

Contents lists available at SciVerse ScienceDirect

Journal of Mathematical Analysis and

Applications

www.elsevier.com/locate/jmaa

Operators on the space of bounded strongly measurable functions

Marian Nowak

Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, ul. Szafrana 4A, 65-516 Zielona Góra, Poland

ARTICLE INFO

Article history: Received 5 November 2010 Available online 26 October 2011 Submitted by B. Cascales

Keywords: Strongly measurable functions Operator-valued measures σ -Smooth operators Weakly compact operators Weak* sequential compactness

ABSTRACT

Let $\mathcal{L}(X, Y)$ stand for the space of all bounded linear operators between real Banach spaces $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$, and let Σ be a σ -algebra of subsets of a non-empty set Ω . Let $\mathcal{L}^{\infty}(\Sigma, X)$ denote the Banach space of all bounded strongly Σ -measurable functions $f:\Omega \to X$ equipped with the supremum norm $\|\cdot\|$. A bounded linear operator T from $\mathcal{L}^{\infty}(\Sigma, X)$ to a Banach space Y is said to be σ -smooth if $||T(f_n)||_Y \to 0$ whenever $||f_n(\omega)||_X \to 0$ for all $\omega \in \Omega$ and $\sup_n ||f_n|| < \infty$. It is shown that if an operator measure $m: \Sigma \to \mathcal{L}(X, Y)$ is variationally semi-regular (i.e., $\widetilde{m}(A_n) \to 0$ as $A_n \downarrow \emptyset$, where $\widetilde{m}(A)$ stands for the semivariation of m on $A \in \Sigma$), then the corresponding integration operator $T_m: \mathcal{L}^{\infty}(\Sigma, X) \to Y$ is σ -smooth. Conversely, it is proved that every σ -smooth operator $T: \mathcal{L}^{\infty}(\Sigma, X) \to Y$ admits an integral representation with respect to its representing operator measure. We prove a Banach–Steinhaus type theorem for σ -smooth operators from $\mathcal{L}^{\infty}(\Sigma, X)$ to Y. In particular, we study the topological properties of the space $\mathcal{L}^{\infty}(\Sigma, X)_{c}^{c}$ of all σ -smooth functionals on $\mathcal{L}^{\infty}(\Sigma, X)$. We prove a form of a generalized Nikodým convergence theorem and characterize relative $\sigma(\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}, \mathcal{L}^{\infty}(\Sigma, X))$ -sequential compactness in $\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$. We derive a Grothendieck type theorem for $\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$. The relationships between different classes of linear operators on $\mathcal{L}^{\infty}(\Sigma, X)$ are established.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction and terminology

Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be real Banach spaces and let B_X stand for the closed unit ball in X. Let X^{*} and Y^{*} stand for the Banach duals of X and Y, respectively. Denote by $\mathcal{L}(X, Y)$ the space of all bounded linear operators between Banach spaces X and Y. The weak^{*} operator topology (briefly, W*OT) is the topology on $\mathcal{L}(X, Y)$ defined by the family of seminorms $\{p_{y_*}: y^* \in Y^*\}$, where $p_{y_*}(U) := \|y^* \circ U\|_{X^*}$ for $U \in \mathcal{L}(X, Y)$.

By $\sigma(L, K)$ and $\tau(L, K)$ we will denote the weak topology and the Mackey topology on L with respect to a dual pair (L, K). For a topological vector space (L, τ) by $(L, \tau)^*$ we will denote its topological dual. Let \mathbb{N} and \mathbb{R} stand for the sets of natural and real numbers.

Now we recall basic terminology concerning operator measures (see [12,5,6,18,19]). Let Σ be a σ -algebra of subsets of a non-empty set Ω . An additive mapping $m: \Sigma \to \mathcal{L}(X, Y)$ is called an operator-valued measure. We define the semivariation $\widetilde{m}(A)$ of m on $A \in \Sigma$ by $\widetilde{m}(A) := \sup \|\Sigma m(A_i)(x_i)\|_Y$, where the supremum is taken over all finite disjoint sequences (A_i) in Σ with $A_i \subset A$ and $x_i \in B_X$ for each *i*. By fasy($\Sigma, \mathcal{L}(X, Y)$) we denote the set of all finitely additive measures $m: \Sigma \to X$ $\mathcal{L}(X, Y)$ with finite semivariation, i.e., $\widetilde{m}(\Omega) < \infty$.

For $y^* \in Y^*$ let $m_{y^*} : \Sigma \to X^*$ be a set function defined by $m_{y^*}(A)(x) := \langle m(A)(x), y^* \rangle$ for $x \in X$. Then m_{y^*} is an additive measure and $\widetilde{m}_{v^*}(A) = |m_{v^*}|(A)$, where $|m_{v^*}|(A)$ stands for the variation of m_{v^*} on $A \in \Sigma$. Moreover, for $A \in \Sigma$ we have

E-mail address: M.Nowak@wmie.uz.zgora.pl.

⁰⁰²²⁻²⁴⁷X/\$ – see front matter $\ \ \odot$ 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2011.10.033

$$\widetilde{m}(A) = \sup\{|m_{y^*}|(A): y^* \in B_{Y^*}\}$$

(see [5, Theorem 5]). Recall that an operator measure $m : \Sigma \to \mathcal{L}(X, Y)$ is said to be countably in W*OT if for each $y^* \in Y^*$, $||m_{y^*}(A_n)||_{X^*} \to 0$ whenever $A_n \downarrow \emptyset$ (see [5,6, p. 92]).

Following Lewis (see [18,19]) a measure $m : \Sigma \to \mathcal{L}(X, Y)$ is said to be *variationally semi-regular* if $\widetilde{m}(A_n) \to 0$ whenever $A_n \downarrow \emptyset$ and $(A_n) \subset \Sigma$. (Dobrakov [13] uses the term "continuous", Swartz [25,26] uses the term "strongly bounded"). Note that $m : \Sigma \to \mathcal{L}(X, Y)$ is variationally semi-regular if and only if $\widetilde{m}(\Omega) < \infty$ and the family $\{|m_{y^*}|: y^* \in B_{Y^*}\}$ is uniformly countably additive, i.e., the set $\{|m_{y^*}|: y^* \in B_{Y^*}\}$ in ca (Σ) (= the Banach space of all signed countably additive measures) is relatively weakly compact (see [10, Theorem 13, p. 92]).

Note that for a measure $\nu : \Sigma \to X^*(Y = \mathbb{R})$ we have $\tilde{\nu}(A) = |\nu|(A)$ for $A \in \Sigma$. Hence $\nu \in \operatorname{fasv}(\Sigma, X^*)$ is variationally semi-regular if and only if $|\nu|(\Omega) < \infty$ and ν is countably additive, i.e., $||\nu(A_n)||_{X^*} \to 0$ whenever $A_n \downarrow \emptyset$ (see [11, Proposition 9, p. 3]). Let $\operatorname{bva}(\Sigma, X^*)$ stand for the Banach space of all vector measures $\nu : \Sigma \to X^*$ of bounded variation, equipped with the norm $||\nu|| = |\nu|(\Omega)$. By $\operatorname{bvca}(\Sigma, X^*)$ we denote a linear subspace of $\operatorname{bva}(\Sigma, X^*)$ consisting of all those $\nu \in \operatorname{bva}(\Sigma, X^*)$ that are countably additive. For $\nu \in \operatorname{bvca}(\Sigma, X^*)$ and $x \in X$ let $\nu_X(A) = \nu(A)(x)$ for $A \in \Sigma$. Then $\nu_X \in \operatorname{ca}(\Sigma)$. Note that $\operatorname{bvca}(\Sigma, \mathbb{R})) = \operatorname{ca}(\Sigma)$.

By $S(\Sigma, X)$ we denote the space of all X-valued Σ -simple functions $s = \sum_{i=1}^{k} (\mathbb{1}_{A_i} \otimes x_i)$, where $(A_i)_{i=1}^k$ is a disjoint sequence in Σ , $x_i \in X$ for $1 \leq i \leq k$ and $(\mathbb{1}_{A_i} \otimes x_i)(\omega) = \mathbb{1}_{A_i}(\omega)x_i$ for $\omega \in \Omega$. A function $f : \Omega \to X$ is said to be strongly Σ -measurable if there exists a sequence (s_n) in $S(\Sigma, X)$ such that $||s_n(\omega) - f(\omega)||_X \to 0$ for all $\omega \in \Omega$. It is known that if $f : \Omega \to X$ is strongly Σ -measurable, then there exists a sequence (s_n) in $S(\Sigma, X)$ such that $||s_n(\omega) - f(\omega)||_X \to 0$ for all $\omega \in \Omega$. It is known that if $\omega \in \Omega$ and $||s_n(\omega)||_X \leq ||f(\omega)||_X$ for $\omega \in \Omega$ and all $n \in \mathbb{N}$ (see [12, Theorem 1.6, p. 4]). By $\mathcal{L}^{\infty}(\Sigma, X)$ we denote the Banach space of all bounded strongly Σ -measurable functions $f : \Omega \to X$, equipped with the supremum norm $|| \cdot ||$. Let $\mathcal{L}^{\infty}(\Sigma, X)^*$ and $\mathcal{L}^{\infty}(\Sigma, X)^{**}$ stand for the Banach dual and the Banach bidual of $\mathcal{L}^{\infty}(\Sigma, X)$ respectively. For $f \in \mathcal{L}^{\infty}(\Sigma, X)$ and $A \in \Sigma$ let us put

$$\|f\|_A = \sup_{\omega \in A} \|f(\omega)\|_X.$$

Let $m \in \text{fasv}(\Sigma, \mathcal{L}(X, Y))$. Then for $s = \sum_{i=1}^{k} (\mathbb{1}_{A_i} \otimes x_i) \in \mathcal{S}(\Sigma, X)$ and $A \in \Sigma$ we can define the integral by the equality

$$\int_{A} s \, dm := \sum_{i=1}^{k} m(A \cap A_i)(x_i).$$

The integral is independent of the representation chosen and is a linear operator from $S(\Sigma, X)$ to Y. Moreover, for each $s \in S(\Sigma, X)$ and $A \in \Sigma$ the following inequality holds:

$$\left\|\int\limits_A s\,dm\right\|_Y \leqslant \|s\|_A \cdot \widetilde{m}(A).$$

Assume now that $m \in \text{fasv}(\Sigma, \mathcal{L}(X, Y))$ is variationally semi-regular. Let $f \in \mathcal{L}^{\infty}(\Sigma, X)$ and $A \in \Sigma$, and choose a sequence (s_n) in $\mathcal{S}(\Sigma, X)$ such that $\|(\mathbb{1}_A s_n)(\omega) - (\mathbb{1}_A f)(\omega)\|_X \to 0$ for $\omega \in \Omega$ and $\sup_n \|s_n\|_A \leq \|f\|_A$. Then

$$\left\|\int\limits_{A} s_n \, dm\right\|_{Y} \leq \|f\|_A \cdot \widetilde{m}(A).$$

It follows that the indefinite integrals $\int_{(\cdot)} s_n dm$ are uniformly countably additive measures on Σ . This means that f is *m*-integrable and the integral of f on a set A is defined by equality:

$$\int_{A} f \, dm := \lim_{n} \int_{A} s_n \, dm$$

(see [13, Definition 2, p. 523 and Theorem 5, p. 524]). Dobrakov [13, Example 7', pp. 524–525] showed that the assumption of semi-regularity of *m* on Σ is necessary for every $f \in \mathcal{L}^{\infty}(\Sigma, X)$ to be *m*-integrable. Define the integration operator $T_m : \mathcal{L}^{\infty}(\Sigma, X) \to Y$ by

$$T_m(f) = \int_{\Omega} f \, dm$$

In particular, for $\nu \in bvca(\Sigma, X^*)$ the integration functional Φ_{ν} on $\mathcal{L}^{\infty}(\Sigma, X)$ is given by

$$\Phi_{\nu}(f) = \int_{\Omega} f \, d\nu.$$

For a bounded linear operator $T : \mathcal{L}^{\infty}(\Sigma, X) \to Y$ let $m_T : \Sigma \to \mathcal{L}(X, Y)$ stand for its *representing measure*, i.e.,

$$m_T(A)(x) := T(\mathbb{1}_A \otimes x) \text{ for } A \in \Sigma \text{ and } x \in X.$$

Then $\widetilde{m}_T(\Omega) \leq ||T|| < \infty$, i.e., $m_T \in \operatorname{fasv}(\Sigma, \mathcal{L}(X, Y))$. In particular, if $\Phi \in \mathcal{L}^{\infty}(\Sigma, X)^*$ and $\nu_{\Phi}(A)(x) = \Phi(\mathbb{1}_A \otimes x)$ for $A \in \Sigma$, $x \in X$, then $\nu_{\Phi} \in \operatorname{bva}(\Sigma, X^*)$. Then $(m_T)_{y^*} = \nu_{y^* \circ T}$ for each $y^* \in Y^*$.

Now we introduce a new class of linear operators from $\mathcal{L}^{\infty}(\Sigma, X)$ to Y.

Definition 1.1. A bounded linear operator $T : \mathcal{L}^{\infty}(\Sigma, X) \to Y$ is said to be σ -smooth if $||T(f_n)||_Y \to 0$ whenever $||f_n(\omega)||_X \to 0$ for all $\omega \in \Omega$ and $\sup_n ||f_n|| < \infty$.

By $\mathcal{L}^{\infty}(\Sigma, X)_c^*$ we will denote the space of all σ -smooth functionals on $\mathcal{L}^{\infty}(\Sigma, X)$.

Note that if $X = \mathbb{R}$ then the space $\mathcal{L}^{\infty}(\Sigma, \mathbb{R})$ coincides with the Dedekind σ -complete Banach lattice $\mathcal{L}^{\infty}(\Sigma)$ (= $B(\Sigma)$) of all bounded Σ -measurable real functions defined on Ω , and $\mathcal{L}^{\infty}(\Sigma, \mathbb{R})^*_c$ coincides with the σ -order continuous dual $\mathcal{L}^{\infty}(\Sigma)^*_c$ of $\mathcal{L}^{\infty}(\Sigma)$ (see [2, § 13.1]).

In Section 2 we show that if $m \in \text{fasv}(\Sigma, \mathcal{L}(X, Y))$ is variationally semi-regular, then the corresponding integration operator $T_m : \mathcal{L}^{\infty}(\Sigma, X) \to Y$ is σ -smooth. Conversely, it is shown that every σ -smooth operator $T : \mathcal{L}^{\infty}(\Sigma, X) \to Y$ admits an integral representation with respect to its representing measure. We prove a Banach–Steinhaus type theorem for σ -smooth operators $T : \mathcal{L}^{\infty}(\Sigma, X) \to Y$. In Section 3 we study the topological properties of the space $\mathcal{L}^{\infty}(\Sigma, X)_c^*$. We prove a form of a generalized Nikodým convergence theorem for $\mathcal{L}^{\infty}(\Sigma, X)_c^*$. As an application we characterize relatively $\sigma(\mathcal{L}^{\infty}(\Sigma, X)_c^*, \mathcal{L}^{\infty}(\Sigma, X))$ -sequentially compact subsets of $\mathcal{L}^{\infty}(\Sigma, X)_c^*$. We derive a Grothendieck type theorem saying that $\sigma(\mathcal{L}^{\infty}(\Sigma, X)^*, \mathcal{L}^{\infty}(\Sigma, X))$ -convergent sequences in $\mathcal{L}^{\infty}(\Sigma, X)_c^*$ are $\sigma(\mathcal{L}^{\infty}(\Sigma, X)^*, \mathcal{L}^{\infty}(\Sigma, X)^{**})$ -convergent. In Section 4 we establish the relationships between different classes of linear operators on $\mathcal{L}^{\infty}(\Sigma, X)$.

2. σ -smooth operators on $\mathcal{L}^{\infty}(\Sigma, X)$

In this section we establish the relationships between σ -smooth operators $T : \mathcal{L}^{\infty}(\Sigma, X) \to Y$ and their representing measures $m : \Sigma \to \mathcal{L}(X, Y)$.

Assume $m \in \text{fasv}(\Sigma, \mathcal{L}(X, Y))$ be variationally semi-regular, and let

$$T_m(f) = \int_{\Omega} f \, dm \quad \text{for all } f \in \mathcal{L}^{\infty}(\Sigma, X).$$

For every $A \in \Sigma$ let us put

$$(T_m)_A(f) = T_m(\mathbb{1}_A f) = \int_A f \, dm,$$

and

$$\left\| (T_m)_A \right\| = \sup \left\{ \left\| \int_A f \, dm \right\|_Y : f \in \mathcal{L}^\infty(\Sigma, X) \text{ and } \|f\| \leq 1 \right\}.$$

Then for each $y^* \in Y^*$ we have

$$y^*(T_m(f)) = \int_{\Omega} f \, dm_{y^*} \quad \text{for all } f \in \mathcal{L}^{\infty}(\Sigma, X).$$
(2.1)

The following lemma will be useful.

Lemma 2.1. Let $m \in \text{fasv}(\Sigma, \mathcal{L}(X, Y))$ be variationally semi-regular. Then for every $A \in \Sigma$ we have $\widetilde{m}(A) = ||(T_m)_A||$.

Proof. Let $A \in \Sigma$. Then

$$\widetilde{m}(A) = \sup \left\{ \left\| \int_{A} s \, dm \right\|_{Y} : s \in \mathcal{S}(\Sigma, X), \, \|s\| \leq 1 \right\}.$$

Hence $\widetilde{m}(A) \leq ||(T_m)_A||$. Now let $f \in \mathcal{L}^{\infty}(\Sigma, X)$ with $||f|| \leq 1$. Then there exists a sequence (s_n) in $\mathcal{S}(\Sigma, X)$ such that $||s_n(\omega) - f(\omega)||_X \to 0$ for each $\omega \in \Omega$ and $||s_n(\omega)||_X \leq ||f(\omega)||_X$ for each $\omega \in \Omega$ and $n \in \mathbb{N}$. Hence $\sup_n ||s_n|| \leq ||f|| \leq 1$ and $(T_m)_A(f) = \int_A f \, dm = \lim_n \int_A s_n \, dm$. Fix $\varepsilon > 0$ and choose $n_{\varepsilon} \in \mathbb{N}$ such that $||\int_A f \, dm - \int_A s_{n_{\varepsilon}} \, dm||_Y \leq \varepsilon$. Hence

$$\left\|\int_{A} f \, dm\right\|_{Y} \leq \left\|\int_{A} f \, dm - \int_{A} s_{n_{\varepsilon}} \, dm\right\|_{Y} + \left\|\int_{A} s_{n_{\varepsilon}} \, dm\right\|_{Y} \leq \varepsilon + \widetilde{m}(A).$$

It follows that $||(T_m)_A|| \leq \widetilde{m}(A)$. \Box

Now we are ready to prove our main results.

Proposition 2.2. Assume that $m \in \text{fasv}(\Sigma, \mathcal{L}(X, Y))$ is variationally semi-regular. Then the integration operator $T_m : \mathcal{L}^{\infty}(\Sigma, X) \to Y$ is σ -smooth.

Proof. By Lemma 2.1 we have that $||T_m|| = \widetilde{m}(\Omega) < \infty$. Since *m* is variationally semi-regular, in view of (1.1) the set $\{|m_{y^*}|: y^* \in B_{Y^*}\}$ is uniformly countably additive. Hence there exists $\mu \in ca^+(\Sigma)$ such that the family $\{|m_{y^*}|: y^* \in B_{Y^*}\}$ is uniformly μ -continuous, i.e., $\widetilde{m}(A_n) \to 0$ whenever $\mu(A_n) \to 0$ (see [10, Theorem 13, p. 92]).

Assume that (f_n) is a sequence in $\mathcal{L}^{\infty}(\Sigma, X)$ such that $||f_n(\omega)||_X \to 0$ for all $\omega \in \Omega$ and $a = \sup_n ||f_n|| < \infty$, and let $\varepsilon > 0$ be given. For $\eta = \frac{\varepsilon}{2||T_m||} > 0$ and $n \in \mathbb{N}$ let us put

$$A_n(\eta) = \left\{ \omega \in \Omega \colon \left\| f_n(\omega) \right\|_X \ge \eta \right\}.$$

Then $\mu(A_n(\eta)) \to 0$. Hence $\widetilde{m}(A_n(\eta)) \to 0$, and by Lemma 2.1 we have

$$\left\| (T_m)_{A_n(\eta)} \right\| = \sup \left\{ \left\| T_m(\mathbb{1}_{A_n(\eta)} f) \right\|_Y \colon \|f\| \leq 1 \right\} \xrightarrow[n]{} 0.$$

Hence there exists $n_{\varepsilon} \in \mathbb{N}$ such that for $n \ge n_{\varepsilon}$ we get

$$\left\|T_m\left(\frac{1}{a}\mathbb{1}_{A_n(\eta)}f_n\right)\right\|_{Y} \leq \frac{\varepsilon}{2a}, \quad \text{i.e.,} \quad \left\|T_m(\mathbb{1}_{A_n(\eta)}f_n)\right\|_{Y} \leq \frac{\varepsilon}{2}.$$

Moreover, for $n \in \mathbb{N}$ we have

$$\left\|T_m(\mathbb{1}_{\Omega \smallsetminus A_n(\eta)}f_n)\right\|_Y \leq \|T_m\| \cdot \|\mathbb{1}_{\Omega \smallsetminus A_n(\eta)}f_n\| \leq \|T_m\| \cdot \eta = \frac{\varepsilon}{2}.$$

Hence for $n \ge n_{\varepsilon}$ we have

$$\left\|T_m(f_n)\right\|_{Y} \leq \left\|T_m(\mathbb{1}_{A_n(\eta)}f_n)\right\|_{Y} + \left\|T_m(\mathbb{1}_{\Omega \smallsetminus A_n(\eta)}f_n)\right\|_{Y} \leq \varepsilon$$

This means that T_m is σ -smooth. \Box

Proposition 2.3. Assume that $T : \mathcal{L}^{\infty}(\Sigma, X) \to Y$ is a σ -smooth operator. Then its representing measure $m_T \in \text{fasv}(\Sigma, \mathcal{L}(X, Y))$ is variationally semi-regular and

$$T(f) = T_{m_T}(f) = \int_{\Omega} f \, dm_T \quad \text{for all } f \in \mathcal{L}^{\infty}(\Sigma, X).$$

Moreover, $||T|| = \widetilde{m}_T(\Omega).$

Proof. Assume that $A_n \downarrow \emptyset$. Then for every $n \in \mathbb{N}$ there exist a Σ -partition $(A_{n,i})_{i=1}^{k_n}$ of A_n and $x_{n,i} \in B_X$, $1 \leq i \leq k_n$ such that

$$\widetilde{m}_T(A_n) \leqslant \left\| \sum_{i=1}^{k_n} m_T(A_{n,i})(x_{n,i}) \right\|_{Y} + \frac{1}{n}.$$

Let $s_n = \sum_{i=1}^{k_n} (\mathbb{1}_{A_{n,i}} \otimes x_{n,i})$ for $n \in \mathbb{N}$. Then $||s_n(\omega)||_X \leq \mathbb{1}_{A_n}(\omega) \leq \mathbb{1}_{\Omega}(\omega)$ for $\omega \in \Omega$ and all $n \in \mathbb{N}$, and $\mathbb{1}_{A_n}(\omega) \downarrow 0$ for $\omega \in \Omega$. Hence $||s_n(\omega)||_X \to 0$ for $\omega \in \Omega$ and $\sup_n ||s_n|| \leq 1$. Therefore

$$\|T(s_n)\|_{Y} = \left\|\sum_{i=1}^{k_n} m_T(A_{n,i})(x_{n,i})\right\|_{Y} \xrightarrow{n} 0,$$

so $\widetilde{m}_T(A_n) \rightarrow 0$, as desired.

Now let $f \in \mathcal{L}^{\infty}(\Sigma, X)$. Then there exists a sequence (s_n) in $\mathcal{S}(\Sigma, X)$ such that $||s_n(\omega) - f(\omega)||_X \to 0$ for $\omega \in \Omega$ and $||s_n(\omega)||_X \leqslant ||f(\omega)||_X$ for $\omega \in \Omega$ and all $n \in \mathbb{N}$. Then $\sup_n ||s_n - f|| \leqslant 2||f|| < \infty$. It follows that

$$T(f) = \lim_{n} T(s_n) = \lim_{n} \int_{\Omega} s_n \, dm_T = \int_{\Omega} f \, dm_T = T_{m_T}(f). \quad \Box$$

396

Remark 2.1. Note that some similar results concerning the problem of integral representation (with respect to operatorvalued measures) of some class of linear operators on the Lebesgue–Bochner space $L^{\infty}(\mu, X)$ have been established in [15].

Let $\mathcal{L}(\mathcal{L}^{\infty}(\Sigma, X), Y)$ stand for the space of all bounded linear operators from $\mathcal{L}^{\infty}(\Sigma, X)$ to Y. The topology \mathcal{T}_s of simple convergence is a locally convex topology on $\mathcal{L}(\mathcal{L}^{\infty}(\Sigma, X), Y)$ defined by the family of seminorms $\{p_f: f \in \mathcal{L}^{\infty}(\Sigma, X)\}$, where $p_f(T) = ||T(f)||_Y$ for all $T \in \mathcal{L}(\mathcal{L}^{\infty}(\Sigma, X), Y)$. By $\mathcal{L}_c(\mathcal{L}^{\infty}(\Sigma, X), Y)$ we denote the set of all those $T \in \mathcal{L}(\mathcal{L}^{\infty}(\Sigma, X), Y)$ that are σ -smooth.

We will need the following Nikodým convergence type theorems (see [26, Proposition 13], [25, Proposition 11]).

Proposition 2.4. Let $m_k \in \text{fasv}(\Sigma, \mathcal{L}(X, Y))$ be variationally semi-regular for $k \in \mathbb{N}$. Assume that $T(f) = \lim_k \int_{\Omega} f \, dm_k$ exists in $(Y, \|\cdot\|_Y)$ for each $f \in \mathcal{L}^{\infty}(\Sigma, X)$. Then $m_T \in \text{fasv}(\Sigma, \mathcal{L}(X, Y))$ is variationally semi-regular and $\sup_k \widetilde{m}_k(A_n) \xrightarrow{\sim} 0$ as $A_n \downarrow \emptyset$.

Proposition 2.5. Let $m_k \in \text{fasv}(\Sigma, \mathcal{L}(X, Y))$ be variationally semi-regular for $k \in \mathbb{N}$ and assume that $m(A)(x) := \lim_k m_k(A)(x)$ exists for each $A \in \Sigma$ and $x \in X$. If $m \in \text{fasv}(\Sigma, \mathcal{L}(X, Y))$ is variationally semi-regular and $\sup_k \widetilde{m}_k(A_n) \xrightarrow{n} 0$ as $A_n \downarrow \emptyset$, then $\lim_k \int_{\Omega} f \, dm_k = \int_{\Omega} f \, dm$ for each $f \in \mathcal{L}^{\infty}(\Sigma, X)$.

Now we are ready to state the following Banach–Steinhaus type theorem for σ -smooth operators from $\mathcal{L}^{\infty}(\Sigma, X)$ to Y.

Theorem 2.6. Let $T_k : \mathcal{L}^{\infty}(\Sigma, X) \to Y$ be σ -smooth operators for $k \in \mathbb{N}$. Assume that $T(f) := \lim_k T_k(f)$ exists in $(Y, \|\cdot\|_Y)$ for each $f \in \mathcal{L}^{\infty}(\Sigma, X)$. Then $T : \mathcal{L}^{\infty}(\Sigma, X) \to Y$ is a σ -smooth operator and the family $\{T_k : k \in \mathbb{N}\}$ is uniformly σ -smooth, i.e., $\sup_k \|T_k(f_n)\|_Y \to 0$ for any sequence (f_n) in $\mathcal{L}^{\infty}(\Sigma, X)$ such that $\|f_n(\omega)\|_Y \to 0$ for all $\omega \in \Omega$ and $\sup_n \|f_n\| < \infty$.

Proof. Let $m_k \in \text{fasv}(\Sigma, \mathcal{L}(X, Y))$ be the representing measures for T_k , $k \in \mathbb{N}$. By Proposition 2.3 $m_k \in \text{fasv}(\Sigma, \mathcal{L}(X, Y))$ are variationally semi-regular for $k \in \mathbb{N}$. Then by Proposition 2.4 $m_T \in \text{fasv}(\Sigma, \mathcal{L}(X, Y))$ is variationally semi-regular and $\sup_k \widetilde{m}_k(A_n) \xrightarrow{n} 0$ as $A_n \downarrow \emptyset$. Since $m_T(A)(x) = \lim_k m_k(A)(x)$ for each $A \in \Sigma$ and $x \in X$, in view of Proposition 2.5 it follows that $\lim_k T_k(f) = \int_{\Omega} f \, dm_T$ for each $f \in \mathcal{L}^{\infty}(\Sigma, X)$. Hence $T = T_{m_T}$, and by Proposition 2.2 T is σ -smooth.

Now we shall show that the family $\{T_k : k \in \mathbb{N}\}$ is uniformly σ -smooth. Note first that if $A_n \downarrow \emptyset$, $(A_n) \subset \Sigma$, then by (1.1) we get

$$\sup_{k} \widetilde{m}_{k}(A_{n}) = \sup\left\{ \left| (m_{k})_{y^{*}} \right| (A_{n}) \colon y^{*} \in B_{Y^{*}}, \ k \in \mathbb{N} \right\} \underset{n}{\longrightarrow} 0.$$

Moreover, since $\sup_k \widetilde{m}_k(\Omega) = \sup_k ||T_k|| = K < \infty$ (see Lemma 2.1), by (1.1) we have

 $\sup\{|(m_k)_{y^*}|(\Omega): y^* \in B_{Y^*}, k \in \mathbb{N}\} < \infty.$

It follows that there exists $\mu \in ca^+(\Sigma)$ such that the family $\{|(m_k)_{y^*}|: y^* \in B_{Y^*}, k \in \mathbb{N}\}$ is uniformly μ -continuous (see [10, Theorem 13, p. 92]).

Now let (f_n) be a sequence in $\mathcal{L}^{\infty}(\Sigma, X)$ such that $||f_n(\omega)||_X \to 0$ for $\omega \in \Omega$ and $a = \sup_n ||f_n|| < \infty$. Let $\varepsilon > 0$ be given. For $\eta = \frac{\varepsilon}{2\max(a,K)} > 0$ and $n \in \mathbb{N}$ let us set

$$A_n(\eta) = \left\{ \omega \in \Omega \colon \left\| f_n(\omega) \right\|_X > \eta \right\}.$$

Then $\mu(A_n(\eta)) \xrightarrow{n} 0$, and in view of Lemma 2.1 it follows that

$$\sup_{k} \left\| (T_k)_{A_n(\eta)} \right\| = \sup_{k} \widetilde{m}_k \left(A_n(\eta) \right) = \sup \left\{ \left| (m_k)_{y^*} \right| \left(A_n(\eta) \right) \colon y^* \in B_{Y^*}, \ k \in \mathbb{N} \right\} \underset{n}{\longrightarrow} 0.$$

Hence there exists $n_{\varepsilon} \in \mathbb{N}$ such that for $n \ge n_{\varepsilon}$,

$$\sup_{k} \left\| T_{k} \left(\frac{1}{a} \mathbb{1}_{A_{n}(\eta)} f_{n} \right) \right\|_{Y} \leqslant \frac{\varepsilon}{2a},$$

i.e., for every $k \in \mathbb{N}$ and $n \ge n_{\varepsilon}$ we have

$$\left\|T_k(\mathbb{1}_{A_n(\eta)}f_n)\right\|_Y \leqslant \frac{\varepsilon}{2}.$$
(1)

Moreover, for every $k \in \mathbb{N}$ and $n \in \mathbb{N}$ we have

$$\left\|T_{k}(\mathbb{1}_{\Omega \smallsetminus A_{n}(\eta)}f_{n})\right\|_{Y} \leq \|T_{k}\| \cdot \|\mathbb{1}_{\Omega \smallsetminus A_{n}(\eta)}f_{n}\| \leq K \cdot \eta \leq \frac{\varepsilon}{2}.$$
(2)

Hence by (1) and (2) for every $k \in \mathbb{N}$ and $n \ge n_{\varepsilon}$ we have

$$\|T_k(f_n)\|_{Y} \leq \|T_k(\mathbb{1}_{A_n(\eta)}f_n)\|_{Y} + \|T_k(\mathbb{1}_{\Omega \smallsetminus A_n(\eta)}f_n)\|_{Y} \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

so $\sup_k \|T_k(f_n)\|_Y \leq \varepsilon$ for $n \geq n_{\varepsilon}$. Thus the proof is complete. \Box

Corollary 2.7. (i) $\mathcal{L}_{c}(\mathcal{L}^{\infty}(\Sigma, X), Y)$ is a \mathcal{T}_{s} -sequentially closed subspace of $\mathcal{L}(\mathcal{L}^{\infty}(\Sigma, X), Y)$. (ii) The space $(\mathcal{L}_{c}(\mathcal{L}^{\infty}(\Sigma, X), Y), \mathcal{T}_{s})$ is sequentially complete.

3. Topological properties of the space $\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$

In this section we study the topological properties of the space $\mathcal{L}^{\infty}(\Sigma, X)_c^*$. We show that the classical theorems concerning the σ -order continuous dual $\mathcal{L}^{\infty}(\Sigma)_c^*$ of the Banach lattice $\mathcal{L}^{\infty}(\Sigma)$ (see [27,28]) continue to hold for the space $\mathcal{L}^{\infty}(\Sigma, X)_c^*$.

Applying Propositions 2.2 and 2.3 to linear functionals on $\mathcal{L}^{\infty}(\Sigma, X)$ we get:

Corollary 3.1. (i) Assume that $\nu \in bvca(\Sigma, X^*)$. Then the functional Φ_{ν} on $\mathcal{L}^{\infty}(\Sigma, X)$ is σ -smooth, i.e., $\Phi_{\nu} \in \mathcal{L}^{\infty}(\Sigma, X)^*_{c}$, and $\|\Phi_{\nu}\| = |\nu|(\Omega)$.

(ii) Assume that $\Phi \in \mathcal{L}^{\infty}(\Sigma, X)^*_{c}$. Then $\nu_{\Phi} \in bvca(\Sigma, X^*)$ and

$$\Phi(f) = \Phi_{\nu_{\Phi}}(f) = \int_{\Omega} f d\nu_{\Phi} \quad \text{for all } f \in \mathcal{L}^{\infty}(\Sigma, X).$$

Thus we have a dual pair $\langle \mathcal{L}^{\infty}(\Sigma, X), \mathcal{L}^{\infty}(\Sigma, X)_{c}^{*} \rangle$ with the duality

$$\langle f, \Phi_{\nu} \rangle = \int_{\Omega} f \, d\nu \quad \text{for all } f \in \mathcal{L}^{\infty}(\Sigma, X), \ \nu \in \text{bvca}(\Sigma, X^*).$$

Note that for $Y = \mathbb{R}$, \mathcal{T}_s on $\mathcal{L}^{\infty}(\Sigma, X)_c^*$ coincides with $\sigma(\mathcal{L}^{\infty}(\Sigma, X)_c^*, \mathcal{L}^{\infty}(\Sigma, X))$. Hence, as a consequence of Corollary 2.7, we get the following.

Corollary 3.2. (i) $\mathcal{L}^{\infty}(\Sigma, X)^*_c$ is a sequentially closed subspace of $(\mathcal{L}^{\infty}(\Sigma, X)^*, \sigma(\mathcal{L}^{\infty}(\Sigma, X)^*, \mathcal{L}^{\infty}(\Sigma, X)))$. (ii) The space $(\mathcal{L}^{\infty}(\Sigma, X)^*_c, \sigma(\mathcal{L}^{\infty}(\Sigma, X)^*_c, \mathcal{L}^{\infty}(\Sigma, X)))$ is sequentially complete.

Now we state a form of generalized Nikodým convergence theorem for $bvca(\Sigma, X^*)$. For a set \mathcal{M} in $bvca(\Sigma, X^*)$ let

$$|\mathcal{M}| = \{ |\nu| \colon \nu \in \mathcal{M} \}$$
 and $\mathcal{K}_{\mathcal{M}} = \{ \Phi_{\nu} \in \mathcal{L}^{\infty}(\Sigma, X)_{c}^{*} \colon \nu \in \mathcal{M} \}.$

Theorem 3.3. Let \mathcal{M} be a relatively σ (bvca(Σ, X^*), $\mathcal{L}^{\infty}(\Sigma, X)$)-sequentially compact set in bvca(Σ, X^*). Then the following statements hold:

(a) $\sup_{\nu \in \mathcal{M}} |\nu|(\Omega) < \infty$.

- (b) $|\mathcal{M}|$ is uniformly countably additive.
- (c) For each set $A \in \Sigma$ the set $\{v(A): v \in \mathcal{M}\}$ is relatively $\sigma(X^*, X)$ -sequentially compact.

Proof. (a) We will first show that \mathcal{M} is $\sigma(\text{bvca}(\Sigma, X^*), \mathcal{L}^{\infty}(\Sigma, X))$ -bounded. Assume on the contrary that \mathcal{M} is not $\sigma(\text{bvca}(\Sigma, X^*), \mathcal{L}^{\infty}(\Sigma, X))$ -bounded. Then there exists $f \in \mathcal{L}^{\infty}(\Sigma, X)$ such that $\sup_{\nu \in \mathcal{M}} |\int_{\Omega} f d\nu| = \infty$. Hence for each $n \in \mathbb{N}$ there exists $\nu_n \in \mathcal{M}$ such that $|\int_{\Omega} f d\nu_n| \ge n$. Choose a $\sigma(\text{bvca}(\Sigma, X^*), \mathcal{L}^{\infty}(\Sigma, X))$ -Cauchy subsequence (ν_{k_n}) of (ν_n) . It follows that a sequence $(\int_{\Omega} f d\nu_{k_n})$ is convergent and this leads to a contradiction. Hence \mathcal{M} is $\sigma(\text{bvca}(\Sigma, X^*), \mathcal{L}^{\infty}(\Sigma, X))$ -bounded, so $\mathcal{K}_{\mathcal{M}}$ is a $\sigma(\mathcal{L}^{\infty}(\Sigma, X)^*, \mathcal{L}^{\infty}(\Sigma, X))$ -bounded subset of $\mathcal{L}^{\infty}(\Sigma, X)^*$. By the uniform boundedness theorem, $\sup_{\nu \in \mathcal{M}} |\nu|(\Omega) = \sup_{\nu \in \mathcal{M}} ||\Phi_{\nu}|| < \infty$, as desired.

(b) Assume on the contrary that (b) does not hold. Then in view of [10, Theorem 10, p. 88] and the Rosenthal lemma (see [10, Chapter 7, p. 82]) there exist a pairwise disjoint sequence (A_n) in Σ , a positive number ε_0 and a sequence (ν_n) , in \mathcal{M} such that

$$|\nu_n|(A_n) > \varepsilon_0 \quad \text{and} \quad |\nu_n| \left(\bigcup_{j \neq n} A_j\right) < \frac{1}{8} \varepsilon_0 \quad \text{for all } n \in \mathbb{N}.$$
(1)

In view of (1) for each $n \in \mathbb{N}$ there exists a finite Σ -partition $(A_{n,i})_{i=1}^{i_n}$ of A_n such that $\sum_{i=1}^{i_n} \|v_n(A_{n,i})\|_{X^*} > \varepsilon_0$. Next, for each $i = 1, ..., i_n$ there exists $x_{n,i} \in B_X$ such that

$$v_n(A_{n,i})(x_{n,i}) \ge \|v_n(A_{n,i})\|_{X^*} - \frac{1}{2^{i+1}}\varepsilon_0.$$

Let $s_n = \sum_{i=1}^{i_n} (\mathbb{1}_{A_{n,i}} \otimes x_{n,i}) \in \mathcal{S}(\Sigma, X)$. Then $s_n(\omega) = 0$ for $\omega \in \Omega \setminus A_n$ with $||s_n|| \leq 1$ for $n \in \mathbb{N}$ and

$$\int_{\Omega} s_n d\nu_n = \sum_{i=1}^{i_n} \nu_n(A_{n,i})(x_{n,i}) \ge \sum_{i=1}^{i_n} \|\nu_n(A_{n,i})\|_{X^*} - \sum_{i=1}^{i_n} \frac{1}{2^{i+1}} \varepsilon_0 \ge \frac{1}{2} \varepsilon_0.$$

Let (ν_{k_n}) be any subsequence of (ν_n) , and let $f(\omega) = \sum_{n=1}^{\infty} s_{k_{2n}}(\omega)$ for $\omega \in \Omega$. Clearly $f \in \mathcal{L}^{\infty}(\Sigma, X)$ with $||f|| \leq 1$, $f(\omega) = s_{k_{2n}}(\omega)$ for $\omega \in A_{k_{2n}}$ and $f(\omega) = 0$ for $\omega \in A_{k_{2n+1}}$ and all $n \in \mathbb{N}$. Hence by (1) for each $n \in \mathbb{N}$ we have

$$\int_{\Omega} f \, d\nu_{k_{2n}} = \int_{A_{k_{2n}}} f \, d\nu_{k_{2n}} + \int_{\bigcup_{j \neq k_{2n}} A_j} f \, d\nu_{k_{2n}}$$
$$\geqslant \int_{\Omega} s_{k_{2n}} \, d\nu_{k_{2n}} - |\nu_{k_{2n}}| \left(\bigcup_{j \neq k_{2n}} A_j\right)$$
$$\geqslant \frac{1}{2} \varepsilon_0 - \frac{1}{4} \varepsilon_0 = \frac{1}{2} \varepsilon_0.$$

Moreover, using (1) we get for each $n \in \mathbb{N}$,

$$\int_{\Omega} f \, d\nu_{k_{2n+1}} = \int_{\bigcup_{j=1}^{\infty} A_{k_{2j}}} f \, d\nu_{k_{2n+1}}$$
$$\leqslant \|f\| \cdot |\nu_{k_{2n+1}}| \left(\bigcup_{j=1}^{\infty} A_{k_{2j}}\right)$$
$$\leqslant |\nu_{k_{2n+1}}| \left(\bigcup_{j\neq k_{2n+1}} A_j\right) < \frac{1}{4}\varepsilon_0.$$

This means that (v_{k_n}) is not a $\sigma(bvca(\Sigma, X^*), \mathcal{L}^{\infty}(\Sigma, X))$ -Cauchy sequence because for $f \in \mathcal{L}^{\infty}(\Sigma, X)$ the limit of $\langle v_{k_n}, f \rangle \ (= \int_{\Omega} f \, dv_{k_n})$ does not exist. It follows that \mathcal{M} is not a relatively $\sigma(bvca(\Sigma, X^*), \mathcal{L}^{\infty}(\Sigma, X))$ -sequentially compact subset of $bvca(\Sigma, X^*)$.

(c) Note that for each $A \in \Sigma$ the mapping: $bvca(\Sigma, X^*) \ni \nu \mapsto \nu(A) \in X^*$ is $(\sigma(bvca(\Sigma, X^*), \mathcal{L}^{\infty}(\Sigma, X)), \sigma(X^*, X))$ -continuous. Hence for each $A \in \Sigma$, the set $\{\nu(A): \nu \in \mathcal{M}\}$ is relatively $\sigma(X^*, X)$ -sequentially compact. \Box

The following lemma will be useful.

Lemma 3.4. Let (v_n) be a sequence in bvca (Σ, X^*) such that

- (a) $\sup_n |v_n|(\Omega) < \infty$,
- (b) $\{|v_n|: n \in \mathbb{N}\}$ is uniformly countably additive,
- (c) for each $A \in \Sigma$ the sequence $(v_n(A))$ is $\sigma(X^*, X)$ -convergent to some element v(A) of X^* .

Then the set function $v : \Sigma \ni A \mapsto v(A) \in X^*$ belongs to $bvca(\Sigma, X^*)$ and

$$\int_{\Omega} f \, d\nu_n \to \int_{\Omega} f \, d\nu \quad \text{for each } f \in \mathcal{L}^{\infty}(\Sigma, X).$$

Proof. In view of (c) and the Nikodým convergence theorem, $v_x \in ca(\Sigma)$ for each $x \in X$, i.e., v is countably additive in $\sigma(X^*, X)$. To prove that $v \in bvca(\Sigma, X^*)$ it is enough to show that $|v|(\Omega) < \infty$ (see [20, Theorem 6.1.3]). Note that for each $A \in \Sigma$ we have $||v(A)||_{X^*} \leq \liminf_n ||v_n(A)||_{X^*}$. Now let $(A_i)_{i=1}^k$ be a Σ -partition of Ω . Then by (a) we have

$$\sum_{i=1}^{k} \left\| v(A_{i}) \right\|_{X^{*}} \leq \sum_{i=1}^{k} \liminf_{n} \left\| v_{n}(A_{i}) \right\|_{X^{*}}$$
$$\leq \liminf_{n} \left(\sum_{i=1}^{k} \left\| v_{n}(A_{i}) \right\|_{X^{*}} \right)$$
$$\leq \liminf_{n} |v_{n}|(\Omega) \leq \sup_{n} |v_{n}|(\Omega) < \infty$$

It follows that $|\nu|(\Omega) < \infty$, i.e., $\nu \in \text{bvca}(\Sigma, X^*)$, and in view of Proposition 2.5 the proof is complete. \Box

In the theory of Riesz spaces the problem of weak*-compactness in the order duals of Riesz spaces has been studied by many authors (see [21,22,9,4]).

Recall that a σ -algebra Σ is said to be countably generated if there exists a countable subset of Σ that generates Σ as a σ -algebra. In particular, if Ω is a compact metric space, then any countable base for the topology of Ω generates the Borel sets as a σ -algebra. Now we are in position to characterize relatively $\sigma(\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}, \mathcal{L}^{\infty}(\Sigma, X))$ -sequentially compact subsets of $\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$ when Σ is countably generated.

Theorem 3.5. Assume that a σ -algebra Σ is countably generated and let \mathcal{M} be a subset of bvca(Σ , X^*). Then the following statements are equivalent:

- (i) $\{\Phi_{\nu}: \nu \in \mathcal{M}\}\$ is a relatively $\sigma(\mathcal{L}^{\infty}(\Sigma, X)^*_{\mathcal{C}}, \mathcal{L}^{\infty}(\Sigma, X))$ -sequentially compact subset of $\mathcal{L}^{\infty}(\Sigma, X)^*_{\mathcal{C}}$.
- (ii) \mathcal{M} is a relatively σ (bvca(Σ, X^*), $\mathcal{L}^{\infty}(\Sigma, X)$)-sequentially compact subset of bvca(Σ, X^*).
- (iii) The following conditions hold:
 - (a) $\sup_{\nu \in \mathcal{M}} |\nu|(\Omega) < \infty$.
 - (b) $|\mathcal{M}|$ is uniformly countably additive.
 - (c) For each $A \in \Sigma$ the set {v(A): $v \in M$ } is relatively $\sigma(X^*, X)$ -sequentially compact.
 - *Moreover, if X*^{*} *has the Radon–Nikodým property, then the condition* (c) *is superfluous.*

Proof. (i) \iff (ii) See Corollary 3.1.

(ii) \implies (iii) It follows from Theorem 3.3.

(iii) \implies (ii) Assume that the conditions (a), (b), (c) hold. Let \mathcal{B} be a countable set in Σ that generates Σ as a σ -algebra. Then the algebra \mathcal{A} generated by \mathcal{B} is countable (see [14, Lemma 4, p. 167]).

Let (v_n) be a sequence in \mathcal{M} . Then in view of (c) we can use a diagonal argument to select a subsequence (v_{k_n}) of (v_n) such that for each $A \in \mathcal{A}$, $(v_{k_n}(A))$ is a $\sigma(X^*, X)$ -Cauchy sequence, i.e., for each $A \in \mathcal{A}$, $\lim_n (v_{k_n})_X(A)$ exists for each $x \in X$. Since for each $x \in X$, the family $\{v_x : v \in \mathcal{M}\}$ in $ca(\Sigma)$ is uniformly countably additive, we conclude that for each $A \in \Sigma$, $\lim_n (v_{k_n})_X(A)$ (= $\lim_n v_{k_n}(A)(x)$) exists for each $x \in X$ (see [10, Lemma, p. 91]). This means that for each $A \in \Sigma$, $(v_{k_n}(A))$ is a $\sigma(X^*, X)$ -cauchy sequence. Since the space $(X^*, \sigma(X^*, X))$ is sequentially complete, it follows that for each $A \in \Sigma$ the sequence $(v_{k_n}(A))$ is $\sigma(X^*, X)$ -convergent to some element $v(A) \in X^*$. By Lemma 3.4 we conclude that $v \in bvca(\Sigma, X^*)$ and $\int_{\Omega} f dv_{k_n} \to \int_{\Omega} f dv$ for each $f \in \mathcal{L}^{\infty}(\Sigma, X)$. Note that if X^* has the Radon–Nikodým property, then the closed unit ball in X^* is $\sigma(X^*, X)$ -sequentially compact

Note that if X^* has the Radon–Nikodým property, then the closed unit ball in X^* is $\sigma(X^*, X)$ -sequentially compact (see [16, Corollary 2]). Since $\|\nu(A)\|_{X^*} \leq |\nu|(A) \leq |\nu|$ for each $A \in \Sigma$, in view of (a) we conclude that $\{\nu(A): \nu \in \mathcal{M}\}$ is a relatively $\sigma(X^*, X)$ -sequentially compact subset of X^* for each $A \in \Sigma$, i.e., (c) holds. \Box

Remark 3.1. (i) Some related results to Theorems 3.3 and 3.5 concerning relative $\sigma(L^{\infty}(\mu, X)_n^{\sim}, L^{\infty}(\mu, X))$ -sequential compactness in the order continuous dual $L^{\infty}(\mu, X)_n^{\sim}$ of $L^{\infty}(\mu, X)$ can be found in [24, Theorem 2.3 and Corollary 3.2]. It is known that $L^{\infty}(\mu, X)_n^{\sim}$ can be identified through integration with the space $L^1(\mu, X^*, X)$ of the weak*-equivalence classes of all weak*-measurable functions $g: \Omega \to X^*$ for which $\vartheta(g) \in L^1(\mu)$, where $\vartheta(g) = \sup\{|g_X|: x \in B_X\}$ and the supremum is taken in $L^0(\mu)$ (here $g_X(\omega) = g(\omega)(x)$ for $x \in X$ and all $\omega \in \Omega$). For each $g \in L^1(\mu, X^*, X)$ one can define a vector measure $v_g: \Sigma \to X^*$ by setting $v_g(A)(x) = \int_A \langle x, g(\omega) \rangle d\mu$ for all $A \in \Sigma$, $x \in X$. One can show (see [24, Corollary 3.2]) that if Σ is countably generated, then a subset H of $L^1(\mu, X^*, X)$ is relatively $\sigma(L^1(\mu, X^*, X), L^{\infty}(\mu, X))$ -sequentially compact if and only if the following conditions hold:

- (a) $\sup\{\int_{\Omega} \vartheta(g)(\omega) d\mu: g \in H\} < \infty$.
- (b) $\{\vartheta(g): g \in H\}$ is uniformly integrable.
- (c) For each $A \in \Sigma$ the set { $\nu_g(A)$: $g \in H$ } in X^* is relatively $\sigma(X^*, X)$ -sequentially compact.

(ii) Batt (see [6, Theorems 1 and 2]) found a characterization of relatively σ (bvca(Σ, X), $\mathcal{L}^{\infty}(\Sigma, X^*)$)-sequentially compact sets in bvca(Σ, X) and a characterization of relatively $\sigma(L^1(\mu, X), L^{\infty}(\mu, X^*))$ -sequentially compact sets in $L^1(\mu, X)$. Moreover, some related results concerning conditional σ (bvca(Σ, X), $L^{\infty}(\mu, X^*)$)-compactness in bvca(Σ, X) and conditional $\sigma(L^1(\mu, X), L^{\infty}(\mu, X^*))$ -compactness in $L^1(\mu, X)$ can be found in [1, Theorems 2.4 and 2.5]).

For a subset \mathcal{K} of $\mathcal{L}^{\infty}(\Sigma, X)^*_c$ let $\mathcal{M}_{\mathcal{K}} = \{ \nu \in \mathsf{bvca}(\Sigma, X^*) \colon \Phi_{\nu} \in \mathcal{K} \}.$

Now we are in position to prove a vector-valued version of Theorem 1.1 of [28] and Theorem 8 of [27] when X is a reflexive Banach space.

Theorem 3.6. Assume that X is a reflexive Banach space. Then for bounded subset \mathcal{K} of $\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}$ the following statements are equivalent:

- (i) \mathcal{K} is relatively $\sigma(\mathcal{L}^{\infty}(\Sigma, X)^*, \mathcal{L}^{\infty}(\Sigma, X)^{**})$ -compact.
- (ii) \mathcal{K} is relatively $\sigma(\mathcal{L}^{\infty}(\Sigma, X)^*, \mathcal{L}^{\infty}(\Sigma, X)^{**})$ -sequentially compact.

- (iii) \mathcal{K} is relatively $\sigma(\mathcal{L}^{\infty}(\Sigma, X)^*, \mathcal{L}^{\infty}(\Sigma, X))$ -sequentially compact.
- (iv) The set $\{|v|: v \in \mathcal{M}_{\mathcal{K}}\}$ in $ca^+(\Sigma)$ is uniformly countably additive.

Proof. (i) \iff (ii) It follows from the Eberlein–Šmulian theorem.

(ii) \implies (iii) It is obvious.

(iii) \implies (iv) Assume that \mathcal{K} is relatively $\sigma(\mathcal{L}^{\infty}(\Sigma, X)^*, \mathcal{L}^{\infty}(\Sigma, X))$ -sequentially compact. Since $\mathcal{L}^{\infty}(\Sigma, X)_c^*$ is sequentially closed in $(\mathcal{L}^{\infty}(\Sigma, X)^*, \sigma(\mathcal{L}^{\infty}(\Sigma, X)^*, \mathcal{L}^{\infty}(\Sigma, X)))$ (see Corollary 3.2), \mathcal{K} is a relatively $\sigma(\mathcal{L}^{\infty}(\Sigma, X)_c^*, \mathcal{L}^{\infty}(\Sigma, X))$ -sequentially compact subset of $\mathcal{L}^{\infty}(\Sigma, X)_c^*$. In view of Theorem 3.3 the set { $|v|: v \in \mathcal{M}_{\mathcal{K}}$ } is uniformly countably additive.

(iv) \implies (i) Assume that the set { $|\nu|: \nu \in \mathcal{M}_{\mathcal{K}}$ } in $ca^+(\Sigma)$ is uniformly countably additive. Then by [8, Corollary 1] $\mathcal{M}_{\mathcal{K}}$ is a relatively σ (bvca(Σ, X^*), bvca(Σ, X^*)*)-compact subset of bvca(Σ, X^*). This means that \mathcal{K} is relatively compact set in $(\mathcal{L}^{\infty}(\Sigma, X)_c^*, \sigma(\mathcal{L}^{\infty}(\Sigma, X)_c^*, (\mathcal{L}^{\infty}(\Sigma, X)_c^*)))$. Moreover, by Corollary 3.2 we obtain that $\mathcal{L}^{\infty}(\Sigma, X)_c^*$ is a closed subset of the Banach space $\mathcal{L}^{\infty}(\Sigma, X)^*$. Hence $\mathcal{L}^{\infty}(\Sigma, X)_c^*$ is a closed set in $(\mathcal{L}^{\infty}(\Sigma, X)^*, \sigma(\mathcal{L}^{\infty}(\Sigma, X)^*, \mathcal{L}^{\infty}(\Sigma, X)^*))$, so

 $\mathrm{cl}_{\sigma(\mathcal{L}^{\infty}(\Sigma,X)^*,\mathcal{L}^{\infty}(\Sigma,X)^{**})}\mathcal{K}\subset\mathcal{L}^{\infty}(\Sigma,X)_{c}^{*}.$

Note that (see [17, Corollary 3.3.3])

$$\sigma\left(\mathcal{L}^{\infty}(\Sigma,X)^{*},\mathcal{L}^{\infty}(\Sigma,X)^{**}\right)\Big|_{\mathcal{L}^{\infty}(\Sigma,X)^{*}_{c}} = \sigma\left(\mathcal{L}^{\infty}(\Sigma,X)^{*}_{c},\left(\mathcal{L}^{\infty}(\Sigma,X)^{*}_{c}\right)^{*}\right).$$
(1)

It follows that

$$cl_{\sigma(\mathcal{L}^{\infty}(\Sigma,X)_{c}^{*},(\mathcal{L}^{\infty}(\Sigma,X)_{c}^{*})^{*})}\mathcal{K} = cl_{\sigma(\mathcal{L}^{\infty}(\Sigma,X)^{*},\mathcal{L}^{\infty}(\Sigma,X)^{**})}\mathcal{K}.$$
(2)

Since $cl_{\sigma(\mathcal{L}^{\infty}(\Sigma,X)_{c}^{*},(\mathcal{L}^{\infty}(\Sigma,X)_{c}^{*})^{*})}\mathcal{K}$ is a $\sigma(\mathcal{L}^{\infty}(\Sigma,X)_{c}^{*},(\mathcal{L}^{\infty}(\Sigma,X)_{c}^{*})^{*})$ -compact subset of $\mathcal{L}^{\infty}(\Sigma,X)_{c}^{*}$, in view of (1) and (2) we see that $cl_{\sigma(\mathcal{L}^{\infty}(\Sigma,X)^{*},\mathcal{L}^{\infty}(\Sigma,X)^{*},\mathcal{K})}$ is a $\sigma(\mathcal{L}^{\infty}(\Sigma,X)^{*},(\mathcal{L}^{\infty}(\Sigma,X)^{**})$ -compact subset of $\mathcal{L}^{\infty}(\Sigma,X)^{*}$, i.e., \mathcal{K} is relatively $\sigma(\mathcal{L}^{\infty}(\Sigma,X)^{*},\mathcal{L}^{\infty}(\Sigma,X)^{**})$ -compact, as desired. \Box

As a consequence of Theorem 3.6 we obtain a Grothendieck type theorem saying that $\sigma(\mathcal{L}^{\infty}(\Sigma, X)^*, \mathcal{L}^{\infty}(\Sigma, X))$ -convergent sequences in $\mathcal{L}^{\infty}(\Sigma, X)_c^*$ are also $\sigma(\mathcal{L}^{\infty}(\Sigma, X)^*, \mathcal{L}^{\infty}(\Sigma, X)^*)$ -convergent.

Corollary 3.7. Assume that X is a reflexive Banach space. Let $\Phi_n \in \mathcal{L}^{\infty}(\Sigma, X)^*_c$ for $n \in \mathbb{N}$ and $\Phi \in \mathcal{L}^{\infty}(\Sigma, X)^*_c$. Then the following statements are equivalent:

(i) $\Phi_n \to \Phi$ for $\sigma(\mathcal{L}^{\infty}(\Sigma, X)^*, \mathcal{L}^{\infty}(\Sigma, X)^{**})$. (ii) $\Phi_n \to \Phi$ for $\sigma(\mathcal{L}^{\infty}(\Sigma, X)^*, \mathcal{L}^{\infty}(\Sigma, X))$.

Proof. (i) \implies (ii) It is obvious.

(ii) \Longrightarrow (i) Assume that $\Phi_n \to \Phi$ for $\sigma(\mathcal{L}^{\infty}(\Sigma, X)^*, \mathcal{L}^{\infty}(\Sigma, X))$ and let (Φ_{k_n}) be a subsequence of (Φ_n) . Then $\mathcal{K} = \{\Phi_{k_n}: n \in \mathbb{N}\}$ is a relatively sequentially compact subset of $(\mathcal{L}^{\infty}(\Sigma, X)^*, \sigma(\mathcal{L}^{\infty}(\Sigma, X)^*, \mathcal{L}^{\infty}(\Sigma, X)))$. By Theorem 3.6 \mathcal{K} is a relatively sequentially compact subset of $(\mathcal{L}^{\infty}(\Sigma, X)^*, \sigma(\mathcal{L}^{\infty}(\Sigma, X)^*, \mathcal{L}^{\infty}(\Sigma, X)))$, so there exists a subsequence $(\Phi_{l_{k_n}})$ of (Φ_{k_n}) such that $\Phi_{l_{k_n}} \to \Phi$ for $\sigma(\mathcal{L}^{\infty}(\Sigma, X)^*, \mathcal{L}^{\infty}(\Sigma, X)^{**})$. This means that $\Phi_n \to \Phi$ for $\sigma(\mathcal{L}^{\infty}(\Sigma, X)^*, \mathcal{L}^{\infty}(\Sigma, X)^{**})$, as desired. \Box

Remark 3.2. Theorems 3.3 and 3.6 are modifications and corrections of Theorems 2.1 and 3.1 of [23], where we incorrectly considered the Banach space $B(\Sigma, X)$ of all *X*-valued totally Σ -measurable functions instead of the space $\mathcal{L}^{\infty}(\Sigma, X)$.

4. Relationships between operators on $\mathcal{L}^{\infty}(\Sigma, X)$

We start with the following useful result.

Proposition 4.1. For a linear operator $T : \mathcal{L}^{\infty}(\Sigma, X) \to Y$ the following statements are equivalent:

(i) $y^* \circ T \in \mathcal{L}^{\infty}(\Sigma, X)^*_c$ for each $y^* \in Y^*$. (ii) T is $(\sigma(\mathcal{L}^{\infty}(\Sigma, X), \mathcal{L}^{\infty}(\Sigma, X)^*_c), \sigma(Y, Y^*))$ -continuous.

(iii) *T* is $(\tau(\mathcal{L}^{\infty}(\Sigma, X), \mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}), \|\cdot\|_{Y})$ -continuous.

Proof. (i) \iff (ii) See [3, Theorem 9.26]; (ii) \iff (iii) See [3, Ex. 11, p. 149]. \Box

Note that every σ -smooth operator $T : \mathcal{L}^{\infty}(\Sigma, X) \to Y$ is $(\tau(\mathcal{L}^{\infty}(\Sigma, X), \mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}), \|\cdot\|_{Y})$ -continuous. On the other hand, since $\mathcal{L}^{\infty}(\Sigma, X)_{c}^{*} \subset \mathcal{L}^{\infty}(\Sigma, X)^{*}$, we derive that every $(\tau(\mathcal{L}^{\infty}(\Sigma, X), \mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}), \|\cdot\|_{Y})$ -continuous linear operator $T : \mathcal{L}^{\infty}(\Sigma, X) \to Y$ is bounded.

Proposition 4.2. Let $T : \mathcal{L}^{\infty}(\Sigma, X) \to Y$ be a $(\tau(\mathcal{L}^{\infty}(\Sigma, X), \mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}), \|\cdot\|_{Y})$ -continuous linear operator. Then its representing measure $m_{T} \in \text{fasv}(\Sigma, \mathcal{L}(X, Y))$ is countably additive in W*OT and for each $y^{*} \in Y^{*}$ we have

$$(y^* \circ T)(f) = \int_{\Omega} f d(m_T)_{y^*}$$
 for all $f \in \mathcal{L}^{\infty}(\Sigma, X)$.

Proof. Let $y^* \in Y^*$ be given. Since $y^* \circ T \in \mathcal{L}^{\infty}(\Sigma, X)^*_c$ (see Proposition 4.1), by Corollary 3.1 there exists $\nu_{y^*} \in bvca(\Sigma, X^*)$ such that $(y^* \circ T)(f) = \int_{\Omega} f \, d\nu_{y^*}$ for all $f \in \mathcal{L}^{\infty}(\Sigma, X)$. Hence for each $A \in \Sigma$, $x \in X$ we have

$$(m_T)_{y^*}(A)(x) = y^* (m_T(A)(x)) = y^* (T(\mathbb{1}_A \otimes x))$$
$$= \int_{\Omega} (\mathbb{1}_A \otimes x) \, d\nu_{y^*} = \nu_{y^*}(A)(x).$$

It follows that $(m_T)_{y^*} = v_{y^*} \in bvca(\Sigma, X^*)$, i.e., m_T is countably additive in W*OT. \Box

Now using Theorem 3.3 we are ready to establish some relationships between different classes of operators on $\mathcal{L}^{\infty}(\Sigma, X)$.

Theorem 4.3. Let $T : \mathcal{L}^{\infty}(\Sigma, X) \to Y$ be a weakly compact and $(\tau(\mathcal{L}^{\infty}(\Sigma, X), \mathcal{L}^{\infty}(\Sigma, X)_{c}^{*}), \|\cdot\|_{Y})$ -continuous linear operator. Then T is σ -smooth.

Proof. Since the conjugate operator $T^*: Y^* \to \mathcal{L}^{\infty}(\Sigma, X)^*$ is weakly compact, the set $\{y^* \circ T: y^* \in B_{Y^*}\}$ is relatively $\sigma(\mathcal{L}^{\infty}(\Sigma, X)^*, \mathcal{L}^{\infty}(\Sigma, X)^{**})$ -compact, and hence by the Eberlein–Šmulian theorem, $\{y^* \circ T: y^* \in B_{Y^*}\}$ is relatively $\sigma(\mathcal{L}^{\infty}(\Sigma, X)^*, \mathcal{L}^{\infty}(\Sigma, X)^{**})$ -sequentially compact in $\mathcal{L}^{\infty}(\Sigma, X)^*$. It follows that $\{y^* \circ T: y^* \in B_{Y^*}\}$ is a relatively $\sigma(\mathcal{L}^{\infty}(\Sigma, X)^*, \mathcal{L}^{\infty}(\Sigma, X)^{**})$ -sequentially compact in $\mathcal{L}^{\infty}(\Sigma, X)^*$. It follows that $\{y^* \circ T: y^* \in B_{Y^*}\}$ is a relatively $\sigma(\mathcal{L}^{\infty}(\Sigma, X)^*, \mathcal{L}^{\infty}(\Sigma, X))$ -sequentially compact subset of $\mathcal{L}^{\infty}(\Sigma, X)^*$. Since $\{y^* \circ T: y^* \in B_{Y^*}\} \subset \mathcal{L}^{\infty}(\Sigma, X)^*_c$ (see Proposition 4.1) and $\mathcal{L}^{\infty}(\Sigma, X)^*_c$ is a sequentially $\sigma(\mathcal{L}^{\infty}(\Sigma, X)^*, \mathcal{L}^{\infty}(\Sigma, X))$ -closed subset of $\mathcal{L}^{\infty}(\Sigma, X)^*$ (see Corollary 3.2), we derive that $\{y^* \circ T: y^* \in B_{Y^*}\}$ is a relatively $\sigma(\mathcal{L}^{\infty}(\Sigma, X)^*_c, \mathcal{L}^{\infty}(\Sigma, X))$ -sequentially compact subset of $\mathcal{L}^{\infty}(\Sigma, X)^*_c$. But $\{y^* \circ T: y^* \in B_{Y^*}\} = \{\Phi_{(m_T)y^*}: y^* \in B_{Y^*}\}$ (see Proposition 4.2), so by Theorem 3.3 the set $\{|(m_T)y^*|: y^* \in B_{Y^*}\}$ in $ca(\Sigma)$ is uniformly countably additive. This means that m_T is variationally semi-regular and hence T_{m_T} is σ -smooth (see Proposition 2.2). In view of Proposition 4.2 and (2.1) for each $y^* \in Y^*$ we have

$$y^*(T(f)) = \int_{\Omega} f d(m_T)_{y^*} = y^*(T_{m_T}(f)) \text{ for all } f \in \mathcal{L}^{\infty}(\Sigma, X).$$

It follows that $T = T_{m_T}$, i.e., T is σ -smooth. \Box

Theorem 4.4. Let $T : \mathcal{L}^{\infty}(\Sigma, X) \to Y$ be a $(\tau(\mathcal{L}^{\infty}(\Sigma, X), \mathcal{L}^{\infty}(\Sigma, X)_c^{\circ}), \|\cdot\|_Y)$ -continuous linear operator. Assume that either Y^* has the Radon–Nikodým property or Y contains no isomorphic copy of c_0 . Then T is σ -smooth.

Proof. Assume first that Y^* has the Radon–Nikodým property. By Proposition 4.1 T is $(\sigma(\mathcal{L}^{\infty}(\Sigma, X), \mathcal{L}^{\infty}(\Sigma, X)_c^*), \sigma(Y, Y^*))$ -continuous. Let $T^* : Y^* \to \mathcal{L}^{\infty}(\Sigma, X)_c^*$ stand for the conjugate operator for T. Then T^* is $(\sigma(Y^*, Y), \sigma(\mathcal{L}^{\infty}(\Sigma, X)_c^*), \sigma(Y, Y^*))$ -continuous (see [7, Chapter IV, §6, Proposition 1]). Since B_{Y^*} is $\sigma(Y^*, Y)$ -sequentially compact (see [16, Corollary 2]), we obtain that $T^*(B_{Y^*})$ is a relatively $\sigma(\mathcal{L}^{\infty}(\Sigma, X)_c^*, \mathcal{L}^{\infty}(\Sigma, X))$ -sequentially compact subset of $\mathcal{L}^{\infty}(\Sigma, X)_c^*$. Note that in view of Proposition 4.2 we have that $T^*(B_{Y^*}) = \{\Phi_{(m_T)_{Y^*}}: y^* \in B_{Y^*}\}$. Hence, by Theorem 3.3 the set $\{|(m_T)_{Y^*}|: y^* \in B_{Y^*}\}$ is uniformly countably additive, i.e., m_T is variationally semi-regular. This means that T_{m_T} is σ -smooth (see Proposition 2.2). Now, arguing as in the proof of Theorem 4.3 we obtain that $T = T_{m_T}$, i.e., T is σ -smooth.

Now we assume that *Y* contains no isomorphic copy of c_0 . In view of Proposition 4.2 $m_T \in \text{fasv}(\Sigma, \mathcal{L}(X, Y))$ is countably additive in W*OT. Hence by [5,6, Theorem 6, Theorem 5 and Remark 7] we obtain that m_T is variationally semi-regular. Then by Proposition 2.2 T_{m_T} : $\mathcal{L}^{\infty}(\Sigma, X) \to Y$ is σ -smooth. Arguing as in the proof of Theorem 4.3 we derive that $T = T_{m_T}$, i.e., *T* is σ -smooth. \Box

Acknowledgments

The author is grateful to the referees for valuable remarks and suggestions.

References

- C. Abott, E. Bator, R. Bilyeu, P. Lewis, Weak precompactness, strong boundedness, and weak complete continuity, Math. Proc. Cambridge Philos. Soc. 108 (1990) 325–335.
- [2] C.D. Aliprantis, K.C. Border, Infinite Dimensional Analysis, 2nd ed., Springer-Verlag, Berlin, Heidelberg, 1999.

- [3] C.D. Aliprantis, O. Burkinshaw, Positive Operators, Academic Press, New York, 1995.
- [4] C.D. Aliprantis, O. Burkinshaw, Locally Solid Riesz Spaces with Applications to Economics, 2nd ed., Math. Surveys Monogr., vol. 105, AMS, 2003.
- [5] J. Batt, Applications of the Orlicz-Pettis to operator measures and compact and weakly compact transformations on the spaces of continuous functions, Rev. Roumaine Math. Pures Appl. 14 (7) (1969) 907-935.
- [6] J. Batt, On the weak compactness in spaces of vector-valued measures and Bochner-integrable functions, in connection with the Radon-Nikodým property of Banach spaces, Rev. Roumaine Math. Pures Appl. 29 (3) (1974) 285-304.
- [7] N. Bourbaki, Élements de Mathématique, Livre V, Espaces Vectoriels Topologiques, Paris, 1953-1955.
- [8] J.K. Brooks, Weak compactness in the space of vector measures, Bull. Amer. Math. Soc. 78 (2) (1972) 284-287.
- [9] O. Burkinshaw, Weak compactness in the order dual of vector lattices, Trans. Amer. Math. Soc. 187 (1974) 105-125.
- [10] J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math., vol. 92, Springer-Verlag, 1984.
- [11] J. Diestel, J.J. Uhl, Vector Measures, Math. Surveys, vol. 15, Amer. Math. Soc., Providence, RI, 1977.
- [12] N. Dinculeanu, Vector Integration and Stochastic Integration in Banach Spaces, Wiley-Interscience, New York, 2000.
- [13] I. Dobrakov, On integration in Banach spaces I, Czechoslovak Math. J. 20 (95) (1970) 511-536.
- [14] N. Dunford, J. Schwartz, Linear Operators, Part I, Interscience, New York, 1958.
- [15] K. Feledziak, M. Nowak, Integral representation of linear operators on Orlicz-Bochner spaces, Collect. Math. 61 (3) (2010) 277-290.
- [16] J. Hagler, W.B. Johnson, On Banach spaces whose dual balls are not weak* sequentially compact, Israel J. Math. 28 (4) (1977) 325-330.
- [17] L.V. Kantorovitch, G.P. Akilov, Functional Analysis, Pergamon Press, Oxford-Elmsford, NY, 1982.
- [18] P.W. Lewis, Some regularity conditions on vector measures with finite semi-variation, Rev. Roumaine Math. Pures Appl. 15 (1970) 375-384.
- [19] P.W. Lewis, Vector measures and topology, Rev. Roumaine Math. Pures Appl. 16 (1971) 1201-1209.
- [20] Pei-Kee Lin, Köthe-Bochner Function Spaces, Birkhäuser, Boston, 2003.
- [21] H. Nakano, Modulared Semi-ordered Linear Spaces, Maruzen Co., Tokyo, 1950.
- [22] H. Nakano, Linear Lattices, Wayne State Univ. Press, Detroit, Michigan, 1966.
- [23] M. Nowak, A Grothendieck-type theorem for the space of totally measurable functions, Indag. Math. (N.S.) 20 (1) (2009) 151-157.
- [24] M. Nowak, Conditional weak compactness and weak sequential compactness in vector-valued function spaces, Indag. Math. 21 (2011) 40-51.
- [25] C. Swartz, A generalized Orlicz-Pettis theorem and applications, Math. Z. 163 (1978) 283-290.
- [26] C. Swartz, The Nikodým theorems for operator measures, Publ. Inst. Math. (Beograd) (N.S.) 29 (1981) 221-227.
- [27] H. Schaefer, X.-D. Zhang, A variant of Grothendieck's theorem on weak* convergent sequences, Arch. Math. 65 (1995) 251-254.
- [28] X.-D. Zhang, On weak compactness is spaces of measures, J. Funct. Anal. 143 (1997) 1-9.