\left(\frac{1}{a} \mathbb{1}_{A_{n}(\eta)} f_{n}\right)\right\|_{Y} \leqslant \frac{\varepsilon}{2 a}, \quad \text { i.e., } \quad\left\|T_{m}\left(\mathbb{1}_{A_{n}(\eta)} f_{n}\right)\right\|_{Y} \leqslant \frac{\varepsilon}{2} .
$$

Moreover, for $n \in \mathbb{N}$ we have

$$
\left\|T_{m}\left(\mathbb{1}_{\Omega \backslash A_{n}(\eta)} f_{n}\right)\right\|_{Y} \leqslant\left\|T_{m}\right\| \cdot\left\|\mathbb{1}_{\Omega \backslash A_{n}(\eta)} f_{n}\right\| \leqslant\left\|T_{m}\right\| \cdot \eta=\frac{\varepsilon}{2} .
$$

Hence for $n \geqslant n_{\varepsilon}$ we have

$$
\left\|T_{m}\left(f_{n}\right)\right\|_{Y} \leqslant\left\|T_{m}\left(\mathbb{1}_{A_{n}(\eta)} f_{n}\right)\right\|_{Y}+\left\|T_{m}\left(\mathbb{1}_{\Omega \backslash A_{n}(\eta)} f_{n}\right)\right\|_{Y} \leqslant \varepsilon .
$$

This means that T_{m} is σ-smooth.
Proposition 2.3. Assume that $T: \mathcal{L}^{\infty}(\Sigma, X) \rightarrow Y$ is a σ-smooth operator. Then its representing measure $m_{T} \in \operatorname{fasv}(\Sigma, \mathcal{L}(X, Y))$ is variationally semi-regular and

$$
T(f)=T_{m_{T}}(f)=\int_{\Omega} f d m_{T} \quad \text { for all } f \in \mathcal{L}^{\infty}(\Sigma, X)
$$

Moreover, $\|T\|=\tilde{m}_{T}(\Omega)$.
Proof. Assume that $A_{n} \downarrow \emptyset$. Then for every $n \in \mathbb{N}$ there exist a Σ-partition $\left(A_{n, i}\right)_{i=1}^{k_{n}}$ of A_{n} and $x_{n, i} \in B_{X}, 1 \leqslant i \leqslant k_{n}$ such that

$$
\tilde{m}_{T}\left(A_{n}\right) \leqslant\left\|\sum_{i=1}^{k_{n}} m_{T}\left(A_{n, i}\right)\left(x_{n, i}\right)\right\|_{Y}+\frac{1}{n} .
$$

Let $s_{n}=\sum_{i=1}^{k_{n}}\left(\mathbb{1}_{A_{n, i}} \otimes x_{n, i}\right)$ for $n \in \mathbb{N}$. Then $\left\|s_{n}(\omega)\right\|_{X} \leqslant \mathbb{1}_{A_{n}}(\omega) \leqslant \mathbb{1}_{\Omega}(\omega)$ for $\omega \in \Omega$ and all $n \in \mathbb{N}$, and $\mathbb{1}_{A_{n}}(\omega) \downarrow 0$ for $\omega \in \Omega$. Hence $\left\|s_{n}(\omega)\right\|_{X} \rightarrow 0$ for $\omega \in \Omega$ and $\sup _{n}\left\|s_{n}\right\| \leqslant 1$. Therefore

$$
\left\|T\left(s_{n}\right)\right\|_{Y}=\left\|\sum_{i=1}^{k_{n}} m_{T}\left(A_{n, i}\right)\left(x_{n, i}\right)\right\|_{Y} \underset{n}{\longrightarrow} 0
$$

so $\widetilde{m}_{T}\left(A_{n}\right) \rightarrow 0$, as desired.
Now let $f \in \mathcal{L}^{\infty}(\Sigma, X)$. Then there exists a sequence $\left(s_{n}\right)$ in $\mathcal{S}(\Sigma, X)$ such that $\left\|s_{n}(\omega)-f(\omega)\right\|_{X} \rightarrow 0$ for $\omega \in \Omega$ and $\left\|s_{n}(\omega)\right\|_{X} \leqslant\|f(\omega)\|_{X}$ for $\omega \in \Omega$ and all $n \in \mathbb{N}$. Then $\sup _{n}\left\|s_{n}-f\right\| \leqslant 2\|f\|<\infty$. It follows that

$$
T(f)=\lim _{n} T\left(s_{n}\right)=\lim _{n} \int_{\Omega} s_{n} d m_{T}=\int_{\Omega} f d m_{T}=T_{m_{T}}(f)
$$

Remark 2.1. Note that some similar results concerning the problem of integral representation (with respect to operatorvalued measures) of some class of linear operators on the Lebesgue-Bochner space $L^{\infty}(\mu, X)$ have been established in [15].

Let $\mathcal{L}\left(\mathcal{L}^{\infty}(\Sigma, X), Y\right)$ stand for the space of all bounded linear operators from $\mathcal{L}^{\infty}(\Sigma, X)$ to Y. The topology \mathcal{T}_{s} of simple convergence is a locally convex topology on $\mathcal{L}\left(\mathcal{L}^{\infty}(\Sigma, X), Y\right)$ defined by the family of seminorms $\left\{p_{f}: f \in \mathcal{L}^{\infty}(\Sigma, X)\right\}$, where $p_{f}(T)=\|T(f)\|_{Y}$ for all $T \in \mathcal{L}\left(\mathcal{L}^{\infty}(\Sigma, X), Y\right)$. By $\mathcal{L}_{C}\left(\mathcal{L}^{\infty}(\Sigma, X), Y\right)$ we denote the set of all those $T \in \mathcal{L}\left(\mathcal{L}^{\infty}(\Sigma, X), Y\right)$ that are σ-smooth.

We will need the following Nikodým convergence type theorems (see [26, Proposition 13], [25, Proposition 11]).
Proposition 2.4. Let $m_{k} \in \operatorname{fasv}(\Sigma, \mathcal{L}(X, Y))$ be variationally semi-regular for $k \in \mathbb{N}$. Assume that $T(f)=\lim _{k} \int_{\Omega} f d m_{k}$ exists in $\left(Y,\|\cdot\|_{Y}\right)$ for each $f \in \mathcal{L}^{\infty}(\Sigma, X)$. Then $m_{T} \in \operatorname{fasv}(\Sigma, \mathcal{L}(X, Y))$ is variationally semi-regular and $\sup _{k} \widetilde{m}_{k}\left(A_{n}\right) \underset{n}{\longrightarrow} 0$ as $A_{n} \downarrow \emptyset$.
Proposition 2.5. Let $m_{k} \in \operatorname{fasv}(\Sigma, \mathcal{L}(X, Y))$ be variationally semi-regular for $k \in \mathbb{N}$ and assume that $m(A)(x):=\lim _{k} m_{k}(A)(x)$ exists for each $A \in \Sigma$ and $x \in X$. If $m \in \operatorname{fasv}(\Sigma, \mathcal{L}(X, Y))$ is variationally semi-regular and $\sup _{k} \widetilde{m}_{k}\left(A_{n}\right) \xrightarrow[n]{\longrightarrow} 0$ as $A_{n} \downarrow \emptyset$, then $\lim _{k} \int_{\Omega} f d m_{k}=\int_{\Omega} f d m$ for each $f \in \mathcal{L}^{\infty}(\Sigma, X)$.

Now we are ready to state the following Banach-Steinhaus type theorem for σ-smooth operators from $\mathcal{L}^{\infty}(\Sigma, X)$ to Y.
Theorem 2.6. Let $T_{k}: \mathcal{L}^{\infty}(\Sigma, X) \rightarrow Y$ be σ-smooth operators for $k \in \mathbb{N}$. Assume that $T(f):=\lim _{k} T_{k}(f)$ exists in $\left(Y,\|\cdot\|_{Y}\right)$ for each $f \in \mathcal{L}^{\infty}(\Sigma, X)$. Then $T: \mathcal{L}^{\infty}(\Sigma, X) \rightarrow Y$ is a σ-smooth operator and the family $\left\{T_{k}: k \in \mathbb{N}\right\}$ is uniformly σ-smooth, i.e., $\sup _{k}\left\|T_{k}\left(f_{n}\right)\right\|_{Y} \underset{n}{\longrightarrow} 0$ for any sequence $\left(f_{n}\right)$ in $\mathcal{L}^{\infty}(\Sigma, X)$ such that $\left\|f_{n}(\omega)\right\|_{Y} \rightarrow 0$ for all $\omega \in \Omega$ and $\sup _{n}\left\|f_{n}\right\|<\infty$.

Proof. Let $m_{k} \in \operatorname{fasv}(\Sigma, \mathcal{L}(X, Y))$ be the representing measures for $T_{k}, k \in \mathbb{N}$. By Proposition $2.3 m_{k} \in \operatorname{fasv}(\Sigma, \mathcal{L}(X, Y))$ are variationally semi-regular for $k \in \mathbb{N}$. Then by Proposition $2.4 m_{T} \in \operatorname{fasv}(\Sigma, \mathcal{L}(X, Y))$ is variationally semi-regular and $\sup _{k} \widetilde{m}_{k}\left(A_{n}\right) \underset{n}{\longrightarrow} 0$ as $A_{n} \downarrow \emptyset$. Since $m_{T}(A)(x)=\lim _{k} m_{k}(A)(x)$ for each $A \in \Sigma$ and $x \in X$, in view of Proposition 2.5 it follows that $\lim _{k} T_{k}(f)=\int_{\Omega} f d m_{T}$ for each $f \in \mathcal{L}^{\infty}(\Sigma, X)$. Hence $T=T_{m_{T}}$, and by Proposition $2.2 T$ is σ-smooth.

Now we shall show that the family $\left\{T_{k}: k \in \mathbb{N}\right\}$ is uniformly σ-smooth. Note first that if $A_{n} \downarrow \emptyset,\left(A_{n}\right) \subset \Sigma$, then by (1.1) we get

$$
\sup _{k} \tilde{m}_{k}\left(A_{n}\right)=\sup \left\{\left|\left(m_{k}\right)_{y^{*}}\right|\left(A_{n}\right): y^{*} \in B_{Y^{*}}, k \in \mathbb{N}\right\} \underset{n}{\longrightarrow} 0 .
$$

Moreover, since $\sup _{k} \widetilde{m}_{k}(\Omega)=\sup _{k}\left\|T_{k}\right\|=K<\infty$ (see Lemma 2.1), by (1.1) we have

$$
\sup \left\{\left|\left(m_{k}\right)_{y^{*}}\right|(\Omega): y^{*} \in B_{Y^{*}}, k \in \mathbb{N}\right\}<\infty
$$

It follows that there exists $\mu \in \mathrm{ca}^{+}(\Sigma)$ such that the family $\left\{\left|\left(m_{k}\right)_{y^{*}}\right|: y^{*} \in B_{Y^{*}}, k \in \mathbb{N}\right\}$ is uniformly μ-continuous (see [10, Theorem 13, p. 92]).

Now let $\left(f_{n}\right)$ be a sequence in $\mathcal{L}^{\infty}(\Sigma, X)$ such that $\left\|f_{n}(\omega)\right\|_{X} \rightarrow 0$ for $\omega \in \Omega$ and $a=\sup _{n}\left\|f_{n}\right\|<\infty$. Let $\varepsilon>0$ be given. For $\eta=\frac{\varepsilon}{2 \max (a, K)}>0$ and $n \in \mathbb{N}$ let us set

$$
A_{n}(\eta)=\left\{\omega \in \Omega:\left\|f_{n}(\omega)\right\|_{X}>\eta\right\}
$$

Then $\mu\left(A_{n}(\eta)\right) \underset{n}{\longrightarrow} 0$, and in view of Lemma 2.1 it follows that

$$
\sup _{k}\left\|\left(T_{k}\right)_{A_{n}(\eta)}\right\|=\sup _{k} \tilde{m}_{k}\left(A_{n}(\eta)\right)=\sup \left\{\left|\left(m_{k}\right)_{y^{*}}\right|\left(A_{n}(\eta)\right): y^{*} \in B_{Y^{*}}, k \in \mathbb{N}\right\} \underset{n}{\longrightarrow} 0 .
$$

Hence there exists $n_{\varepsilon} \in \mathbb{N}$ such that for $n \geqslant n_{\varepsilon}$,

$$
\sup _{k}\left\|T_{k}\left(\frac{1}{a} \mathbb{1}_{A_{n}(\eta)} f_{n}\right)\right\|_{Y} \leqslant \frac{\varepsilon}{2 a}
$$

i.e., for every $k \in \mathbb{N}$ and $n \geqslant n_{\varepsilon}$ we have

$$
\begin{equation*}
\left\|T_{k}\left(\mathbb{1}_{A_{n}(\eta)} f_{n}\right)\right\|_{Y} \leqslant \frac{\varepsilon}{2} \tag{1}
\end{equation*}
$$

Moreover, for every $k \in \mathbb{N}$ and $n \in \mathbb{N}$ we have

$$
\begin{equation*}
\left\|T_{k}\left(\mathbb{1}_{\Omega \backslash A_{n}(\eta)} f_{n}\right)\right\|_{Y} \leqslant\left\|T_{k}\right\| \cdot\left\|\mathbb{1}_{\Omega \backslash A_{n}(\eta)} f_{n}\right\| \leqslant K \cdot \eta \leqslant \frac{\varepsilon}{2} . \tag{2}
\end{equation*}
$$

Hence by (1) and (2) for every $k \in \mathbb{N}$ and $n \geqslant n_{\varepsilon}$ we have

$$
\left\|T_{k}\left(f_{n}\right)\right\|_{Y} \leqslant\left\|T_{k}\left(\mathbb{1}_{A_{n}(\eta)} f_{n}\right)\right\|_{Y}+\left\|T_{k}\left(\mathbb{1}_{\Omega \backslash A_{n}(\eta)} f_{n}\right)\right\|_{Y} \leqslant \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

so $\sup _{k}\left\|T_{k}\left(f_{n}\right)\right\|_{Y} \leqslant \varepsilon$ for $n \geqslant n_{\varepsilon}$. Thus the proof is complete.

Corollary 2.7. (i) $\mathcal{L}_{c}\left(\mathcal{L}^{\infty}(\Sigma, X), Y\right)$ is a \mathcal{T}_{s}-sequentially closed subspace of $\mathcal{L}\left(\mathcal{L}^{\infty}(\Sigma, X), Y\right)$.
(ii) The space $\left(\mathcal{L}_{c}\left(\mathcal{L}^{\infty}(\Sigma, X), Y\right), \mathcal{T}_{s}\right)$ is sequentially complete.

3. Topological properties of the space $\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$

In this section we study the topological properties of the space $\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$. We show that the classical theorems concerning the σ-order continuous dual $\mathcal{L}^{\infty}(\Sigma)_{c}^{*}$ of the Banach lattice $\mathcal{L}^{\infty}(\Sigma)$ (see [27,28]) continue to hold for the space $\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$.

Applying Propositions 2.2 and 2.3 to linear functionals on $\mathcal{L}^{\infty}(\Sigma, X)$ we get:
Corollary 3.1. (i) Assume that $v \in \operatorname{bvca}\left(\Sigma, X^{*}\right)$. Then the functional Φ_{v} on $\mathcal{L}^{\infty}(\Sigma, X)$ is σ-smooth, i.e., $\Phi_{v} \in \mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$, and $\left\|\Phi_{\nu}\right\|=|\nu|(\Omega)$.
(ii) Assume that $\Phi \in \mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$. Then $v_{\Phi} \in \operatorname{bvca}\left(\Sigma, X^{*}\right)$ and

$$
\Phi(f)=\Phi_{\nu_{\Phi}}(f)=\int_{\Omega} f d v_{\Phi} \quad \text { for all } f \in \mathcal{L}^{\infty}(\Sigma, X)
$$

Thus we have a dual pair $\left\langle\mathcal{L}^{\infty}(\Sigma, X), \mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}\right\rangle$ with the duality

$$
\left\langle f, \Phi_{\nu}\right\rangle=\int_{\Omega} f d v \quad \text { for all } f \in \mathcal{L}^{\infty}(\Sigma, X), v \in \operatorname{bvca}\left(\Sigma, X^{*}\right)
$$

Note that for $Y=\mathbb{R}, \mathcal{T}_{s}$ on $\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$ coincides with $\sigma\left(\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}, \mathcal{L}^{\infty}(\Sigma, X)\right)$. Hence, as a consequence of Corollary 2.7 , we get the following.

Corollary 3.2. (i) $\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$ is a sequentially closed subspace of $\left(\mathcal{L}^{\infty}(\Sigma, X)^{*}, \sigma\left(\mathcal{L}^{\infty}(\Sigma, X)^{*}, \mathcal{L}^{\infty}(\Sigma, X)\right)\right)$.
(ii) The space $\left(\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}, \sigma\left(\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}, \mathcal{L}^{\infty}(\Sigma, X)\right)\right)$ is sequentially complete.

Now we state a form of generalized Nikodým convergence theorem for bvca $\left(\Sigma, X^{*}\right)$. For a set \mathcal{M} in bvca $\left(\Sigma, X^{*}\right)$ let

$$
|\mathcal{M}|=\{|\nu|: \nu \in \mathcal{M}\} \quad \text { and } \quad \mathcal{K}_{\mathcal{M}}=\left\{\Phi_{v} \in \mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}: v \in \mathcal{M}\right\} .
$$

Theorem 3.3. Let \mathcal{M} be a relatively $\sigma\left(\operatorname{bvca}\left(\Sigma, X^{*}\right), \mathcal{L}^{\infty}(\Sigma, X)\right)$-sequentially compact set in bvca $\left(\Sigma, X^{*}\right)$. Then the following statements hold:
(a) $\sup _{\nu \in \mathcal{M}}|\nu|(\Omega)<\infty$.
(b) $|\mathcal{M}|$ is uniformly countably additive.
(c) For each set $A \in \Sigma$ the set $\{v(A): v \in \mathcal{M}\}$ is relatively $\sigma\left(X^{*}, X\right)$-sequentially compact.

Proof. (a) We will first show that \mathcal{M} is $\sigma\left(\operatorname{bvca}\left(\Sigma, X^{*}\right), \mathcal{L}^{\infty}(\Sigma, X)\right)$-bounded. Assume on the contrary that \mathcal{M} is not $\sigma\left(\operatorname{bvca}\left(\Sigma, X^{*}\right), \mathcal{L}^{\infty}(\Sigma, X)\right)$-bounded. Then there exists $f \in \mathcal{L}^{\infty}(\Sigma, X)$ such that $\sup _{\nu \in \mathcal{M}}\left|\int_{\Omega} f d \nu\right|=\infty$. Hence for each $n \in \mathbb{N}$ there exists $v_{n} \in \mathcal{M}$ such that $\left|\int_{\Omega} f d v_{n}\right| \geqslant n$. Choose a $\sigma\left(\operatorname{bvca}\left(\Sigma, X^{*}\right), \mathcal{L}^{\infty}(\Sigma, X)\right)$-Cauchy subsequence $\left(v_{k_{n}}\right)$ of $\left(v_{n}\right)$. It follows that a sequence $\left(\int_{\Omega} f d \nu_{k_{n}}\right)$ is convergent and this leads to a contradiction. Hence \mathcal{M} is $\sigma\left(\mathrm{bvca}\left(\Sigma, X^{*}\right)\right.$, $\mathcal{L}^{\infty}(\Sigma, X)$)-bounded, so $\mathcal{K}_{\mathcal{M}}$ is a $\sigma\left(\mathcal{L}^{\infty}(\Sigma, X)^{*}, \mathcal{L}^{\infty}(\Sigma, X)\right.$)-bounded subset of $\mathcal{L}^{\infty}(\Sigma, X)^{*}$. By the uniform boundedness theorem, $\sup _{v \in \mathcal{M}}|\nu|(\Omega)=\sup _{\nu \in \mathcal{M}}\left\|\Phi_{\nu}\right\|<\infty$, as desired.
(b) Assume on the contrary that (b) does not hold. Then in view of [10, Theorem 10, p. 88] and the Rosenthal lemma (see [10, Chapter 7, p. 82]) there exist a pairwise disjoint sequence $\left(A_{n}\right)$ in Σ, a positive number ε_{0} and a sequence $\left(v_{n}\right)$, in \mathcal{M} such that

$$
\begin{equation*}
\left|v_{n}\right|\left(A_{n}\right)>\varepsilon_{0} \quad \text { and } \quad\left|v_{n}\right|\left(\bigcup_{j \neq n} A_{j}\right)<\frac{1}{8} \varepsilon_{0} \quad \text { for all } n \in \mathbb{N} . \tag{1}
\end{equation*}
$$

In view of (1) for each $n \in \mathbb{N}$ there exists a finite Σ-partition $\left(A_{n, i}\right)_{i=1}^{i_{n}}$ of A_{n} such that $\sum_{i=1}^{i_{n}}\left\|\nu_{n}\left(A_{n, i}\right)\right\|_{X^{*}}>\varepsilon_{0}$. Next, for each $i=1, \ldots, i_{n}$ there exists $x_{n, i} \in B_{X}$ such that

$$
v_{n}\left(A_{n, i}\right)\left(x_{n, i}\right) \geqslant\left\|v_{n}\left(A_{n, i}\right)\right\|_{X^{*}}-\frac{1}{2^{i+1}} \varepsilon_{0}
$$

Let $s_{n}=\sum_{i=1}^{i_{n}}\left(\mathbb{1}_{A_{n, i}} \otimes x_{n, i}\right) \in \mathcal{S}(\Sigma, X)$. Then $s_{n}(\omega)=0$ for $\omega \in \Omega \backslash A_{n}$ with $\left\|s_{n}\right\| \leqslant 1$ for $n \in \mathbb{N}$ and

$$
\int_{\Omega} s_{n} d v_{n}=\sum_{i=1}^{i_{n}} v_{n}\left(A_{n, i}\right)\left(x_{n, i}\right) \geqslant \sum_{i=1}^{i_{n}}\left\|v_{n}\left(A_{n, i}\right)\right\|_{X^{*}}-\sum_{i=1}^{i_{n}} \frac{1}{2^{i+1}} \varepsilon_{0} \geqslant \frac{1}{2} \varepsilon_{0}
$$

Let ($\nu_{k_{n}}$) be any subsequence of (v_{n}), and let $f(\omega)=\sum_{n=1}^{\infty} s_{k_{2 n}}(\omega)$ for $\omega \in \Omega$. Clearly $f \in \mathcal{L}^{\infty}(\Sigma, X)$ with $\|f\| \leqslant 1$, $f(\omega)=s_{k_{2 n}}(\omega)$ for $\omega \in A_{k_{2 n}}$ and $f(\omega)=0$ for $\omega \in A_{k_{2 n+1}}$ and all $n \in \mathbb{N}$. Hence by (1) for each $n \in \mathbb{N}$ we have

$$
\begin{aligned}
\int_{\Omega} f d v_{k_{2 n}} & =\int_{A_{k_{2 n}}} f d v_{k_{2 n}}+\int_{\bigcup_{j \neq k_{2 n}} A_{j}} f d v_{k_{2 n}} \\
& \geqslant \int_{\Omega} s_{k_{2 n}} d v_{k_{2 n}}-\left|v_{k_{2 n}}\right|\left(\bigcup_{j \neq k_{2 n}} A_{j}\right) \\
& \geqslant \frac{1}{2} \varepsilon_{0}-\frac{1}{4} \varepsilon_{0}=\frac{1}{2} \varepsilon_{0} .
\end{aligned}
$$

Moreover, using (1) we get for each $n \in \mathbb{N}$,

$$
\begin{aligned}
\int_{\Omega} f d v_{k_{2 n+1}} & =\int_{\bigcup_{j=1}^{\infty} A_{k_{2 j}}} f d v_{k_{2 n+1}} \\
& \leqslant\|f\| \cdot\left|v_{k_{2 n+1}}\right|\left(\bigcup_{j=1}^{\infty} A_{k_{2 j}}\right) \\
& \leqslant\left|v_{k_{2 n+1}}\right|\left(\bigcup_{j \neq k_{2 n+1}} A_{j}\right)<\frac{1}{4} \varepsilon_{0}
\end{aligned}
$$

This means that $\left(\nu_{k_{n}}\right)$ is not a $\sigma\left(\operatorname{bvca}\left(\Sigma, X^{*}\right), \mathcal{L}^{\infty}(\Sigma, X)\right)$-Cauchy sequence because for $f \in \mathcal{L}^{\infty}(\Sigma, X)$ the limit of $\left\langle v_{k_{n}}, f\right\rangle\left(=\int_{\Omega} f d \nu_{k_{n}}\right)$ does not exist. It follows that \mathcal{M} is not a relatively $\sigma\left(\operatorname{bvca}\left(\Sigma, X^{*}\right), \mathcal{L}^{\infty}(\Sigma, X)\right)$-sequentially compact subset of $\operatorname{bvca}\left(\Sigma, X^{*}\right)$.
(c) Note that for each $A \in \Sigma$ the mapping: $\operatorname{bvca}\left(\Sigma, X^{*}\right) \ni v \mapsto \nu(A) \in X^{*}$ is $\left(\sigma\left(\operatorname{bvca}\left(\Sigma, X^{*}\right), \mathcal{L}^{\infty}(\Sigma, X)\right), \sigma\left(X^{*}, X\right)\right)-$ continuous. Hence for each $A \in \Sigma$, the set $\{\nu(A): v \in \mathcal{M}\}$ is relatively $\sigma\left(X^{*}, X\right)$-sequentially compact.

The following lemma will be useful.

Lemma 3.4. Let $\left(v_{n}\right)$ be a sequence in $\operatorname{bvca}\left(\Sigma, X^{*}\right)$ such that
(a) $\sup _{n}\left|v_{n}\right|(\Omega)<\infty$,
(b) $\left\{\left|\nu_{n}\right|: n \in \mathbb{N}\right\}$ is uniformly countably additive,
(c) for each $A \in \Sigma$ the sequence $\left(v_{n}(A)\right)$ is $\sigma\left(X^{*}, X\right)$-convergent to some element $v(A)$ of X^{*}.

Then the set function $v: \Sigma \ni A \mapsto v(A) \in X^{*}$ belongs to $\operatorname{bvca}\left(\Sigma, X^{*}\right)$ and

$$
\int_{\Omega} f d v_{n} \rightarrow \int_{\Omega} f d v \quad \text { for each } f \in \mathcal{L}^{\infty}(\Sigma, X)
$$

Proof. In view of (c) and the Nikodým convergence theorem, $v_{x} \in \operatorname{ca}(\Sigma)$ for each $x \in X$, i.e., v is countably additive in $\sigma\left(X^{*}, X\right)$. To prove that $v \in \operatorname{bvca}\left(\Sigma, X^{*}\right)$ it is enough to show that $|\nu|(\Omega)<\infty$ (see [20, Theorem 6.1.3]). Note that for each $A \in \Sigma$ we have $\|\nu(A)\|_{X^{*}} \leqslant \liminf _{n}\left\|\nu_{n}(A)\right\|_{X^{*}}$. Now let $\left(A_{i}\right)_{i=1}^{k}$ be a Σ-partition of Ω. Then by (a) we have

$$
\begin{aligned}
\sum_{i=1}^{k}\left\|v\left(A_{i}\right)\right\|_{X^{*}} & \leqslant \sum_{i=1}^{k} \liminf _{n}\left\|v_{n}\left(A_{i}\right)\right\|_{X^{*}} \\
& \leqslant \liminf _{n}\left(\sum_{i=1}^{k}\left\|v_{n}\left(A_{i}\right)\right\|_{X^{*}}\right) \\
& \leqslant \liminf _{n}\left|v_{n}\right|(\Omega) \leqslant \sup _{n}\left|v_{n}\right|(\Omega)<\infty
\end{aligned}
$$

It follows that $|\nu|(\Omega)<\infty$, i.e., $\nu \in \operatorname{bvca}\left(\Sigma, X^{*}\right)$, and in view of Proposition 2.5 the proof is complete.

In the theory of Riesz spaces the problem of weak*-compactness in the order duals of Riesz spaces has been studied by many authors (see [21,22,9,4]).

Recall that a σ-algebra Σ is said to be countably generated if there exists a countable subset of Σ that generates Σ as a σ-algebra. In particular, if Ω is a compact metric space, then any countable base for the topology of Ω generates the Borel sets as a σ-algebra. Now we are in position to characterize relatively $\sigma\left(\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}, \mathcal{L}^{\infty}(\Sigma, X)\right)$-sequentially compact subsets of $\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$ when Σ is countably generated.

Theorem 3.5. Assume that a σ-algebra Σ is countably generated and let \mathcal{M} be a subset of bvca $\left(\Sigma, X^{*}\right)$. Then the following statements are equivalent:
(i) $\left\{\Phi_{v}: v \in \mathcal{M}\right\}$ is a relatively $\sigma\left(\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}, \mathcal{L}^{\infty}(\Sigma, X)\right)$-sequentially compact subset of $\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$.
(ii) \mathcal{M} is a relatively $\sigma\left(\operatorname{bvca}\left(\Sigma, X^{*}\right), \mathcal{L}^{\infty}(\Sigma, X)\right)$-sequentially compact subset of bvca $\left(\Sigma, X^{*}\right)$.
(iii) The following conditions hold:
(a) $\sup _{v \in \mathcal{M}}|\nu|(\Omega)<\infty$.
(b) $|\mathcal{M}|$ is uniformly countably additive.
(c) For each $A \in \Sigma$ the set $\{v(A): v \in \mathcal{M}\}$ is relatively $\sigma\left(X^{*}, X\right)$-sequentially compact.

Moreover, if X^{*} has the Radon-Nikodým property, then the condition (c) is superfluous.
Proof. (i) \Longleftrightarrow (ii) See Corollary 3.1.
(ii) \Longrightarrow (iii) It follows from Theorem 3.3.
(iii) \Longrightarrow (ii) Assume that the conditions (a), (b), (c) hold. Let \mathcal{B} be a countable set in Σ that generates Σ as a σ-algebra. Then the algebra \mathcal{A} generated by \mathcal{B} is countable (see [14, Lemma 4, p. 167]).

Let $\left(v_{n}\right)$ be a sequence in \mathcal{M}. Then in view of (c) we can use a diagonal argument to select a subsequence ($\nu_{k_{n}}$) of (ν_{n}) such that for each $A \in \mathcal{A},\left(v_{k_{n}}(A)\right)$ is a $\sigma\left(X^{*}, X\right)$-Cauchy sequence, i.e., for each $A \in \mathcal{A}, \lim _{n}\left(\nu_{k_{n}}\right)_{x}(A)$ exists for each $x \in X$. Since for each $x \in X$, the family $\left\{v_{x}: v \in \mathcal{M}\right\}$ in $\mathrm{ca}(\Sigma)$ is uniformly countably additive, we conclude that for each $A \in \Sigma$, $\lim _{n}\left(v_{k_{n}}\right)_{x}(A)\left(=\lim _{n} \nu_{k_{n}}(A)(x)\right)$ exists for each $x \in X$ (see [10, Lemma, p. 91]). This means that for each $A \in \Sigma,\left(v_{k_{n}}(A)\right)$ is a $\sigma\left(X^{*}, X\right)$-Cauchy sequence. Since the space $\left(X^{*}, \sigma\left(X^{*}, X\right)\right.$) is sequentially complete, it follows that for each $A \in \Sigma$ the sequence $\left(v_{k_{n}}(A)\right)$ is $\sigma\left(X^{*}, X\right)$-convergent to some element $v(A) \in X^{*}$. By Lemma 3.4 we conclude that $v \in \operatorname{bvca}\left(\Sigma, X^{*}\right)$ and $\int_{\Omega} f d \nu_{k_{n}} \rightarrow \int_{\Omega} f d \nu$ for each $f \in \mathcal{L}^{\infty}(\Sigma, X)$.

Note that if X^{*} has the Radon-Nikodým property, then the closed unit ball in X^{*} is $\sigma\left(X^{*}, X\right)$-sequentially compact (see [16, Corollary 2]). Since $\|v(A)\|_{X^{*}} \leqslant|\nu|(A) \leqslant|\nu|$ for each $A \in \Sigma$, in view of (a) we conclude that $\{v(A): v \in \mathcal{M}\}$ is a relatively $\sigma\left(X^{*}, X\right)$-sequentially compact subset of X^{*} for each $A \in \Sigma$, i.e., (c) holds.

Remark 3.1. (i) Some related results to Theorems 3.3 and 3.5 concerning relative $\sigma\left(L^{\infty}(\mu, X)_{n}^{\sim}, L^{\infty}(\mu, X)\right)$-sequential compactness in the order continuous dual $L^{\infty}(\mu, X)_{n}^{\sim}$ of $L^{\infty}(\mu, X)$ can be found in [24, Theorem 2.3 and Corollary 3.2]. It is known that $L^{\infty}(\mu, X)_{n}^{\sim}$ can be identified through integration with the space $L^{1}\left(\mu, X^{*}, X\right)$ of the weak*-equivalence classes of all weak*-measurable functions $g: \Omega \rightarrow X^{*}$ for which $\vartheta(g) \in L^{1}(\mu)$, where $\vartheta(g)=\sup \left\{\left|g_{x}\right|: x \in B_{X}\right\}$ and the supremum is taken in $L^{0}(\mu)$ (here $g_{x}(\omega)=g(\omega)(x)$ for $x \in X$ and all $\left.\omega \in \Omega\right)$. For each $g \in L^{1}\left(\mu, X^{*}, X\right)$ one can define a vector measure $\nu_{g}: \Sigma \rightarrow X^{*}$ by setting $\nu_{g}(A)(x)=\int_{A}\langle x, g(\omega)\rangle d \mu$ for all $A \in \Sigma, x \in X$. One can show (see [24, Corollary 3.2]) that if Σ is countably generated, then a subset H of $L^{1}\left(\mu, X^{*}, X\right)$ is relatively $\sigma\left(L^{1}\left(\mu, X^{*}, X\right), L^{\infty}(\mu, X)\right)$-sequentially compact if and only if the following conditions hold:
(a) $\sup \left\{\int_{\Omega} \vartheta(g)(\omega) d \mu: g \in H\right\}<\infty$.
(b) $\{\vartheta(g): g \in H\}$ is uniformly integrable.
(c) For each $A \in \Sigma$ the set $\left\{\nu_{g}(A): g \in H\right\}$ in X^{*} is relatively $\sigma\left(X^{*}, X\right)$-sequentially compact.
(ii) Batt (see [6, Theorems 1 and 2]) found a characterization of relatively $\sigma\left(\operatorname{bvca}(\Sigma, X), \mathcal{L}^{\infty}\left(\Sigma, X^{*}\right)\right)$-sequentially compact sets in $\operatorname{bvca}(\Sigma, X)$ and a characterization of relatively $\sigma\left(L^{1}(\mu, X), L^{\infty}\left(\mu, X^{*}\right)\right)$-sequentially compact sets in $L^{1}(\mu, X)$. Moreover, some related results concerning conditional $\sigma\left(\operatorname{bvca}(\Sigma, X), L^{\infty}\left(\mu, X^{*}\right)\right)$-compactness in bvca(Σ, X) and conditional $\sigma\left(L^{1}(\mu, X), L^{\infty}\left(\mu, X^{*}\right)\right)$-compactness in $L^{1}(\mu, X)$ can be found in [1, Theorems 2.4 and 2.5]).

For a subset \mathcal{K} of $\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$ let $\mathcal{M}_{\mathcal{K}}=\left\{\nu \in \operatorname{bvca}\left(\Sigma, X^{*}\right): \Phi_{\nu} \in \mathcal{K}\right\}$.
Now we are in position to prove a vector-valued version of Theorem 1.1 of [28] and Theorem 8 of [27] when X is a reflexive Banach space.

Theorem 3.6. Assume that X is a reflexive Banach space. Then for bounded subset \mathcal{K} of $\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$ the following statements are equivalent:
(i) \mathcal{K} is relatively $\sigma\left(\mathcal{L}^{\infty}(\Sigma, X)^{*}, \mathcal{L}^{\infty}(\Sigma, X)^{* *}\right)$-compact.
(ii) \mathcal{K} is relatively $\sigma\left(\mathcal{L}^{\infty}(\Sigma, X)^{*}, \mathcal{L}^{\infty}(\Sigma, X)^{* *}\right)$-sequentially compact.
(iii) \mathcal{K} is relatively $\sigma\left(\mathcal{L}^{\infty}(\Sigma, X)^{*}, \mathcal{L}^{\infty}(\Sigma, X)\right)$-sequentially compact.
(iv) The set $\left\{|\nu|: \nu \in \mathcal{M}_{\mathcal{K}}\right\}$ in $\mathrm{ca}^{+}(\Sigma)$ is uniformly countably additive.

Proof. (i) \Longleftrightarrow (ii) It follows from the Eberlein-Šmulian theorem.
(ii) \Longrightarrow (iii) It is obvious.
(iii) \Longrightarrow (iv) Assume that \mathcal{K} is relatively $\sigma\left(\mathcal{L}^{\infty}(\Sigma, X)^{*}, \mathcal{L}^{\infty}(\Sigma, X)\right)$-sequentially compact. Since $\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$ is sequentially closed in $\left(\mathcal{L}^{\infty}(\Sigma, X)^{*}, \sigma\left(\mathcal{L}^{\infty}(\Sigma, X)^{*}, \mathcal{L}^{\infty}(\Sigma, X)\right)\right.$) (see Corollary 3.2), \mathcal{K} is a relatively $\sigma\left(\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}, \mathcal{L}^{\infty}(\Sigma, X)\right)$ sequentially compact subset of $\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$. In view of Theorem 3.3 the set $\left\{|\nu|: v \in \mathcal{M}_{\mathcal{K}}\right\}$ is uniformly countably additive.
(iv) \Longrightarrow (i) Assume that the set $\left\{|\nu|: \nu \in \mathcal{M}_{\mathcal{K}}\right\}$ in $c a^{+}(\Sigma)$ is uniformly countably additive. Then by [8, Corollary 1] $\mathcal{M}_{\mathcal{K}}$ is a relatively $\sigma\left(\operatorname{bvca}\left(\Sigma, X^{*}\right)\right.$, bvca $\left.\left(\Sigma, X^{*}\right)^{*}\right)$-compact subset of $\operatorname{bvca}\left(\Sigma, X^{*}\right)$. This means that \mathcal{K} is relatively compact set in $\left(\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}, \sigma\left(\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*},\left(\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}\right)^{*}\right)\right)$. Moreover, by Corollary 3.2 we obtain that $\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$ is a closed subset of the Banach space $\mathcal{L}^{\infty}(\Sigma, X)^{*}$. Hence $\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$ is a closed set in $\left(\mathcal{L}^{\infty}(\Sigma, X)^{*}, \sigma\left(\mathcal{L}^{\infty}(\Sigma, X)^{*}, \mathcal{L}^{\infty}(\Sigma, X)^{* *}\right)\right)$, so

$$
\operatorname{cl}_{\sigma\left(\mathcal{L}^{\infty}(\Sigma, X)^{*}, \mathcal{L}^{\infty}(\Sigma, X)^{* *}\right)} \mathcal{K} \subset \mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}
$$

Note that (see [17, Corollary 3.3.3])

$$
\begin{equation*}
\left.\sigma\left(\mathcal{L}^{\infty}(\Sigma, X)^{*}, \mathcal{L}^{\infty}(\Sigma, X)^{* *}\right)\right|_{\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}}=\sigma\left(\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*},\left(\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}\right)^{*}\right) \tag{1}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\operatorname{cl}_{\sigma\left(\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*},\left(\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}\right)^{*}\right)} \mathcal{K}=\operatorname{cl}_{\sigma\left(\mathcal{L}^{\infty}(\Sigma, X)^{*}, \mathcal{L}^{\infty}(\Sigma, X)^{* *}\right)} \mathcal{K} . \tag{2}
\end{equation*}
$$

Since $\operatorname{cl}_{\sigma\left(\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*},\left(\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}\right)^{*}\right)} \mathcal{K}$ is a $\sigma\left(\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*},\left(\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}\right)^{*}\right)$-compact subset of $\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$, in view of (1) and (2) we see that $\operatorname{cl}_{\sigma\left(\mathcal{L}^{\infty}(\Sigma, X)^{*}, \mathcal{L}^{\infty}(\Sigma, X)^{* *}\right)} \mathcal{K}$ is a $\sigma\left(\mathcal{L}^{\infty}(\Sigma, X)^{*},\left(\mathcal{L}^{\infty}(\Sigma, X)^{* *}\right)\right.$-compact subset of $\mathcal{L}^{\infty}(\Sigma, X)^{*}$, i.e., \mathcal{K} is relatively $\sigma\left(\mathcal{L}^{\infty}(\Sigma, X)^{*}, \mathcal{L}^{\infty}(\Sigma, X)^{* *}\right)$-compact, as desired.

As a consequence of Theorem 3.6 we obtain a Grothendieck type theorem saying that $\sigma\left(\mathcal{L}^{\infty}(\Sigma, X)^{*}, \mathcal{L}^{\infty}(\Sigma, X)\right)$ convergent sequences in $\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$ are also $\sigma\left(\mathcal{L}^{\infty}(\Sigma, X)^{*}, \mathcal{L}^{\infty}(\Sigma, X)^{* *}\right)$-convergent.

Corollary 3.7. Assume that X is a reflexive Banach space. Let $\Phi_{n} \in \mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$ for $n \in \mathbb{N}$ and $\Phi \in \mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$. Then the following statements are equivalent:
(i) $\Phi_{n} \rightarrow \Phi$ for $\sigma\left(\mathcal{L}^{\infty}(\Sigma, X)^{*}, \mathcal{L}^{\infty}(\Sigma, X)^{* *}\right)$.
(ii) $\Phi_{n} \rightarrow \Phi$ for $\sigma\left(\mathcal{L}^{\infty}(\Sigma, X)^{*}, \mathcal{L}^{\infty}(\Sigma, X)\right)$.

Proof. (i) \Longrightarrow (ii) It is obvious.
(ii) \Longrightarrow (i) Assume that $\Phi_{n} \rightarrow \Phi$ for $\sigma\left(\mathcal{L}^{\infty}(\Sigma, X)^{*}, \mathcal{L}^{\infty}(\Sigma, X)\right)$ and let $\left(\Phi_{k_{n}}\right)$ be a subsequence of $\left(\Phi_{n}\right)$. Then $\mathcal{K}=$ $\left\{\Phi_{k_{n}}: n \in \mathbb{N}\right\}$ is a relatively sequentially compact subset of $\left(\mathcal{L}^{\infty}(\Sigma, X)^{*}, \sigma\left(\mathcal{L}^{\infty}(\Sigma, X)^{*}, \mathcal{L}^{\infty}(\Sigma, X)\right)\right)$. By Theorem $3.6 \mathcal{K}$ is a relatively sequentially compact subset of $\left(\mathcal{L}^{\infty}(\Sigma, X)^{*}, \sigma\left(\mathcal{L}^{\infty}(\Sigma, X)^{*}, \mathcal{L}^{\infty}(\Sigma, X)^{* *}\right)\right)$, so there exists a subsequence $\left(\Phi_{l_{k n}}\right)$ of $\left(\Phi_{k_{n}}\right)$ such that $\Phi_{l_{k_{n}}} \rightarrow \Phi$ for $\sigma\left(\mathcal{L}^{\infty}(\Sigma, X)^{*}, \mathcal{L}^{\infty}(\Sigma, X)^{* *}\right)$. This means that $\Phi_{n} \rightarrow \Phi$ for $\sigma\left(\mathcal{L}^{\infty}(\Sigma, X)^{*}, \mathcal{L}^{\infty}(\Sigma, X)^{* *}\right)$, as desired.

Remark 3.2. Theorems 3.3 and 3.6 are modifications and corrections of Theorems 2.1 and 3.1 of [23], where we incorrectly considered the Banach space $B(\Sigma, X)$ of all X-valued totally Σ-measurable functions instead of the space $\mathcal{L}^{\infty}(\Sigma, X)$.

4. Relationships between operators on $\mathcal{L}^{\infty}(\Sigma, X)$

We start with the following useful result.
Proposition 4.1. For a linear operator $T: \mathcal{L}^{\infty}(\Sigma, X) \rightarrow Y$ the following statements are equivalent:
(i) $y^{*} \circ T \in \mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$ for each $y^{*} \in Y^{*}$.
(ii) T is $\left(\sigma\left(\mathcal{L}^{\infty}(\Sigma, X), \mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}\right), \sigma\left(Y, Y^{*}\right)\right)$-continuous.
(iii) T is $\left(\tau\left(\mathcal{L}^{\infty}(\Sigma, X), \mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}\right),\|\cdot\|_{Y}\right)$-continuous.

Proof. (i) \Longleftrightarrow (ii) See [3, Theorem 9.26]; (ii) \Longleftrightarrow (iii) See [3, Ex. 11, p. 149].

Note that every σ-smooth operator $T: \mathcal{L}^{\infty}(\Sigma, X) \rightarrow Y$ is $\left(\tau\left(\mathcal{L}^{\infty}(\Sigma, X), \mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}\right),\|\cdot\|_{Y}\right)$-continuous. On the other hand, since $\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*} \subset \mathcal{L}^{\infty}(\Sigma, X)^{*}$, we derive that every $\left(\tau\left(\mathcal{L}^{\infty}(\Sigma, X), \mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}\right),\|\cdot\|_{Y}\right)$-continuous linear operator $T: \mathcal{L}^{\infty}(\Sigma, X) \rightarrow Y$ is bounded.

Proposition 4.2. Let $T: \mathcal{L}^{\infty}(\Sigma, X) \rightarrow Y$ be a $\left(\tau\left(\mathcal{L}^{\infty}(\Sigma, X), \mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}\right),\|\cdot\|_{Y}\right)$-continuous linear operator. Then its representing measure $m_{T} \in \operatorname{fasv}(\Sigma, \mathcal{L}(X, Y))$ is countably additive in $\mathrm{W}^{*} \mathrm{OT}$ and for each $y^{*} \in Y^{*}$ we have

$$
\left(y^{*} \circ T\right)(f)=\int_{\Omega} f d\left(m_{T}\right)_{y^{*}} \quad \text { for all } f \in \mathcal{L}^{\infty}(\Sigma, X)
$$

Proof. Let $y^{*} \in Y^{*}$ be given. Since $y^{*} \circ T \in \mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$ (see Proposition 4.1), by Corollary 3.1 there exists $v_{y^{*}} \in \operatorname{bvca}\left(\Sigma, X^{*}\right)$ such that $\left(y^{*} \circ T\right)(f)=\int_{\Omega} f d \nu_{y^{*}}$ for all $f \in \mathcal{L}^{\infty}(\Sigma, X)$. Hence for each $A \in \Sigma, x \in X$ we have

$$
\begin{aligned}
\left(m_{T}\right)_{y^{*}}(A)(x) & =y^{*}\left(m_{T}(A)(x)\right)=y^{*}\left(T\left(\mathbb{1}_{A} \otimes x\right)\right) \\
& =\int_{\Omega}\left(\mathbb{1}_{A} \otimes x\right) d v_{y^{*}}=v_{y^{*}}(A)(x)
\end{aligned}
$$

It follows that $\left(m_{T}\right)_{y^{*}}=v_{y^{*}} \in \operatorname{bvca}\left(\Sigma, X^{*}\right)$, i.e., m_{T} is countably additive in W^{*} OT.
Now using Theorem 3.3 we are ready to establish some relationships between different classes of operators on $\mathcal{L}^{\infty}(\Sigma, X)$.

Theorem 4.3. Let $T: \mathcal{L}^{\infty}(\Sigma, X) \rightarrow Y$ be a weakly compact and $\left(\tau\left(\mathcal{L}^{\infty}(\Sigma, X), \mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}\right),\|\cdot\|_{Y}\right)$-continuous linear operator. Then T is σ-smooth.

Proof. Since the conjugate operator $T^{*}: Y^{*} \rightarrow \mathcal{L}^{\infty}(\Sigma, X)^{*}$ is weakly compact, the set $\left\{y^{*} \circ T: y^{*} \in B_{Y^{*}}\right\}$ is relatively $\sigma\left(\mathcal{L}^{\infty}(\Sigma, X)^{*}, \mathcal{L}^{\infty}(\Sigma, X)^{* *}\right)$-compact, and hence by the Eberlein-Šmulian theorem, $\left\{y^{*} \circ T: y^{*} \in B_{Y^{*}}\right\}$ is relatively $\sigma\left(\mathcal{L}^{\infty}(\Sigma, X)^{*}, \mathcal{L}^{\infty}(\Sigma, X)^{* *}\right)$-sequentially compact in $\mathcal{L}^{\infty}(\Sigma, X)^{*}$. It follows that $\left\{y^{*} \circ T: y^{*} \in B_{Y^{*}}\right\}$ is a relatively $\sigma\left(\mathcal{L}^{\infty}(\Sigma, X)^{*}, \mathcal{L}^{\infty}(\Sigma, X)\right)$-sequentially compact subset of $\mathcal{L}^{\infty}(\Sigma, X)^{*}$. Since $\left\{y^{*} \circ T: y^{*} \in B_{Y^{*}}\right\} \subset \mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$ (see Proposition 4.1) and $\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$ is a sequentially $\sigma\left(\mathcal{L}^{\infty}(\Sigma, X)^{*}, \mathcal{L}^{\infty}(\Sigma, X)\right)$-closed subset of $\mathcal{L}^{\infty}(\Sigma, X)^{*}$ (see Corollary 3.2), we derive that $\left\{y^{*} \circ T: y^{*} \in B_{Y^{*}}\right\}$ is a relatively $\sigma\left(\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}, \mathcal{L}^{\infty}(\Sigma, X)\right)$-sequentially compact subset of $\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$. But $\left\{y^{*} \circ T: y^{*} \in B_{Y^{*}}\right\}=\left\{\Phi_{\left(m_{T}\right)_{y^{*}}}: y^{*} \in B_{Y^{*}}\right\}$ (see Proposition 4.2), so by Theorem 3.3 the set $\left\{\left|\left(m_{T}\right)_{y^{*}}\right|: y^{*} \in B_{Y^{*}}\right\}$ in ca(Σ) is uniformly countably additive. This means that m_{T} is variationally semi-regular and hence $T_{m_{T}}$ is σ-smooth (see Proposition 2.2). In view of Proposition 4.2 and (2.1) for each $y^{*} \in Y^{*}$ we have

$$
y^{*}(T(f))=\int_{\Omega} f d\left(m_{T}\right)_{y^{*}}=y^{*}\left(T_{m_{T}}(f)\right) \quad \text { for all } f \in \mathcal{L}^{\infty}(\Sigma, X)
$$

It follows that $T=T_{m_{T}}$, i.e., T is σ-smooth.
Theorem 4.4. Let $T: \mathcal{L}^{\infty}(\Sigma, X) \rightarrow Y$ be a $\left(\tau\left(\mathcal{L}^{\infty}(\Sigma, X), \mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}\right)\right.$, $\left.\|\cdot\|_{Y}\right)$-continuous linear operator. Assume that either Y^{*} has the Radon-Nikodým property or Y contains no isomorphic copy of c_{0}. Then T is σ-smooth.

Proof. Assume first that Y^{*} has the Radon-Nikodým property. By Proposition $4.1 T$ is $\left(\sigma\left(\mathcal{L}^{\infty}(\Sigma, X), \mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}\right), \sigma(Y\right.$, $\left.Y^{*}\right)$)-continuous. Let $T^{*}: Y^{*} \rightarrow \mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$ stand for the conjugate operator for T. Then T^{*} is $\left(\sigma\left(Y^{*}, Y\right), \sigma\left(\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}\right.\right.$, $\mathcal{L}^{\infty}(\Sigma, X)$) -continuous (see [7, Chapter IV, §6, Proposition 1]). Since $B_{Y^{*}}$ is $\sigma\left(Y^{*}, Y\right)$-sequentially compact (see [16, Corollary 2]), we obtain that $T^{*}\left(B_{Y^{*}}\right)$ is a relatively $\sigma\left(\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}, \mathcal{L}^{\infty}(\Sigma, X)\right)$-sequentially compact subset of $\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$. Note that in view of Proposition 4.2 we have that $T^{*}\left(B_{Y^{*}}\right)=\left\{\Phi_{\left(m_{T}\right)^{*}}: y^{*} \in B_{Y^{*}}\right\}$. Hence, by Theorem 3.3 the set $\left\{\left|\left(m_{T}\right)_{y^{*}}\right|: y^{*} \in B_{Y^{*}}\right\}$ is uniformly countably additive, i.e., m_{T} is variationally semi-regular. This means that $T_{m_{T}}$ is σ-smooth (see Proposition 2.2). Now, arguing as in the proof of Theorem 4.3 we obtain that $T=T_{m_{T}}$, i.e., T is σ-smooth.

Now we assume that Y contains no isomorphic copy of c_{0}. In view of Proposition $4.2 m_{T} \in \operatorname{fasv}(\Sigma, \mathcal{L}(X, Y))$ is countably additive in W^{*} OT. Hence by [5,6, Theorem 6, Theorem 5 and Remark 7] we obtain that m_{T} is variationally semi-regular. Then by Proposition $2.2 T_{m_{T}}: \mathcal{L}^{\infty}(\Sigma, X) \rightarrow Y$ is σ-smooth. Arguing as in the proof of Theorem 4.3 we derive that $T=T_{m_{T}}$, i.e., T is σ-smooth.

Acknowledgments

The author is grateful to the referees for valuable remarks and suggestions.

References

[1] C. Abott, E. Bator, R. Bilyeu, P. Lewis, Weak precompactness, strong boundedness, and weak complete continuity, Math. Proc. Cambridge Philos. Soc. 108 (1990) 325-335.
[2] C.D. Aliprantis, K.C. Border, Infinite Dimensional Analysis, 2nd ed., Springer-Verlag, Berlin, Heidelberg, 1999.
[3] C.D. Aliprantis, O. Burkinshaw, Positive Operators, Academic Press, New York, 1995.
[4] C.D. Aliprantis, O. Burkinshaw, Locally Solid Riesz Spaces with Applications to Economics, 2nd ed., Math. Surveys Monogr., vol. 105, AMS, 2003.
[5] J. Batt, Applications of the Orlicz-Pettis to operator measures and compact and weakly compact transformations on the spaces of continuous functions, Rev. Roumaine Math. Pures Appl. 14 (7) (1969) 907-935.
[6] J. Batt, On the weak compactness in spaces of vector-valued measures and Bochner-integrable functions, in connection with the Radon-Nikodým property of Banach spaces, Rev. Roumaine Math. Pures Appl. 29 (3) (1974) 285-304.
[7] N. Bourbaki, Élements de Mathématique, Livre V, Espaces Vectoriels Topologiques, Paris, 1953-1955.
[8] J.K. Brooks, Weak compactness in the space of vector measures, Bull. Amer. Math. Soc. 78 (2) (1972) 284-287.
[9] O. Burkinshaw, Weak compactness in the order dual of vector lattices, Trans. Amer. Math. Soc. 187 (1974) 105-125.
[10] J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math., vol. 92, Springer-Verlag, 1984.
[11] J. Diestel, J.J. Uhl, Vector Measures, Math. Surveys, vol. 15, Amer. Math. Soc., Providence, RI, 1977.
[12] N. Dinculeanu, Vector Integration and Stochastic Integration in Banach Spaces, Wiley-Interscience, New York, 2000.
[13] I. Dobrakov, On integration in Banach spaces I, Czechoslovak Math. J. 20 (95) (1970) 511-536.
[14] N. Dunford, J. Schwartz, Linear Operators, Part I, Interscience, New York, 1958.
[15] K. Feledziak, M. Nowak, Integral representation of linear operators on Orlicz-Bochner spaces, Collect. Math. 61 (3) (2010) $277-290$.
[16] J. Hagler, W.B. Johnson, On Banach spaces whose dual balls are not weak* sequentially compact, Israel J. Math. 28 (4) (1977) 325-330.
[17] L.V. Kantorovitch, G.P. Akilov, Functional Analysis, Pergamon Press, Oxford-Elmsford, NY, 1982.
[18] P.W. Lewis, Some regularity conditions on vector measures with finite semi-variation, Rev. Roumaine Math. Pures Appl. 15 (1970) $375-384$.
[19] P.W. Lewis, Vector measures and topology, Rev. Roumaine Math. Pures Appl. 16 (1971) 1201-1209.
[20] Pei-Kee Lin, Köthe-Bochner Function Spaces, Birkhäuser, Boston, 2003.
[21] H. Nakano, Modulared Semi-ordered Linear Spaces, Maruzen Co., Tokyo, 1950.
[22] H. Nakano, Linear Lattices, Wayne State Univ. Press, Detroit, Michigan, 1966.
[23] M. Nowak, A Grothendieck-type theorem for the space of totally measurable functions, Indag. Math. (N.S.) 20 (1) (2009) 151-157.
[24] M. Nowak, Conditional weak compactness and weak sequential compactness in vector-valued function spaces, Indag. Math. 21 (2011) 40-51.
[25] C. Swartz, A generalized Orlicz-Pettis theorem and applications, Math. Z. 163 (1978) 283-290.
[26] C. Swartz, The Nikodým theorems for operator measures, Publ. Inst. Math. (Beograd) (N.S.) 29 (1981) 221-227.
[27] H. Schaefer, X.-D. Zhang, A variant of Grothendieck's theorem on weak* convergent sequences, Arch. Math. 65 (1995) 251-254.
[28] X.-D. Zhang, On weak compactness is spaces of measures, J. Funct. Anal. 143 (1997) 1-9.

[^0]: E-mail address: M.Nowak@wmie.uz.zgora.pl.
 0022-247X/\$ - see front matter © 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2011.10.033

