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Let L(X, Y ) stand for the space of all bounded linear operators between real Banach
spaces (X,‖ · ‖X ) and (Y ,‖ · ‖Y ), and let Σ be a σ -algebra of subsets of a non-empty
set Ω . Let L∞(Σ, X) denote the Banach space of all bounded strongly Σ-measurable func-
tions f :Ω → X equipped with the supremum norm ‖ · ‖. A bounded linear operator T
from L∞(Σ, X) to a Banach space Y is said to be σ -smooth if ‖T ( fn)‖Y → 0 whenever
‖ fn(ω)‖X → 0 for all ω ∈ Ω and supn ‖ fn‖ < ∞. It is shown that if an operator mea-
sure m :Σ → L(X, Y ) is variationally semi-regular (i.e., m̃(An) → 0 as An ↓ ∅, where m̃(A)

stands for the semivariation of m on A ∈ Σ), then the corresponding integration operator
Tm : L∞(Σ, X) → Y is σ -smooth. Conversely, it is proved that every σ -smooth operator
T : L∞(Σ, X) → Y admits an integral representation with respect to its representing op-
erator measure. We prove a Banach–Steinhaus type theorem for σ -smooth operators from
L∞(Σ, X) to Y . In particular, we study the topological properties of the space L∞(Σ, X)∗c
of all σ -smooth functionals on L∞(Σ, X). We prove a form of a generalized Nikodým
convergence theorem and characterize relative σ(L∞(Σ, X)∗c , L∞(Σ, X))-sequential com-
pactness in L∞(Σ, X)∗c . We derive a Grothendieck type theorem for L∞(Σ, X)∗c . The rela-
tionships between different classes of linear operators on L∞(Σ, X) are established.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction and terminology

Let (X,‖ · ‖X ) and (Y ,‖ · ‖Y ) be real Banach spaces and let B X stand for the closed unit ball in X . Let X∗ and Y ∗
stand for the Banach duals of X and Y , respectively. Denote by L(X, Y ) the space of all bounded linear operators between
Banach spaces X and Y . The weak∗ operator topology (briefly, W∗OT) is the topology on L(X, Y ) defined by the family of
seminorms {p y∗ : y∗ ∈ Y ∗}, where p y∗(U ) := ‖y∗ ◦ U‖X∗ for U ∈ L(X, Y ).

By σ(L, K ) and τ (L, K ) we will denote the weak topology and the Mackey topology on L with respect to a dual pair
〈L, K 〉. For a topological vector space (L, τ ) by (L, τ )∗ we will denote its topological dual. Let N and R stand for the sets of
natural and real numbers.

Now we recall basic terminology concerning operator measures (see [12,5,6,18,19]). Let Σ be a σ -algebra of subsets of a
non-empty set Ω . An additive mapping m : Σ → L(X, Y ) is called an operator-valued measure. We define the semivariation
m̃(A) of m on A ∈ Σ by m̃(A) := sup ‖Σm(Ai)(xi)‖Y , where the supremum is taken over all finite disjoint sequences (Ai)

in Σ with Ai ⊂ A and xi ∈ B X for each i. By fasv(Σ, L(X, Y )) we denote the set of all finitely additive measures m : Σ →
L(X, Y ) with finite semivariation, i.e., m̃(Ω) < ∞.

For y∗ ∈ Y ∗ let my∗ : Σ → X∗ be a set function defined by my∗(A)(x) := 〈m(A)(x), y∗〉 for x ∈ X . Then my∗ is an additive
measure and m̃y∗(A) = |my∗ |(A), where |my∗ |(A) stands for the variation of my∗ on A ∈ Σ . Moreover, for A ∈ Σ we have
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m̃(A) = sup
{|my∗ |(A): y∗ ∈ BY ∗

}
(1.1)

(see [5, Theorem 5]). Recall that an operator measure m : Σ → L(X, Y ) is said to be countably in W∗OT if for each y∗ ∈ Y ∗ ,
‖my∗(An)‖X∗ → 0 whenever An ↓ ∅ (see [5,6, p. 92]).

Following Lewis (see [18,19]) a measure m : Σ → L(X, Y ) is said to be variationally semi-regular if m̃(An) → 0 whenever
An ↓ ∅ and (An) ⊂ Σ . (Dobrakov [13] uses the term “continuous”, Swartz [25,26] uses the term “strongly bounded”). Note
that m : Σ → L(X, Y ) is variationally semi-regular if and only if m̃(Ω) < ∞ and the family {|my∗ |: y∗ ∈ BY ∗ } is uniformly
countably additive, i.e., the set {|my∗ |: y∗ ∈ BY ∗ } in ca(Σ) (= the Banach space of all signed countably additive measures)
is relatively weakly compact (see [10, Theorem 13, p. 92]).

Note that for a measure ν : Σ → X∗(Y = R) we have ν̃(A) = |ν|(A) for A ∈ Σ . Hence ν ∈ fasv(Σ, X∗) is variation-
ally semi-regular if and only if |ν|(Ω) < ∞ and ν is countably additive, i.e., ‖ν(An)‖X∗ → 0 whenever An ↓ ∅ (see [11,
Proposition 9, p. 3]). Let bva(Σ, X∗) stand for the Banach space of all vector measures ν : Σ → X∗ of bounded variation,
equipped with the norm ‖ν‖ = |ν|(Ω). By bvca(Σ, X∗) we denote a linear subspace of bva(Σ, X∗) consisting of all those
ν ∈ bva(Σ, X∗) that are countably additive. For ν ∈ bvca(Σ, X∗) and x ∈ X let νx(A) = ν(A)(x) for A ∈ Σ . Then νx ∈ ca(Σ).
Note that bvca(Σ,R)) = ca(Σ).

By S(Σ, X) we denote the space of all X-valued Σ-simple functions s = ∑k
i=1(1Ai ⊗ xi), where (Ai)

k
i=1 is a disjoint

sequence in Σ , xi ∈ X for 1 � i � k and (1Ai ⊗ xi)(ω) = 1Ai (ω)xi for ω ∈ Ω . A function f : Ω → X is said to be strongly
Σ-measurable if there exists a sequence (sn) in S(Σ, X) such that ‖sn(ω) − f (ω)‖X → 0 for all ω ∈ Ω . It is known that if
f : Ω → X is strongly Σ-measurable, then there exists a sequence (sn) in S(Σ, X) such that ‖sn(ω) − f (ω)‖X → 0 for all
ω ∈ Ω and ‖sn(ω)‖X � ‖ f (ω)‖X for ω ∈ Ω and all n ∈ N (see [12, Theorem 1.6, p. 4]). By L∞(Σ, X) we denote the Banach
space of all bounded strongly Σ-measurable functions f : Ω → X , equipped with the supremum norm ‖ · ‖. Let L∞(Σ, X)∗
and L∞(Σ, X)∗∗ stand for the Banach dual and the Banach bidual of L∞(Σ, X) respectively. For f ∈ L∞(Σ, X) and A ∈ Σ

let us put

‖ f ‖A = sup
ω∈A

∥∥ f (ω)
∥∥

X .

Let m ∈ fasv(Σ, L(X, Y )). Then for s = ∑k
i=1(1Ai ⊗ xi) ∈ S(Σ, X) and A ∈ Σ we can define the integral by the equality∫

A

s dm :=
k∑

i=1

m(A ∩ Ai)(xi).

The integral is independent of the representation chosen and is a linear operator from S(Σ, X) to Y . Moreover, for each
s ∈ S(Σ, X) and A ∈ Σ the following inequality holds:∥∥∥∥∫

A

s dm

∥∥∥∥
Y

� ‖s‖A · m̃(A).

Assume now that m ∈ fasv(Σ, L(X, Y )) is variationally semi-regular. Let f ∈ L∞(Σ, X) and A ∈ Σ , and choose a se-
quence (sn) in S(Σ, X) such that ‖(1A sn)(ω) − (1A f )(ω)‖X → 0 for ω ∈ Ω and supn ‖sn‖A � ‖ f ‖A . Then∥∥∥∥∫

A

sn dm

∥∥∥∥
Y

� ‖ f ‖A · m̃(A).

It follows that the indefinite integrals
∫
(·) sn dm are uniformly countably additive measures on Σ . This means that f is

m-integrable and the integral of f on a set A is defined by equality:∫
A

f dm := lim
n

∫
A

sn dm

(see [13, Definition 2, p. 523 and Theorem 5, p. 524]). Dobrakov [13, Example 7′ , pp. 524–525] showed that the assumption
of semi-regularity of m on Σ is necessary for every f ∈ L∞(Σ, X) to be m-integrable. Define the integration operator
Tm : L∞(Σ, X) → Y by

Tm( f ) =
∫
Ω

f dm.

In particular, for ν ∈ bvca(Σ, X∗) the integration functional Φν on L∞(Σ, X) is given by

Φν( f ) =
∫

f dν.
Ω
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For a bounded linear operator T : L∞(Σ, X) → Y let mT : Σ → L(X, Y ) stand for its representing measure, i.e.,

mT (A)(x) := T (1A ⊗ x) for A ∈ Σ and x ∈ X .

Then m̃T (Ω) � ‖T ‖ < ∞, i.e., mT ∈ fasv(Σ, L(X, Y )). In particular, if Φ ∈ L∞(Σ, X)∗ and νΦ(A)(x) = Φ(1A ⊗ x) for
A ∈ Σ , x ∈ X , then νΦ ∈ bva(Σ, X∗). Then (mT )y∗ = νy∗◦T for each y∗ ∈ Y ∗ .

Now we introduce a new class of linear operators from L∞(Σ, X) to Y .

Definition 1.1. A bounded linear operator T : L∞(Σ, X) → Y is said to be σ -smooth if ‖T ( fn)‖Y → 0 whenever
‖ fn(ω)‖X → 0 for all ω ∈ Ω and supn ‖ fn‖ < ∞.

By L∞(Σ, X)∗c we will denote the space of all σ -smooth functionals on L∞(Σ, X).
Note that if X = R then the space L∞(Σ,R) coincides with the Dedekind σ -complete Banach lattice L∞(Σ) (= B(Σ))

of all bounded Σ-measurable real functions defined on Ω , and L∞(Σ,R)∗c coincides with the σ -order continuous dual
L∞(Σ)∗c of L∞(Σ) (see [2, § 13.1]).

In Section 2 we show that if m ∈ fasv(Σ, L(X, Y )) is variationally semi-regular, then the corresponding integration
operator Tm : L∞(Σ, X) → Y is σ -smooth. Conversely, it is shown that every σ -smooth operator T : L∞(Σ, X) → Y ad-
mits an integral representation with respect to its representing measure. We prove a Banach–Steinhaus type theorem for
σ -smooth operators T : L∞(Σ, X) → Y . In Section 3 we study the topological properties of the space L∞(Σ, X)∗c . We
prove a form of a generalized Nikodým convergence theorem for L∞(Σ, X)∗c . As an application we characterize relatively
σ(L∞(Σ, X)∗c , L∞(Σ, X))-sequentially compact subsets of L∞(Σ, X)∗c . We derive a Grothendieck type theorem saying that
σ(L∞(Σ, X)∗, L∞(Σ, X))-convergent sequences in L∞(Σ, X)∗c are σ(L∞(Σ, X)∗ , L∞(Σ, X)∗∗)-convergent. In Section 4
we establish the relationships between different classes of linear operators on L∞(Σ, X).

2. σ -smooth operators on L∞(Σ, X)

In this section we establish the relationships between σ -smooth operators T : L∞(Σ, X) → Y and their representing
measures m : Σ → L(X, Y ).

Assume m ∈ fasv(Σ, L(X, Y )) be variationally semi-regular, and let

Tm( f ) =
∫
Ω

f dm for all f ∈ L∞(Σ, X).

For every A ∈ Σ let us put

(Tm)A( f ) = Tm(1A f ) =
∫
A

f dm,

and ∥∥(Tm)A
∥∥ = sup

{∥∥∥∥∫
A

f dm

∥∥∥∥
Y
: f ∈ L∞(Σ, X) and ‖ f ‖ � 1

}
.

Then for each y∗ ∈ Y ∗ we have

y∗(Tm( f )
) =

∫
Ω

f dmy∗ for all f ∈ L∞(Σ, X). (2.1)

The following lemma will be useful.

Lemma 2.1. Let m ∈ fasv(Σ, L(X, Y )) be variationally semi-regular. Then for every A ∈ Σ we have m̃(A) = ‖(Tm)A‖.

Proof. Let A ∈ Σ . Then

m̃(A) = sup

{∥∥∥∥∫
A

s dm

∥∥∥∥
Y
: s ∈ S(Σ, X), ‖s‖ � 1

}
.

Hence m̃(A) � ‖(Tm)A‖. Now let f ∈ L∞(Σ, X) with ‖ f ‖ � 1. Then there exists a sequence (sn) in S(Σ, X) such that
‖sn(ω) − f (ω)‖X → 0 for each ω ∈ Ω and ‖sn(ω)‖X � ‖ f (ω)‖X for each ω ∈ Ω and n ∈ N. Hence supn ‖sn‖ � ‖ f ‖ � 1 and
(Tm)A( f ) = ∫

f dm = limn
∫

sn dm. Fix ε > 0 and choose nε ∈ N such that ‖ ∫
f dm − ∫

snε dm‖Y � ε. Hence
A A A A
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∥∥∥∥∫
A

f dm

∥∥∥∥
Y

�
∥∥∥∥∫

A

f dm −
∫
A

snε dm

∥∥∥∥
Y

+
∥∥∥∥∫

A

snε dm

∥∥∥∥
Y

� ε + m̃(A).

It follows that ‖(Tm)A‖ � m̃(A). �
Now we are ready to prove our main results.

Proposition 2.2. Assume that m ∈ fasv(Σ, L(X, Y )) is variationally semi-regular. Then the integration operator Tm : L∞(Σ, X) → Y
is σ -smooth.

Proof. By Lemma 2.1 we have that ‖Tm‖ = m̃(Ω) < ∞. Since m is variationally semi-regular, in view of (1.1) the set
{|my∗ |: y∗ ∈ BY ∗ } is uniformly countably additive. Hence there exists μ ∈ ca+(Σ) such that the family {|my∗ |: y∗ ∈ BY ∗ }
is uniformly μ-continuous, i.e., m̃(An) → 0 whenever μ(An) → 0 (see [10, Theorem 13, p. 92]).

Assume that ( fn) is a sequence in L∞(Σ, X) such that ‖ fn(ω)‖X → 0 for all ω ∈ Ω and a = supn ‖ fn‖ < ∞, and let
ε > 0 be given. For η = ε

2‖Tm‖ > 0 and n ∈ N let us put

An(η) = {
ω ∈ Ω: ∥∥ fn(ω)

∥∥
X � η

}
.

Then μ(An(η)) → 0. Hence m̃(An(η)) → 0, and by Lemma 2.1 we have∥∥(Tm)An(η)

∥∥ = sup
{∥∥Tm(1An(η) f )

∥∥
Y : ‖ f ‖ � 1

}−→
n

0.

Hence there exists nε ∈ N such that for n � nε we get∥∥∥∥Tm

(
1

a
1An(η) fn

)∥∥∥∥
Y

� ε

2a
, i.e.,

∥∥Tm(1An(η) fn)
∥∥

Y � ε

2
.

Moreover, for n ∈ N we have∥∥Tm(1Ω�An(η) fn)
∥∥

Y � ‖Tm‖ · ‖1Ω�An(η) fn‖ � ‖Tm‖ · η = ε

2
.

Hence for n � nε we have∥∥Tm( fn)
∥∥

Y �
∥∥Tm(1An(η) fn)

∥∥
Y + ∥∥Tm(1Ω�An(η) fn)

∥∥
Y � ε.

This means that Tm is σ -smooth. �
Proposition 2.3. Assume that T : L∞(Σ, X) → Y is a σ -smooth operator. Then its representing measure mT ∈ fasv(Σ, L(X, Y )) is
variationally semi-regular and

T ( f ) = TmT ( f ) =
∫
Ω

f dmT for all f ∈ L∞(Σ, X).

Moreover, ‖T ‖ = m̃T (Ω).

Proof. Assume that An ↓ ∅. Then for every n ∈ N there exist a Σ-partition (An,i)
kn
i=1 of An and xn,i ∈ B X , 1 � i � kn such

that

m̃T (An) �
∥∥∥∥∥

kn∑
i=1

mT (An,i)(xn,i)

∥∥∥∥∥
Y

+ 1

n
.

Let sn = ∑kn
i=1(1An,i ⊗ xn,i) for n ∈ N. Then ‖sn(ω)‖X � 1An (ω) � 1Ω(ω) for ω ∈ Ω and all n ∈ N, and 1An (ω) ↓ 0 for

ω ∈ Ω . Hence ‖sn(ω)‖X → 0 for ω ∈ Ω and supn ‖sn‖ � 1. Therefore

∥∥T (sn)
∥∥

Y =
∥∥∥∥∥

kn∑
i=1

mT (An,i)(xn,i)

∥∥∥∥∥
Y

−→
n

0,

so m̃T (An) → 0, as desired.
Now let f ∈ L∞(Σ, X). Then there exists a sequence (sn) in S(Σ, X) such that ‖sn(ω) − f (ω)‖X → 0 for ω ∈ Ω and

‖sn(ω)‖X � ‖ f (ω)‖X for ω ∈ Ω and all n ∈ N. Then supn ‖sn − f ‖ � 2‖ f ‖ < ∞. It follows that

T ( f ) = lim
n

T (sn) = lim
n

∫
Ω

sn dmT =
∫
Ω

f dmT = TmT ( f ). �
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Remark 2.1. Note that some similar results concerning the problem of integral representation (with respect to operator-
valued measures) of some class of linear operators on the Lebesgue–Bochner space L∞(μ, X) have been established in [15].

Let L(L∞(Σ, X), Y ) stand for the space of all bounded linear operators from L∞(Σ, X) to Y . The topology Ts of simple
convergence is a locally convex topology on L(L∞(Σ, X), Y ) defined by the family of seminorms {p f : f ∈ L∞(Σ, X)}, where
p f (T ) = ‖T ( f )‖Y for all T ∈ L(L∞(Σ, X), Y ). By Lc(L∞(Σ, X), Y ) we denote the set of all those T ∈ L(L∞(Σ, X), Y ) that
are σ -smooth.

We will need the following Nikodým convergence type theorems (see [26, Proposition 13], [25, Proposition 11]).

Proposition 2.4. Let mk ∈ fasv(Σ, L(X, Y )) be variationally semi-regular for k ∈ N. Assume that T ( f ) = limk
∫
Ω

f dmk exists in
(Y ,‖ · ‖Y ) for each f ∈ L∞(Σ, X). Then mT ∈ fasv(Σ, L(X, Y )) is variationally semi-regular and supk m̃k(An)−→

n
0 as An ↓ ∅.

Proposition 2.5. Let mk ∈ fasv(Σ, L(X, Y )) be variationally semi-regular for k ∈ N and assume that m(A)(x) := limk mk(A)(x)
exists for each A ∈ Σ and x ∈ X. If m ∈ fasv(Σ, L(X, Y )) is variationally semi-regular and supk m̃k(An)−→

n
0 as An ↓ ∅, then

limk
∫
Ω

f dmk = ∫
Ω

f dm for each f ∈ L∞(Σ, X).

Now we are ready to state the following Banach–Steinhaus type theorem for σ -smooth operators from L∞(Σ, X) to Y .

Theorem 2.6. Let Tk : L∞(Σ, X) → Y be σ -smooth operators for k ∈ N. Assume that T ( f ) := limk Tk( f ) exists in (Y ,‖ · ‖Y )

for each f ∈ L∞(Σ, X). Then T : L∞(Σ, X) → Y is a σ -smooth operator and the family {Tk: k ∈ N} is uniformly σ -smooth, i.e.,
supk ‖Tk( fn)‖Y −→

n
0 for any sequence ( fn) in L∞(Σ, X) such that ‖ fn(ω)‖Y → 0 for all ω ∈ Ω and supn ‖ fn‖ < ∞.

Proof. Let mk ∈ fasv(Σ, L(X, Y )) be the representing measures for Tk , k ∈ N. By Proposition 2.3 mk ∈ fasv(Σ, L(X, Y ))

are variationally semi-regular for k ∈ N. Then by Proposition 2.4 mT ∈ fasv(Σ, L(X, Y )) is variationally semi-regular and
supk m̃k(An)−→

n
0 as An ↓ ∅. Since mT (A)(x) = limk mk(A)(x) for each A ∈ Σ and x ∈ X , in view of Proposition 2.5 it follows

that limk Tk( f ) = ∫
Ω

f dmT for each f ∈ L∞(Σ, X). Hence T = TmT , and by Proposition 2.2 T is σ -smooth.
Now we shall show that the family {Tk: k ∈ N} is uniformly σ -smooth. Note first that if An ↓ ∅, (An) ⊂ Σ , then by (1.1)

we get

sup
k

m̃k(An) = sup
{∣∣(mk)y∗

∣∣(An): y∗ ∈ BY ∗ , k ∈ N
}−→

n
0.

Moreover, since supk m̃k(Ω) = supk ‖Tk‖ = K < ∞ (see Lemma 2.1), by (1.1) we have

sup
{∣∣(mk)y∗

∣∣(Ω): y∗ ∈ BY ∗ , k ∈ N
}

< ∞.

It follows that there exists μ ∈ ca+(Σ) such that the family {|(mk)y∗ |: y∗ ∈ BY ∗ , k ∈ N} is uniformly μ-continuous (see
[10, Theorem 13, p. 92]).

Now let ( fn) be a sequence in L∞(Σ, X) such that ‖ fn(ω)‖X → 0 for ω ∈ Ω and a = supn ‖ fn‖ < ∞. Let ε > 0 be given.
For η = ε

2 max(a,K )
> 0 and n ∈ N let us set

An(η) = {
ω ∈ Ω: ∥∥ fn(ω)

∥∥
X > η

}
.

Then μ(An(η))−→
n

0, and in view of Lemma 2.1 it follows that

sup
k

∥∥(Tk)An(η)

∥∥ = sup
k

m̃k
(

An(η)
) = sup

{∣∣(mk)y∗
∣∣(An(η)

): y∗ ∈ BY ∗ , k ∈ N
}−→

n
0.

Hence there exists nε ∈ N such that for n � nε ,

sup
k

∥∥∥∥Tk

(
1

a
1An(η) fn

)∥∥∥∥
Y

� ε

2a
,

i.e., for every k ∈ N and n � nε we have∥∥Tk(1An(η) fn)
∥∥

Y � ε

2
. (1)

Moreover, for every k ∈ N and n ∈ N we have∥∥Tk(1Ω�An(η) fn)
∥∥

Y � ‖Tk‖ · ‖1Ω�An(η) fn‖ � K · η � ε

2
. (2)

Hence by (1) and (2) for every k ∈ N and n � nε we have∥∥Tk( fn)
∥∥

Y �
∥∥Tk(1An(η) fn)

∥∥
Y + ∥∥Tk(1Ω�An(η) fn)

∥∥
Y � ε

2
+ ε

2
= ε,

so supk ‖Tk( fn)‖Y � ε for n � nε . Thus the proof is complete. �
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Corollary 2.7. (i) Lc(L∞(Σ, X), Y ) is a Ts-sequentially closed subspace of L(L∞(Σ, X), Y ).
(ii) The space (Lc(L∞(Σ, X), Y ), Ts) is sequentially complete.

3. Topological properties of the space L∞(Σ, X)∗c

In this section we study the topological properties of the space L∞(Σ, X)∗c . We show that the classical theorems con-
cerning the σ -order continuous dual L∞(Σ)∗c of the Banach lattice L∞(Σ) (see [27,28]) continue to hold for the space
L∞(Σ, X)∗c .

Applying Propositions 2.2 and 2.3 to linear functionals on L∞(Σ, X) we get:

Corollary 3.1. (i) Assume that ν ∈ bvca(Σ, X∗). Then the functional Φν on L∞(Σ, X) is σ -smooth, i.e., Φν ∈ L∞(Σ, X)∗c , and
‖Φν‖ = |ν|(Ω).

(ii) Assume that Φ ∈ L∞(Σ, X)∗c . Then νΦ ∈ bvca(Σ, X∗) and

Φ( f ) = ΦνΦ ( f ) =
∫
Ω

f dνΦ for all f ∈ L∞(Σ, X).

Thus we have a dual pair 〈L∞(Σ, X), L∞(Σ, X)∗c 〉 with the duality

〈 f ,Φν〉 =
∫
Ω

f dν for all f ∈ L∞(Σ, X), ν ∈ bvca
(
Σ, X∗).

Note that for Y = R, Ts on L∞(Σ, X)∗c coincides with σ(L∞(Σ, X)∗c , L∞(Σ, X)). Hence, as a consequence of Corol-
lary 2.7, we get the following.

Corollary 3.2. (i) L∞(Σ, X)∗c is a sequentially closed subspace of (L∞(Σ, X)∗ , σ(L∞(Σ, X)∗, L∞(Σ, X))).
(ii) The space (L∞(Σ, X)∗c , σ(L∞(Σ, X)∗c , L∞(Σ, X))) is sequentially complete.

Now we state a form of generalized Nikodým convergence theorem for bvca(Σ, X∗). For a set M in bvca(Σ, X∗) let

|M| = {|ν|: ν ∈ M
}

and K M = {
Φν ∈ L∞(Σ, X)∗c : ν ∈ M

}
.

Theorem 3.3. Let M be a relatively σ(bvca(Σ, X∗), L∞(Σ, X))-sequentially compact set in bvca(Σ, X∗). Then the following state-
ments hold:

(a) supν∈M |ν|(Ω) < ∞.
(b) |M| is uniformly countably additive.
(c) For each set A ∈ Σ the set {ν(A): ν ∈ M} is relatively σ(X∗, X)-sequentially compact.

Proof. (a) We will first show that M is σ(bvca(Σ, X∗), L∞(Σ, X))-bounded. Assume on the contrary that M is not
σ(bvca(Σ, X∗), L∞(Σ, X))-bounded. Then there exists f ∈ L∞(Σ, X) such that supν∈M | ∫

Ω
f dν| = ∞. Hence for each

n ∈ N there exists νn ∈ M such that | ∫
Ω

f dνn| � n. Choose a σ(bvca(Σ, X∗), L∞(Σ, X))-Cauchy subsequence (νkn ) of
(νn). It follows that a sequence (

∫
Ω

f dνkn ) is convergent and this leads to a contradiction. Hence M is σ(bvca(Σ, X∗),
L∞(Σ, X))-bounded, so K M is a σ(L∞(Σ, X)∗ , L∞(Σ, X))-bounded subset of L∞(Σ, X)∗ . By the uniform boundedness
theorem, supν∈M |ν|(Ω) = supν∈M ‖Φν‖ < ∞, as desired.

(b) Assume on the contrary that (b) does not hold. Then in view of [10, Theorem 10, p. 88] and the Rosenthal lemma
(see [10, Chapter 7, p. 82]) there exist a pairwise disjoint sequence (An) in Σ , a positive number ε0 and a sequence (νn),
in M such that

|νn|(An) > ε0 and |νn|
(⋃

j �=n

A j

)
<

1

8
ε0 for all n ∈ N. (1)

In view of (1) for each n ∈ N there exists a finite Σ-partition (An,i)
in
i=1 of An such that

∑in
i=1 ‖νn(An,i)‖X∗ > ε0. Next, for

each i = 1, . . . , in there exists xn,i ∈ B X such that

νn(An,i)(xn,i) �
∥∥νn(An,i)

∥∥
X∗ − 1

2i+1
ε0.

Let sn = ∑in (1An,i ⊗ xn,i) ∈ S(Σ, X). Then sn(ω) = 0 for ω ∈ Ω � An with ‖sn‖ � 1 for n ∈ N and
i=1
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∫
Ω

sn dνn =
in∑

i=1

νn(An,i)(xn,i) �
in∑

i=1

∥∥νn(An,i)
∥∥

X∗ −
in∑

i=1

1

2i+1
ε0 � 1

2
ε0.

Let (νkn ) be any subsequence of (νn), and let f (ω) = ∑∞
n=1 sk2n (ω) for ω ∈ Ω . Clearly f ∈ L∞(Σ, X) with ‖ f ‖ � 1,

f (ω) = sk2n (ω) for ω ∈ Ak2n and f (ω) = 0 for ω ∈ Ak2n+1 and all n ∈ N. Hence by (1) for each n ∈ N we have∫
Ω

f dνk2n =
∫

Ak2n

f dνk2n +
∫

⋃
j �=k2n

A j

f dνk2n

�
∫
Ω

sk2n dνk2n − |νk2n |
( ⋃

j �=k2n

A j

)

� 1

2
ε0 − 1

4
ε0 = 1

2
ε0.

Moreover, using (1) we get for each n ∈ N,∫
Ω

f dνk2n+1 =
∫

⋃∞
j=1 Ak2 j

f dνk2n+1

� ‖ f ‖ · |νk2n+1 |
( ∞⋃

j=1

Ak2 j

)

� |νk2n+1 |
( ⋃

j �=k2n+1

A j

)
<

1

4
ε0.

This means that (νkn ) is not a σ(bvca(Σ, X∗), L∞(Σ, X))-Cauchy sequence because for f ∈ L∞(Σ, X) the limit of
〈νkn , f 〉 (= ∫

Ω
f dνkn ) does not exist. It follows that M is not a relatively σ(bvca(Σ, X∗), L∞(Σ, X))-sequentially com-

pact subset of bvca(Σ, X∗).
(c) Note that for each A ∈ Σ the mapping: bvca(Σ, X∗) � ν �→ ν(A) ∈ X∗ is (σ (bvca(Σ, X∗), L∞(Σ, X)), σ(X∗, X))-

continuous. Hence for each A ∈ Σ , the set {ν(A): ν ∈ M} is relatively σ(X∗, X)-sequentially compact. �
The following lemma will be useful.

Lemma 3.4. Let (νn) be a sequence in bvca(Σ, X∗) such that

(a) supn |νn|(Ω) < ∞,
(b) {|νn|: n ∈ N} is uniformly countably additive,
(c) for each A ∈ Σ the sequence (νn(A)) is σ(X∗, X)-convergent to some element ν(A) of X∗ .

Then the set function ν : Σ � A �→ ν(A) ∈ X∗ belongs to bvca(Σ, X∗) and∫
Ω

f dνn →
∫
Ω

f dν for each f ∈ L∞(Σ, X).

Proof. In view of (c) and the Nikodým convergence theorem, νx ∈ ca(Σ) for each x ∈ X , i.e., ν is countably additive in
σ(X∗, X). To prove that ν ∈ bvca(Σ, X∗) it is enough to show that |ν|(Ω) < ∞ (see [20, Theorem 6.1.3]). Note that for each
A ∈ Σ we have ‖ν(A)‖X∗ � lim infn ‖νn(A)‖X∗ . Now let (Ai)

k
i=1 be a Σ-partition of Ω . Then by (a) we have

k∑
i=1

∥∥ν(Ai)
∥∥

X∗ �
k∑

i=1

lim inf
n

∥∥νn(Ai)
∥∥

X∗

� lim inf
n

(
k∑

i=1

∥∥νn(Ai)
∥∥

X∗

)
� lim inf

n
|νn|(Ω) � sup

n
|νn|(Ω) < ∞.

It follows that |ν|(Ω) < ∞, i.e., ν ∈ bvca(Σ, X∗), and in view of Proposition 2.5 the proof is complete. �
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In the theory of Riesz spaces the problem of weak∗-compactness in the order duals of Riesz spaces has been studied by
many authors (see [21,22,9,4]).

Recall that a σ -algebra Σ is said to be countably generated if there exists a countable subset of Σ that generates Σ

as a σ -algebra. In particular, if Ω is a compact metric space, then any countable base for the topology of Ω generates the
Borel sets as a σ -algebra. Now we are in position to characterize relatively σ(L∞(Σ, X)∗c , L∞(Σ, X))-sequentially compact
subsets of L∞(Σ, X)∗c when Σ is countably generated.

Theorem 3.5. Assume that a σ -algebra Σ is countably generated and let M be a subset of bvca(Σ, X∗). Then the following statements
are equivalent:

(i) {Φν : ν ∈ M} is a relatively σ(L∞(Σ, X)∗c , L∞(Σ, X))-sequentially compact subset of L∞(Σ, X)∗c .
(ii) M is a relatively σ(bvca(Σ, X∗), L∞(Σ, X))-sequentially compact subset of bvca(Σ, X∗).

(iii) The following conditions hold:
(a) supν∈M |ν|(Ω) < ∞.
(b) |M| is uniformly countably additive.
(c) For each A ∈ Σ the set {ν(A): ν ∈ M} is relatively σ(X∗, X)-sequentially compact.
Moreover, if X∗ has the Radon–Nikodým property, then the condition (c) is superfluous.

Proof. (i) ⇐⇒ (ii) See Corollary 3.1.
(ii) �⇒ (iii) It follows from Theorem 3.3.
(iii) �⇒ (ii) Assume that the conditions (a), (b), (c) hold. Let B be a countable set in Σ that generates Σ as a σ -algebra.

Then the algebra A generated by B is countable (see [14, Lemma 4, p. 167]).
Let (νn) be a sequence in M. Then in view of (c) we can use a diagonal argument to select a subsequence (νkn ) of (νn)

such that for each A ∈ A, (νkn (A)) is a σ(X∗, X)-Cauchy sequence, i.e., for each A ∈ A, limn(νkn )x(A) exists for each x ∈ X .
Since for each x ∈ X , the family {νx: ν ∈ M} in ca(Σ) is uniformly countably additive, we conclude that for each A ∈ Σ ,
limn(νkn )x(A) (= limn νkn (A)(x)) exists for each x ∈ X (see [10, Lemma, p. 91]). This means that for each A ∈ Σ , (νkn (A))

is a σ(X∗, X)-Cauchy sequence. Since the space (X∗, σ (X∗, X)) is sequentially complete, it follows that for each A ∈ Σ the
sequence (νkn (A)) is σ(X∗, X)-convergent to some element ν(A) ∈ X∗ . By Lemma 3.4 we conclude that ν ∈ bvca(Σ, X∗)
and

∫
Ω

f dνkn → ∫
Ω

f dν for each f ∈ L∞(Σ, X).
Note that if X∗ has the Radon–Nikodým property, then the closed unit ball in X∗ is σ(X∗, X)-sequentially compact

(see [16, Corollary 2]). Since ‖ν(A)‖X∗ � |ν|(A) � |ν| for each A ∈ Σ , in view of (a) we conclude that {ν(A): ν ∈ M} is a
relatively σ(X∗, X)-sequentially compact subset of X∗ for each A ∈ Σ , i.e., (c) holds. �
Remark 3.1. (i) Some related results to Theorems 3.3 and 3.5 concerning relative σ(L∞(μ, X)∼n , L∞(μ, X))-sequential com-
pactness in the order continuous dual L∞(μ, X)∼n of L∞(μ, X) can be found in [24, Theorem 2.3 and Corollary 3.2]. It is
known that L∞(μ, X)∼n can be identified through integration with the space L1(μ, X∗, X) of the weak∗-equivalence classes
of all weak∗-measurable functions g : Ω → X∗ for which ϑ(g) ∈ L1(μ), where ϑ(g) = sup{|gx|: x ∈ B X } and the supremum
is taken in L0(μ) (here gx(ω) = g(ω)(x) for x ∈ X and all ω ∈ Ω). For each g ∈ L1(μ, X∗, X) one can define a vector measure
νg : Σ → X∗ by setting νg(A)(x) = ∫

A〈x, g(ω)〉dμ for all A ∈ Σ , x ∈ X . One can show (see [24, Corollary 3.2]) that if Σ is
countably generated, then a subset H of L1(μ, X∗, X) is relatively σ(L1(μ, X∗, X), L∞(μ, X))-sequentially compact if and
only if the following conditions hold:

(a) sup{∫
Ω

ϑ(g)(ω)dμ: g ∈ H} < ∞.

(b) {ϑ(g): g ∈ H} is uniformly integrable.
(c) For each A ∈ Σ the set {νg(A): g ∈ H} in X∗ is relatively σ(X∗, X)-sequentially compact.

(ii) Batt (see [6, Theorems 1 and 2]) found a characterization of relatively σ(bvca(Σ, X), L∞(Σ, X∗))-sequentially com-
pact sets in bvca(Σ, X) and a characterization of relatively σ(L1(μ, X), L∞(μ, X∗))-sequentially compact sets in L1(μ, X).
Moreover, some related results concerning conditional σ(bvca(Σ, X), L∞(μ, X∗))-compactness in bvca(Σ, X) and condi-
tional σ(L1(μ, X), L∞(μ, X∗))-compactness in L1(μ, X) can be found in [1, Theorems 2.4 and 2.5]).

For a subset K of L∞(Σ, X)∗c let MK = {ν ∈ bvca(Σ, X∗): Φν ∈ K}.
Now we are in position to prove a vector-valued version of Theorem 1.1 of [28] and Theorem 8 of [27] when X is a

reflexive Banach space.

Theorem 3.6. Assume that X is a reflexive Banach space. Then for bounded subset K of L∞(Σ, X)∗c the following statements are
equivalent:

(i) K is relatively σ(L∞(Σ, X)∗, L∞(Σ, X)∗∗)-compact.
(ii) K is relatively σ(L∞(Σ, X)∗, L∞(Σ, X)∗∗)-sequentially compact.
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(iii) K is relatively σ(L∞(Σ, X)∗, L∞(Σ, X))-sequentially compact.
(iv) The set {|ν|: ν ∈ MK} in ca+(Σ) is uniformly countably additive.

Proof. (i) ⇐⇒ (ii) It follows from the Eberlein–Šmulian theorem.
(ii) �⇒ (iii) It is obvious.
(iii) �⇒ (iv) Assume that K is relatively σ(L∞(Σ, X)∗, L∞(Σ, X))-sequentially compact. Since L∞(Σ, X)∗c is sequen-

tially closed in (L∞(Σ, X)∗ , σ(L∞(Σ, X)∗ , L∞(Σ, X))) (see Corollary 3.2), K is a relatively σ(L∞(Σ, X)∗c , L∞(Σ, X))-
sequentially compact subset of L∞(Σ, X)∗c . In view of Theorem 3.3 the set {|ν|: ν ∈ MK} is uniformly countably additive.

(iv) �⇒ (i) Assume that the set {|ν|: ν ∈ MK} in ca+(Σ) is uniformly countably additive. Then by [8, Corollary 1] M K
is a relatively σ(bvca(Σ, X∗), bvca(Σ, X∗)∗)-compact subset of bvca(Σ, X∗). This means that K is relatively compact set in
(L∞(Σ, X)∗c , σ (L∞(Σ, X)∗c , (L∞(Σ, X)∗c )∗)). Moreover, by Corollary 3.2 we obtain that L∞(Σ, X)∗c is a closed subset of the
Banach space L∞(Σ, X)∗ . Hence L∞(Σ, X)∗c is a closed set in (L∞(Σ, X)∗, σ (L∞(Σ, X)∗, L∞(Σ, X)∗∗)), so

clσ (L∞(Σ,X)∗,L∞(Σ,X)∗∗) K ⊂ L∞(Σ, X)∗c .

Note that (see [17, Corollary 3.3.3])

σ
(

L∞(Σ, X)∗, L∞(Σ, X)∗∗)∣∣
L∞(Σ,X)∗c = σ

(
L∞(Σ, X)∗c ,

(
L∞(Σ, X)∗c

)∗)
. (1)

It follows that

clσ (L∞(Σ,X)∗c ,(L∞(Σ,X)∗c )∗) K = clσ (L∞(Σ,X)∗,L∞(Σ,X)∗∗) K. (2)

Since clσ(L∞(Σ,X)∗c ,(L∞(Σ,X)∗c )∗) K is a σ(L∞(Σ, X)∗c , (L∞(Σ, X)∗c )∗)-compact subset of L∞(Σ, X)∗c , in view of (1) and (2)
we see that clσ(L∞(Σ,X)∗,L∞(Σ,X)∗∗) K is a σ(L∞(Σ, X)∗, (L∞(Σ, X)∗∗)-compact subset of L∞(Σ, X)∗ , i.e., K is relatively
σ(L∞(Σ, X)∗, L∞(Σ, X)∗∗)-compact, as desired. �

As a consequence of Theorem 3.6 we obtain a Grothendieck type theorem saying that σ(L∞(Σ, X)∗, L∞(Σ, X))-
convergent sequences in L∞(Σ, X)∗c are also σ(L∞(Σ, X)∗, L∞(Σ, X)∗∗)-convergent.

Corollary 3.7. Assume that X is a reflexive Banach space. Let Φn ∈ L∞(Σ, X)∗c for n ∈ N and Φ ∈ L∞(Σ, X)∗c . Then the following
statements are equivalent:

(i) Φn → Φ for σ(L∞(Σ, X)∗, L∞(Σ, X)∗∗).
(ii) Φn → Φ for σ(L∞(Σ, X)∗, L∞(Σ, X)).

Proof. (i) �⇒ (ii) It is obvious.
(ii) �⇒ (i) Assume that Φn → Φ for σ(L∞(Σ, X)∗, L∞(Σ, X)) and let (Φkn ) be a subsequence of (Φn). Then K =

{Φkn : n ∈ N} is a relatively sequentially compact subset of (L∞(Σ, X)∗, σ (L∞(Σ, X)∗, L∞(Σ, X))). By Theorem 3.6 K is a
relatively sequentially compact subset of (L∞(Σ, X)∗, σ (L∞(Σ, X)∗, L∞(Σ, X)∗∗)), so there exists a subsequence (Φlkn

) of
(Φkn ) such that Φlkn

→ Φ for σ(L∞(Σ, X)∗ , L∞(Σ, X)∗∗). This means that Φn → Φ for σ(L∞(Σ, X)∗ , L∞(Σ, X)∗∗), as
desired. �
Remark 3.2. Theorems 3.3 and 3.6 are modifications and corrections of Theorems 2.1 and 3.1 of [23], where we incorrectly
considered the Banach space B(Σ, X) of all X-valued totally Σ-measurable functions instead of the space L∞(Σ, X).

4. Relationships between operators on L∞(Σ, X)

We start with the following useful result.

Proposition 4.1. For a linear operator T : L∞(Σ, X) → Y the following statements are equivalent:

(i) y∗ ◦ T ∈ L∞(Σ, X)∗c for each y∗ ∈ Y ∗ .
(ii) T is (σ (L∞(Σ, X), L∞(Σ, X)∗c ), σ(Y , Y ∗))-continuous.

(iii) T is (τ (L∞(Σ, X), L∞(Σ, X)∗c ),‖ · ‖Y )-continuous.

Proof. (i) ⇐⇒ (ii) See [3, Theorem 9.26]; (ii) ⇐⇒ (iii) See [3, Ex. 11, p. 149]. �
Note that every σ -smooth operator T : L∞(Σ, X) → Y is (τ (L∞(Σ, X), L∞(Σ, X)∗c ), ‖ · ‖Y )-continuous. On the other

hand, since L∞(Σ, X)∗c ⊂ L∞(Σ, X)∗ , we derive that every (τ (L∞(Σ, X), L∞(Σ, X)∗c ),‖ · ‖Y )-continuous linear operator
T : L∞(Σ, X) → Y is bounded.
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Proposition 4.2. Let T : L∞(Σ, X) → Y be a (τ (L∞(Σ, X), L∞(Σ, X)∗c ),‖ · ‖Y )-continuous linear operator. Then its representing
measure mT ∈ fasv(Σ, L(X, Y )) is countably additive in W∗OT and for each y∗ ∈ Y ∗ we have(

y∗ ◦ T
)
( f ) =

∫
Ω

f d(mT )y∗ for all f ∈ L∞(Σ, X).

Proof. Let y∗ ∈ Y ∗ be given. Since y∗ ◦ T ∈ L∞(Σ, X)∗c (see Proposition 4.1), by Corollary 3.1 there exists νy∗ ∈ bvca(Σ, X∗)
such that (y∗ ◦ T )( f ) = ∫

Ω
f dνy∗ for all f ∈ L∞(Σ, X). Hence for each A ∈ Σ , x ∈ X we have

(mT )y∗(A)(x) = y∗(mT (A)(x)
) = y∗(T (1A ⊗ x)

)
=

∫
Ω

(1A ⊗ x)dνy∗ = νy∗(A)(x).

It follows that (mT )y∗ = νy∗ ∈ bvca(Σ, X∗), i.e., mT is countably additive in W∗OT. �
Now using Theorem 3.3 we are ready to establish some relationships between different classes of operators on

L∞(Σ, X).

Theorem 4.3. Let T : L∞(Σ, X) → Y be a weakly compact and (τ (L∞(Σ, X), L∞(Σ, X)∗c ),‖ ·‖Y )-continuous linear operator. Then
T is σ -smooth.

Proof. Since the conjugate operator T ∗ : Y ∗ → L∞(Σ, X)∗ is weakly compact, the set {y∗ ◦ T : y∗ ∈ BY ∗ } is rela-
tively σ(L∞(Σ, X)∗, L∞(Σ, X)∗∗)-compact, and hence by the Eberlein–Šmulian theorem, {y∗ ◦ T : y∗ ∈ BY ∗ } is rela-
tively σ(L∞(Σ, X)∗ , L∞(Σ, X)∗∗)-sequentially compact in L∞(Σ, X)∗ . It follows that {y∗ ◦ T : y∗ ∈ BY ∗ } is a relatively
σ(L∞(Σ, X)∗, L∞(Σ, X))-sequentially compact subset of L∞(Σ, X)∗ . Since {y∗ ◦ T : y∗ ∈ BY ∗ } ⊂ L∞(Σ, X)∗c (see Propo-
sition 4.1) and L∞(Σ, X)∗c is a sequentially σ(L∞(Σ, X)∗, L∞(Σ, X))-closed subset of L∞(Σ, X)∗ (see Corollary 3.2), we
derive that {y∗ ◦ T : y∗ ∈ BY ∗ } is a relatively σ(L∞(Σ, X)∗c , L∞(Σ, X))-sequentially compact subset of L∞(Σ, X)∗c . But
{y∗ ◦ T : y∗ ∈ BY ∗ } = {Φ(mT )y∗ : y∗ ∈ BY ∗ } (see Proposition 4.2), so by Theorem 3.3 the set {|(mT )y∗ |: y∗ ∈ BY ∗ } in ca(Σ) is
uniformly countably additive. This means that mT is variationally semi-regular and hence TmT is σ -smooth (see Proposi-
tion 2.2). In view of Proposition 4.2 and (2.1) for each y∗ ∈ Y ∗ we have

y∗(T ( f )
) =

∫
Ω

f d(mT )y∗ = y∗(TmT ( f )
)

for all f ∈ L∞(Σ, X).

It follows that T = TmT , i.e., T is σ -smooth. �
Theorem 4.4. Let T : L∞(Σ, X) → Y be a (τ (L∞(Σ, X), L∞(Σ, X)∗c ),‖ · ‖Y )-continuous linear operator. Assume that either Y ∗
has the Radon–Nikodým property or Y contains no isomorphic copy of c0 . Then T is σ -smooth.

Proof. Assume first that Y ∗ has the Radon–Nikodým property. By Proposition 4.1 T is (σ (L∞(Σ, X), L∞(Σ, X)∗c ),σ (Y ,

Y ∗))-continuous. Let T ∗ : Y ∗ → L∞(Σ, X)∗c stand for the conjugate operator for T . Then T ∗ is (σ (Y ∗, Y ), σ(L∞(Σ, X)∗c ,
L∞(Σ, X)))-continuous (see [7, Chapter IV, §6, Proposition 1]). Since BY ∗ is σ(Y ∗, Y )-sequentially compact (see [16, Corol-
lary 2]), we obtain that T ∗(BY ∗ ) is a relatively σ(L∞(Σ, X)∗c , L∞(Σ, X))-sequentially compact subset of L∞(Σ, X)∗c .
Note that in view of Proposition 4.2 we have that T ∗(BY ∗ ) = {Φ(mT )y∗ : y∗ ∈ BY ∗ }. Hence, by Theorem 3.3 the set
{|(mT )y∗ |: y∗ ∈ BY ∗ } is uniformly countably additive, i.e., mT is variationally semi-regular. This means that TmT is σ -smooth
(see Proposition 2.2). Now, arguing as in the proof of Theorem 4.3 we obtain that T = TmT , i.e., T is σ -smooth.

Now we assume that Y contains no isomorphic copy of c0. In view of Proposition 4.2 mT ∈ fasv(Σ, L(X, Y )) is countably
additive in W∗OT. Hence by [5,6, Theorem 6, Theorem 5 and Remark 7] we obtain that mT is variationally semi-regular.
Then by Proposition 2.2 TmT : L∞(Σ, X) → Y is σ -smooth. Arguing as in the proof of Theorem 4.3 we derive that T = TmT ,
i.e., T is σ -smooth. �
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