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1. Introduction and terminology

Let (X,] - |lx) and (Y, | - |ly) be real Banach spaces and let Bx stand for the closed unit ball in X. Let X* and Y*
stand for the Banach duals of X and Y, respectively. Denote by £(X,Y) the space of all bounded linear operators between
Banach spaces X and Y. The weak® operator topology (briefly, W*OT) is the topology on £(X,Y) defined by the family of
seminorms {py,: y* € Y*}, where py,(U) :=|y* o U|x+ for U e L(X,Y).

By o(L,K) and 7(L, K) we will denote the weak topology and the Mackey topology on L with respect to a dual pair
(L, K). For a topological vector space (L, ) by (L, T)* we will denote its topological dual. Let N and R stand for the sets of
natural and real numbers.

Now we recall basic terminology concerning operator measures (see [12,5,6,18,19]). Let X be a o -algebra of subsets of a
non-empty set £2. An additive mapping m: ¥ — L(X,Y) is called an operator-valued measure. We define the semivariation
m(A) of m on A € ¥ by m(A) :=sup || Xm(A;)(x;)||y, where the supremum is taken over all finite disjoint sequences (A;)
in X with A; C A and x; € Bx for each i. By fasv(X, £(X,Y)) we denote the set of all finitely additive measures m: X —
L(X,Y) with finite semivariation, i.e., M(£2) < oco.

For y* € Y* let my+ : ¥ — X* be a set function defined by my«(A)(x) := (m(A)(x), y*) for x € X. Then my~ is an additive
measure and M« (A) = |my+|(A), where |my+|(A) stands for the variation of my« on A € X. Moreover, for A € ¥ we have
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M(A) = sup{|my«|(A): y* € By+} (11)

(see [5, Theorem 5]). Recall that an operator measure m: ¥ — £(X,Y) is said to be countably in W*OT if for each y* e Y*,
lmy«(An)llx= — O whenever A, | @ (see [5,6, p. 92]).

Following Lewis (see [18,19]) a measure m: ¥ — L£(X,Y) is said to be variationally semi-regular if m(A,;) — 0 whenever
Ap | ¥ and (Ap) C X. (Dobrakov [13] uses the term “continuous”, Swartz [25,26] uses the term “strongly bounded”). Note
that m: ¥ — £(X,Y) is variationally semi-regular if and only if M(§2) < co and the family {|my«|: y* € By+} is uniformly
countably additive, i.e., the set {|my+|: y* € By+} in ca(X) (= the Banach space of all signed countably additive measures)
is relatively weakly compact (see [10, Theorem 13, p. 92]).

Note that for a measure v: ¥ — X*(Y =R) we have V(A) = |v|(A) for A € X. Hence v € fasv(X, X*) is variation-
ally semi-regular if and only if |v|(£2) < oo and v is countably additive, i.e. ||[V(A;)|xx — O whenever A, | @ (see [11,
Proposition 9, p. 3]). Let bva(X, X*) stand for the Banach space of all vector measures v : ¥ — X* of bounded variation,
equipped with the norm |[v| = |v|(£2). By bvca(X, X*) we denote a linear subspace of bva(X, X*) consisting of all those
v € bva(X, X*) that are countably additive. For v € bvca(X, X*) and x € X let vx(A) = v(A)(x) for A € X. Then vy € ca(X).
Note that bvca(X, R)) =ca(X).

By S(X, X) we denote the space of all X-valued X-simple functions s = Zle(JlAi ® Xi), where (Ai):-;] is a disjoint
sequence in X, x; € X for 1 <i<k and (14, ® x;)(w) = L4, (w)x; for w € £2. A function f: 2 — X is said to be strongly
X' -measurable if there exists a sequence (s;) in S(X, X) such that ||sp(w) — f(w)||x — 0 for all w € £2. It is known that if
f: 8 — X is strongly X-measurable, then there exists a sequence (s;) in S(X, X) such that ||sp(w) — f(w)||x — 0 for all
we R and |sp(w)|lx < || f(w)|x for w € 2 and all n € N (see [12, Theorem 1.6, p. 4]). By £°°(X, X) we denote the Banach
space of all bounded strongly X'-measurable functions f : £2 — X, equipped with the supremum norm | - ||. Let £L>®(X, X)*
and £*(X, X)** stand for the Banach dual and the Banach bidual of £>*(X, X) respectively. For f € L*(X,X) and Ae ¥
let us put

I1la=sup|f @] .

Let m € fasv(X, £L(X,Y)). Then for s = Zf:] (1a; ®x;) € S(X, X) and A € ¥ we can define the integral by the equality

k

/sdm =) mANA)X).

y i=1

The integral is independent of the representation chosen and is a linear operator from S(X, X) to Y. Moreover, for each
seS(X, X) and A € X the following inequality holds:

H/sdm
A

Assume now that m € fasv(X, £(X,Y)) is variationally semi-regular. Let f € £°°(X, X) and A € ¥, and choose a se-
quence (sp) in S(X, X) such that [|(Lasp)(w) — (Laf)(w)||x — 0 for w € £2 and sup,, ||Snlla < || f]la. Then

Hf spdm
A

It follows that the indefinite integrals [, s, dm are uniformly countably additive measures on X. This means that f is
m-integrable and the integral of f on a set A is defined by equality:

/fdm::li’?lfsndm
A

A

(see [13, Definition 2, p. 523 and Theorem 5, p. 524]). Dobrakov [13, Example 7/, pp. 524-525] showed that the assumption
of semi-regularity of m on X is necessary for every f € £L>(X, X) to be m-integrable. Define the integration operator
Tm:L%(X,X)—Y by

<lIslia - m(A).
Y

<N flla - m(A).
Y

() = [ £dm.
Q
In particular, for v € bvca(X, X*) the integration functional @, on £°°(X, X) is given by

%(f)zg/fdv.
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For a bounded linear operator T : £L®(X, X) — Y let my : ¥ — L£(X,Y) stand for its representing measure, i.e.,

mr(A)(x) =T(Mag®x) forAe XY andxe X.

Then m7(2) < ||T| < oo, i.e., my € fasv(X, £(X,Y)). In particular, if ® € £L®(X, X)* and ve(A)(X) = (14 ® x) for
Ae X, xe X, then ve € bva(¥, X*). Then (mr)y+ = vy+or for each y* e Y*.
Now we introduce a new class of linear operators from £°°(X, X) to Y.

Definition 1.1. A bounded linear operator T : L®(X,X) — Y is said to be o-smooth if |T(fs)|ly — O whenever
| fn(@)|lx — O for all w € £2 and sup, || fall < oo.

By L£*°(X, X)¥ we will denote the space of all o-smooth functionals on £L*°(X, X).

Note that if X =R then the space £°°(X, R) coincides with the Dedekind o -complete Banach lattice £>*(X) (= B(X))
of all bounded X-measurable real functions defined on £2, and £%°(X,R)? coincides with the o-order continuous dual
LX) of L(X) (see [2, § 13.1]).

In Section 2 we show that if m € fasv(X, £(X,Y)) is variationally semi-regular, then the corresponding integration
operator Ty, : L2(X, X) — Y is o-smooth. Conversely, it is shown that every o-smooth operator T : £L*(X, X) — Y ad-
mits an integral representation with respect to its representing measure. We prove a Banach-Steinhaus type theorem for
o-smooth operators T : L2(X, X) — Y. In Section 3 we study the topological properties of the space L*(X, X)*. We
prove a form of a generalized Nikodym convergence theorem for £>°(X, X)*. As an application we characterize relatively
o (L®(X, X)E, L*(X, X))-sequentially compact subsets of £L°°(X, X)%. We derive a Grothendieck type theorem saying that
o (L®(X, X)*, L*(X, X))-convergent sequences in L%(X, X)¥ are o (L¥(X, X)*, L*(X, X)**)-convergent. In Section 4
we establish the relationships between different classes of linear operators on £ (X, X).

2. o -smooth operators on L (X, X)

In this section we establish the relationships between o-smooth operators T : £°(X, X) — Y and their representing
measures m: X — L(X,Y).
Assume m € fasv(X, £(X, Y)) be variationally semi-regular, and let

Tm(f):/fdm forall f € £L&(X, X).
2

For every A € X' let us put

(Ta)a(f) = Tn(La f) = / fdm,
A

and

| (Tm)al| =sup{Hf fde (fel™(Z, X)and | f| < 1}.
Y
A

Then for each y* € Y* we have
Y (Tm(f)) =/fdmy* forall f e £L2(X2, X). (2.1)
Q

The following lemma will be useful.
Lemma 2.1. Let m € fasv(X, £L(X, Y)) be variationally semi-regular. Then for every A € X we have m(A) = ||(Tm) all-

Proof. Let A € X. Then

m(A) = sup{ H/sdm
A

Hence mM(A) < [[(Tm)all. Now let f € £°(X, X) with | f|| < 1. Then there exists a sequence (s,) in S(X, X) such that
Isn(w) — f(w)||x — 0 for each w € 2 and |sp(w)|lx < || f(w)||x for each w € £2 and n € N. Hence sup,, ||sn|| < || f]| <1 and
(Tm)a(f) = [, fdm =1lim, [, spdm. Fix & > 0 and choose n, € N such that || [, fdm — [, s;, dm|ly < &. Hence

1seS(X,X), sl <1}.
Y
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H/fdm <H/fdm—/sn€dm +H/sn8dm
A Yol A Yol

It follows that ||(Tm)all < fi(A). O

< & +m(A).
y

Now we are ready to prove our main results.

Proposition 2.2. Assume that m € fasv(X, £L(X, Y)) is variationally semi-regular. Then the integration operator Tr, : L(X, X) > Y
is o -smooth.

Proof. By Lemma 2.1 we have that ||T| = M(£2) < oo. Since m is variationally semi-regular, in view of (1.1) the set
{Imy«|: y* € By«} is uniformly countably additive. Hence there exists p € cat(X) such that the family {|my«|: y* € By}
is uniformly p-continuous, i.e., M(A,) — 0 whenever (A;) — 0 (see [10, Theorem 13, p. 92]).

Assume that (f,) is a sequence in £°(X, X) such that || fp(w)||x — 0 for all w € £2 and a = sup, || fn|| < oo, and let
& > 0 be given. For n:m >0 and ne N let us put

An() = {w e 2: | fulw)]|| = n}.

Then w(An(n)) — 0. Hence m(An(n)) — 0, and by Lemma 2.1 we have
| Tm) aweny | = sup{ | T @Ay H) [y 1511 < 1} —>0.

Hence there exists n, € N such that for n > n, we get

1
Tm(—]]-An(n)fn) <
a Y

e
2a

Moreover, for n € N we have

~

. e, ”Tm(ﬂAn(n)fn)vag'

e
[Tm@e < f)ly < ITmll - 1o~ aon fall < ITml -0 = .
Hence for n > n, we have

” Tm(fn)”y < HTm(]lAn(n)f")Hy + H Tm(]lf?\/\n(rl)fn)HY Sé.
This means that Ty, is c-smooth. O

Proposition 2.3. Assume that T : L (X, X) — Y is a o -smooth operator. Then its representing measure mr € fasv(X, L(X,Y)) is
variationally semi-regular and

T(f):TmT(f):/fme forall f e L2(X, X).
Q
Moreover, |T|| = mr(£2).

Proof. Assume that A, | . Then for every n € N there exist a X-partition (An,i)(‘”

ity of Ap and xp; € Bx, 1<i<kp such
that

1
+ -
n

Y

kn
> mr(Ani)(Xn,i)

i=1

mr (An) <

Let s, = Z?‘; (La,; ® Xy,i) for n € N. Then [|sp(w)]lx < 14,(@) < Lo(w) for w € £2 and all ne N, and 14,(w) | 0 for
w € £2. Hence ||sp(w)||x — 0 for w € £2 and sup,, ||sp|| < 1. Therefore

kn

> mr(Ani) (Xn.i)

i=1

[Tl = —o0,

Y

so mr(Ap) — 0, as desired.
Now let f € £L(X, X). Then there exists a sequence (s;) in S(X, X) such that ||s;(w) — f(w)||lx — 0 for w € £ and
Isn(@)|lx < || f(w)|lx for w € §2 and all n € N. Then sup,, ||sp — f| < 2| f|l < oo. It follows that

T(f):lilgnT(sn)zlirrln[snme:ffme:TmT(f). O
2 Q
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Remark 2.1. Note that some similar results concerning the problem of integral representation (with respect to operator-
valued measures) of some class of linear operators on the Lebesgue-Bochner space L>°(u, X) have been established in [15].

Let £L(L*(X, X), Y) stand for the space of all bounded linear operators from £>*(X, X) to Y. The topology 7; of simple
convergence is a locally convex topology on L(L*(X, X), Y) defined by the family of seminorms {ps: f € L>(X, X)}, where
pr(M)=T(Hlly forall T € LL®(X, X),Y). By L(L®(X, X),Y) we denote the set of all those T € L(L*®(X, X), Y) that
are o -smooth.

We will need the following Nikodym convergence type theorems (see [26, Proposition 13], [25, Proposition 11]).

Proposition 2.4. Let my, € fasv(X, £(X,Y)) be variationally semi-regular for k € N. Assume that T(f) = limy fg f dmy, exists in
(Y, |l - |ly) foreach f € L®(X, X). Then mt € fasv(X, L(X,Y)) is variationally semi-regular and supy, fﬁk(An)—n>0 as Ay | 9.

Proposition 2.5. Let my € fasv(X, L(X,Y)) be variationally semi-regular for k € N and assume that m(A)(x) := limy my(A)(x)
exists for each A € X and x € X. If m € fasv(X, L(X, Y)) is variationally semi-regular and supy, mk(An)—>0 as A, | 9, then
limy [, fdmy = [, fdm foreach f € L2(Z, X).

Now we are ready to state the following Banach-Steinhaus type theorem for o -smooth operators from £>*°(X, X) to Y.

Theorem 2.6. Let Ty : L(X, X) — Y be o-smooth operators for k € N. Assume that T(f) := limy Ty (f) exists in (Y, | - |ly)
foreach f € LX(X,X). Then T : L>*(X, X) — Y is a o-smooth operator and the family {Ty: k € N} is uniformly o -smooth, i.e.,
supy ||Tk(fn)||y—n>0for any sequence (fn) in L°°(X, X) such that || fu(w)|ly — 0 for all w € £2 and sup,, || fnll < co.

Proof. Let my € fasv(X, £(X,Y)) be the representing measures for Ty, k € N. By Proposition 2.3 my € fasv(X, L(X,Y))
are variationally semi-regular for k € N. Then by Proposition 2.4 mr € fasv(X, £(X,Y)) is variationally semi-regular and
supy my(An) — 0 as Ay | @. Since mp(A)(x) = lim, my (A)(x) for each A € ¥ and x € X, in view of Proposition 2.5 it follows

that limy, Tx(f) = f_Q fdmr for each f e £L>*(X, X). Hence T = Ty,;, and by Proposition 2.2 T is o -smooth.
Now we shall show that the family {Ty: k € N} is uniformly o -smooth. Note first that if A, | @, (A;) C X, then by (1.1)
we get

supfii(An) = sup{|(mi)y+ |(An): y* € By+, k € N} — 0.
k

Moreover, since supy, iy (£2) = supy || Tx|| = K < co (see Lemma 2.1), by (1.1) we have

sup{|(mp)y+|(22): y* € By+, ke N} < cc.

It follows that there exists p € cat(X) such that the family {|(my)y+|: y* € By«, k € N} is uniformly p-continuous (see
[10, Theorem 13, p. 92]).
Now let (f) be a sequence in £%°(X, X) such that || fy(w)||x — 0 for w € 2 and a = sup,, || fa|| < cc. Let € > 0 be given.

For >0 and n e N let us set

n= 2ma>f(a,1<>
An(n) = {w € 2: | fa(@) |y > n}.
Then w(An (1)) — 0, and in view of Lemma 2.1 it follows that

Si‘PH(Tk)Am I = Sipﬁlk(/\n(n)) = sup{|(my)y+|(An(1)): y* € By, k € N} —0.

Hence there exists n, € N such that for n > ng,

1
Tk<_]]-An(77)fn> <
a Y

€
2a
i.e., for every k € N and n > n, we have

| Te@anen )y < = )
2

Moreover, for every k € N and n € N we have

X )

sup
k

[Tk anin fdly < ITel- 1o full <K -0 <. @)
Hence by (1) and (2) for every k € N and n > n, we have
ITeilly < [Te@an flly + [ Te@amanflly <5+ =e.

£
2
so supy [Tk (fa)lly < € for n > n,. Thus the proof is complete. O
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Corollary 2.7. (i) L:(L%° (X, X), Y) is a Ts-sequentially closed subspace of L(L>®(X, X),Y).
(ii) The space (L (L (X, X), Y), Ts) is sequentially complete.

3. Topological properties of the space L (X, X)}

In this section we study the topological properties of the space £°°(X, X)¥. We show that the classical theorems con-
cerning the o-order continuous dual £°°(X)} of the Banach lattice £°°(X) (see [27,28]) continue to hold for the space
LO(X, X)E

Applying Propositions 2.2 and 2.3 to linear functionals on £>*(X, X) we get:

Corollary 3.1. (i) Assume that v € bvca(X, X*). Then the functional &, on L*(X, X) is o-smooth, i.e., &, € L2(X, X), and
[Pl = [v](£2).
(ii) Assume that @ € L*(X, X)¥. Then ve € bvca(X, X*) and

<P(f)=¢v¢(f)=/fdv<p forall f e £L2(X, X).
17

Thus we have a dual pair (£L*(X, X), £°(X, X)) with the duality

(f,qbv):/fdv forall f € £2(X, X), v e bvca(X, X*).
2

Note that for Y =R, 75 on £%°(X, X)? coincides with o (£L>(X, X)f, £L*(X, X)). Hence, as a consequence of Corol-
lary 2.7, we get the following.

Corollary 3.2. (i) L (X, X) is a sequentially closed subspace of (L (X, X)*, o (L® (X, X)*, L2 (X, X))).
(i) The space (L= (X, X)E, o (L>®(X, X)E, L*(X, X))) is sequentially complete.

Now we state a form of generalized Nikodym convergence theorem for bvca(X, X*). For a set M in bvca(X, X*) let
IMI={Ivl:veM} and Ka={®,eL®(Z, X)i:veM]

Theorem 3.3. Let M be a relatively o (bvca(X, X*), L (X, X))-sequentially compact set in bvca(X', X*). Then the following state-
ments hold:

(a) supyep [VI(£2) < oo
(b) | M| is uniformly countably additive.
(c) Foreachset A € X the set {v(A): v € M} is relatively o (X*, X)-sequentially compact.

Proof. (a) We will first show that M is o(bvca(X, X*), £L>(X, X))-bounded. Assume on the contrary that M is not
o (bvca(X, X*), £L>(X, X))-bounded. Then there exists f € £L>(X, X) such that sup,c 4 \fg fdv| = oco. Hence for each
n € N there exists v, € M such that |fQ fdvy| > n. Choose a o(bvca(X, X*), L>(X, X))-Cauchy subsequence (vg,) of
(vp). It follows that a sequence (fg fdvy,) is convergent and this leads to a contradiction. Hence M is o (bvca(X, X*),
L%°(X, X))-bounded, so g is a o (L>(X, X)*, L*(X, X))-bounded subset of £°°(X, X)*. By the uniform boundedness
theorem, sup,c aq [V[(£2) =supycpaq [Pyl < 00, as desired.

(b) Assume on the contrary that (b) does not hold. Then in view of [10, Theorem 10, p. 88] and the Rosenthal lemma
(see [10, Chapter 7, p. 82]) there exist a pairwise disjoint sequence (A) in X, a positive number &y and a sequence (v),
in M such that

1
[vn|(Ap) > & and |Un|<UAj)<§80 foralln e N. (1)
Jj#n

In view of (1) for each n € N there exists a finite X' -partition (An,,')i:“:] of A, such that 2?;1 [lva(An, Dl x+ > €o. Next, for
eachi=1,...,i, there exists x, ; € Bx such that

Vn(An,i) (Xn,i) 2 ” Vn(An,i) |

X+~ i1 60

Let sp, = Z;”ﬂ(JlAm ® Xp.i) € S(X, X). Then s,(w) =0 for w € 2 \ A, with [|sy|| <1 for neN and
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in in

In 1 1
/Sn dv, = Zvn(An,i)(xn,i) = ZH Vn(An,i)| X+ Z ﬁé‘o = 580-
2

i=1 i=1 i=1

Let (vk,) be any subsequence of (v,), and let f(w) =Y 5o Sk, (@) for w € 2. Clearly f € £°(X, X) with | f]| <1,
f(w) = sg,, (w) for w € Ay,, and f(w) =0 for w € Ay,, , and all n € N. Hence by (1) for each n € N we have

!fdvkz” = / fdv,, + / fdv,,

Akyy sy, A

> /San deZn - |VI<2n|( U Aj)
2 J#F#kan

> ! & ! & ! &

= 2 0 4 0= 2 0-

Moreover, using (1) we get for each n € N,

/fdvk2n+1 = / fdvk2n+1

2 U?czl Akzj

(e}
<Ifl- |vk2,,+1|(U Ak2j>

j=1
<|szn+1|< U Aj) <2e0.
J#kant1 4
This means that (vg,) is not a o(bvca(X, X*), L*(X, X))-Cauchy sequence because for f € £L%°(X,X) the limit of

(Vky f) (= [ fdvy,) does not exist. It follows that M is not a relatively o (bvca(X, X*), £L(X, X))-sequentially com-
pact subset of bvca(X, X*).

(c) Note that for each A € ¥ the mapping: bvca(X, X*) > v~ v(A) € X* is (o (bvca(X, X*), L>®(X, X)), o (X*, X))-
continuous. Hence for each A € X, the set {v(A): v € M} is relatively o (X*, X)-sequentially compact. O

The following lemma will be useful.

Lemma 3.4. Let (vy) be a sequence in bvca(X', X*) such that
(a) supy [va|(£2) < o0,
(b) {|vn|: n € N} is uniformly countably additive,

(c) foreach A € X the sequence (v, (A)) is o (X*, X)-convergent to some element v(A) of X*.

Then the set function v : X > A — v(A) € X* belongs to bvca(X, X*) and

/fdvn—>/fdv foreach f € L(X, X).
Q2

2

Proof. In view of (c) and the Nikodym convergence theorem, vy € ca(X) for each x € X, i.e., v is countably additive in
o (X*, X). To prove that v € bvca(X, X*) it is enough to show that |v|(£2) < oo (see [20, Theorem 6.1.3]). Note that for each
A € X we have ||[v(A)| x+ < liminf, ||v,(A)| x+. Now let (A,~):.‘:1 be a X-partition of £2. Then by (a) we have

k k
Y IvAd] . < 3 timinflvn(Ap] .
i=1 i=1

Kk
< lin}jnf(ZH vn(A)| x*)
i=1

< liminf|v,|(£2) < sup |vp](£2) < 0.
n n

It follows that |v|(£2) < oo, i.e., v € bvca(X, X*), and in view of Proposition 2.5 the proof is complete. O
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In the theory of Riesz spaces the problem of weak*-compactness in the order duals of Riesz spaces has been studied by
many authors (see [21,22,9,4]).

Recall that a o-algebra X is said to be countably generated if there exists a countable subset of X' that generates X
as a o-algebra. In particular, if £2 is a compact metric space, then any countable base for the topology of §2 generates the
Borel sets as a o -algebra. Now we are in position to characterize relatively o (L> (X, X)%, L> (X, X))-sequentially compact
subsets of £°(X, X)? when X is countably generated.

Theorem 3.5. Assume that a o -algebra X' is countably generated and let M be a subset of bvca(X', X*). Then the following statements
are equivalent:

(i) {@v: v e M}isarelatively o (L®(X, X)¥, L2(X, X))-sequentially compact subset of L2 (X, X)?.
(ii) M is arelatively o (bvca(X, X*), L% (X, X))-sequentially compact subset of bvca(X, X*).
(iii) The following conditions hold:
(a) supyep [VI(£2) < oo
(b) | M| is uniformly countably additive.
(c) Foreach A € X the set {v(A): v € M} is relatively o (X*, X)-sequentially compact.
Moreover, if X* has the Radon-Nikodym property, then the condition (c) is superfluous.

Proof. (i) < (ii) See Corollary 3.1.

(ii) = (iii) It follows from Theorem 3.3.

(ili) = (ii) Assume that the conditions (a), (b), (c) hold. Let B be a countable set in X' that generates X as a o -algebra.
Then the algebra A generated by B is countable (see [14, Lemma 4, p. 167]).

Let (v;) be a sequence in M. Then in view of (c) we can use a diagonal argument to select a subsequence (vi,) of (vy)
such that for each A € A, (1, (A)) is a o (X*, X)-Cauchy sequence, i.e., for each A € A, lim; (v, )x(A) exists for each x € X.
Since for each x € X, the family {vx: v € M} in ca(X¥) is uniformly countably additive, we conclude that for each A € X,
limy (Vg )x(A) (= limy vy, (A)(x)) exists for each x € X (see [10, Lemma, p. 91]). This means that for each A € X, (v, (A))
is a o(X*, X)-Cauchy sequence. Since the space (X*, o (X*, X)) is sequentially complete, it follows that for each A € X' the
sequence (vg,(A)) is o (X*, X)-convergent to some element v(A) € X*. By Lemma 3.4 we conclude that v € bvca(¥, X*)
and [, fdv, — [ fdv for each f e L®(X, X).

Note that if X* has the Radon-Nikodym property, then the closed unit ball in X* is o (X*, X)-sequentially compact
(see [16, Corollary 2]). Since |[v(A)|lx* < |V|(A) < |v| for each A € X, in view of (a) we conclude that {V(A): v € M} is a
relatively o (X*, X)-sequentially compact subset of X* for each A € X, i.e,, (c) holds. O

Remark 3.1. (i) Some related results to Theorems 3.3 and 3.5 concerning relative o (L*°(u, X),", L* (1, X))-sequential com-
pactness in the order continuous dual L*(u, X);” of L°°(u, X) can be found in [24, Theorem 2.3 and Corollary 3.2]. It is
known that L*°(u, X);  can be identified through integration with the space L', X*, X) of the weak*-equivalence classes
of all weak*-measurable functions g: £2 — X* for which ¥ (g) € L'(1), where 9(g) = sup{|gx|: x € Bx} and the supremum
is taken in L9(u) (here gx(w) = g(w)(x) for x € X and all w € £2). For each g € L1 (11, X*, X) one can define a vector measure
Vg : X — X* by setting vg(A)(x) = fA (x, g(w))dp for all A e X, x € X. One can show (see [24, Corollary 3.2]) that if X is
countably generated, then a subset H of L!(u, X*, X) is relatively o (L (i, X*, X), L (1, X))-sequentially compact if and
only if the following conditions hold:

(a) sup{ /[, ¥ (g)(w)du: g € H} < oc.
(b) {¥(g): g € H} is uniformly integrable.
(c) For each A € X' the set {vg(A): g € H} in X* is relatively o (X*, X)-sequentially compact.

(ii) Batt (see [6, Theorems 1 and 2]) found a characterization of relatively o (bvca(X, X), £ (X, X*))-sequentially com-
pact sets in bvca(X, X) and a characterization of relatively o (L1(j, X), L% (i, X*))-sequentially compact sets in L!(u, X).
Moreover, some related results concerning conditional o (bvca(X, X), L*°(u, X*))-compactness in bvca(X, X) and condi-
tional o (L' (u, X), L®(, X*))-compactness in L' (u, X) can be found in [1, Theorems 2.4 and 2.5]).

For a subset K of L(X, X)¥ let M = {v € bvca(X, X*): &, € K}.
Now we are in position to prove a vector-valued version of Theorem 1.1 of [28] and Theorem 8 of [27] when X is a
reflexive Banach space.

Theorem 3.6. Assume that X is a reflexive Banach space. Then for bounded subset K of L*(X, X)¥ the following statements are
equivalent:

(i) Kisrelatively o (L® (X, X)*, L> (X, X)**)-compact.
(ii) KCisrelatively o (L (X, X)*, L>(X, X)**)-sequentially compact.
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(iii) ICis relatively o (L (X, X)*, L>(X, X))-sequentially compact.
(iv) The set {|v]: v € M} in ca™ (X) is uniformly countably additive.

Proof. (i) <= (ii) It follows from the Eberlein-Smulian theorem.

(ii) = (iii) It is obvious.

(iii) = (iv) Assume that K is relatively o (L (X, X)*, L>(X, X))-sequentially compact. Since £>(X, X)¥ is sequen-
tially closed in (L*(X, X)*, o (L®(X, X)*, L>®(X, X))) (see Corollary 3.2), K is a relatively o (L®(X, X)¥, L>(X, X))-
sequentially compact subset of £>(X, X)Z. In view of Theorem 3.3 the set {|v|: v € M} is uniformly countably additive.

(iv) == (i) Assume that the set {|v]: v € M} in cat(X) is uniformly countably additive. Then by [8, Corollary 1] M
is a relatively o (bvca(X, X*), bvca(X, X*)*)-compact subset of bvca(X, X*). This means that /C is relatively compact set in
(L2, X)E, 0 (L®(Z, X)E, (L2(X, X)H)™)). Moreover, by Corollary 3.2 we obtain that £%°(X, X)¥ is a closed subset of the
Banach space £%°(X, X)*. Hence £*°(X, X)¥ is a closed set in (L (X, X)*, 0 (L>® (X, X)*, L>®(X, X)*)), so

Clo ooz, x)x, £00(z, xy0) K C LP(X, X)E.
Note that (see [17, Corollary 3.3.3])

o (L2(Z, X)), L2(Z, X)*) L2, X)E (£2(2, X)%)5). (1)

|£°°(£,X)z =o(
It follows that

Cly ooz 308, (L0 (2,009 K = Clo(coo (5, x)*, £o0 (2, %)) K. (2)

Since CI(T([,DO(Z',X)Z-‘,(L:OC(Z,X)Z‘)*) Kisa G(E“(Z’, X)Ek, (EOO(Z, X)?)*)-Compact subset of ,COO(Z‘, X):f, in view of (1) and (2)
we see that clygoo(x, x), £oo(z, x4 K is a o (L>®(X, X)*, (L2(X, X)**)-compact subset of £L2(X, X)*, ie., K is relatively
o (L®(X, X)*, L°(X, X)*™)-compact, as desired. O

As a consequence of Theorem 3.6 we obtain a Grothendieck type theorem saying that o (L*(X, X)*, L>®(X, X))-
convergent sequences in £ (X, X)¥ are also o (L*(X, X)*, L> (X, X)**)-convergent.

Corollary 3.7. Assume that X is a reflexive Banach space. Let @, € L>®(X, X)} forn e Nand @ € L (X, X)%. Then the following
statements are equivalent:

(i) @p — @ for o (L(X, X)*, LX(X, X)*).
(ii) @y — @ for o (L®(X, X)*, LX®(X, X)).

Proof. (i) = (ii) It is obvious.

(ii) = (i) Assume that @, — @ for o (L>®(X, X)*, L>*(X, X)) and let (®,) be a subsequence of (@,). Then K =
{®@k,: n € N} is a relatively sequentially compact subset of (L>(X, X)*, o (L®(X, X)*, L*(X, X))). By Theorem 3.6 K is a
relatively sequentially compact subset of (L>®(X, X)*, o (L (X, X)*, L2(X, X)*)), so there exists a subsequence (@) of
(Py,) such that ¢ — & for o (L®°(X, X)*, £L°(X, X)**). This means that &, — & for o (L*(X, X)*, L>®(X, X)**), as
desired. O

Remark 3.2. Theorems 3.3 and 3.6 are modifications and corrections of Theorems 2.1 and 3.1 of [23], where we incorrectly
considered the Banach space B(X, X) of all X-valued totally X'-measurable functions instead of the space £*(X, X).

4. Relationships between operators on £L° (X, X)
We start with the following useful result.
Proposition 4.1. For a linear operator T : L*°(X, X) — Y the following statements are equivalent:
(i) y*oT € L™(X, X)} for each y* € Y*.
(if) Tis (0 (L>®(X, X), L (X, X)}), o (Y, Y*))-continuous.
(iii) Tis (T(L®(X, X), L2(X, X)), || - ly)-continuous.
Proof. (i) <= (ii) See [3, Theorem 9.26]; (ii) <= (iii) See [3, Ex. 11, p. 149]. O
Note that every o-smooth operator T : L%(X, X) = Y is (T(£L®(X, X), L>(X, X)}), || - lly)-continuous. On the other

hand, since £*(X, X)* C L°(X, X)*, we derive that every (t(L*(X, X), L2(X, X)%), || - lly)-continuous linear operator
T:L%°(X,X)— Y is bounded.
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Proposition 4.2. Let T : L*(X, X) — Y be a (1 (L*(X, X), L>®(X, X)}), || - lly)-continuous linear operator. Then its representing
measure mr € fasv(X, £(X,Y)) is countably additive in W*OT and for each y* € Y* we have

(y*OT)(f):/fd(mT)y* forall f e £L2°(X, X).
2

Proof. Let y* € Y* be given. Since y* o T € L*(X, X)¥ (see Proposition 4.1), by Corollary 3.1 there exists vy« € bvca(X, X*)
such that (y*o T)(f) = fg fdvy- for all f e (X, X). Hence for each A € X, x € X we have

(mr)y+(A)(X) = y*(mr (A) %) = y*(T(1a @ %))

= /(JLA ® X) dvys = vy (A)(X).
Q

It follows that (mr)y+ = vy« € bvca(X, X*), i.e,, mr is countably additive in W*OT. O

Now using Theorem 3.3 we are ready to establish some relationships between different classes of operators on
LX(X, X).

Theorem 4.3. Let T : L2 (X, X) — Y be a weakly compact and (t (L®(X, X), L>(X, X)), || - lly)-continuous linear operator. Then
T is o -smooth.

Proof. Since the conjugate operator T* : Y* — L£®(X, X)* is weakly compact, the set {y* o T: y* € Byx} is rela-
tively o (L°(X, X)*, £L°(X, X)**)-compact, and hence by the Eberlein-Smulian theorem, {y* o T: y* € Bys} is rela-
tively o (L>®(X, X)*, L®(X, X)**)-sequentially compact in £°(X, X)*. It follows that {y* o T: y* € By«} is a relatively
o (L®(X, X)*, L(X, X))-sequentially compact subset of £%°(X, X)*. Since {y* o T: y* € By«} C L¥(X, X)} (see Propo-
sition 4.1) and £ (X, X)¢ is a sequentially o (L (X, X)*, L>(X, X))-closed subset of L*°(X, X)* (see Corollary 3.2), we
derive that {y* o T: y* € By+} is a relatively o (L®(X, X)?, L>(X, X))-sequentially compact subset of £>(X, X)%. But
{y*oT: y* € By} = {Pimy) y* € By+} (see Proposition 4.2), so by Theorem 3.3 the set {|(mr)y«|: y* € By+} in ca(X) is
uniformly countably additive. This means that mr is variationally semi-regular and hence Ty,; is o-smooth (see Proposi-
tion 2.2). In view of Proposition 4.2 and (2.1) for each y* € Y* we have

V(T () = f Fdnr)y = y*(Tmy (F) forall f € £7(Z, X).
2

It follows that T = Ty, i.e, T is o-smooth. O

Theorem 4.4. Let T : L>®(X,X) — Y be a (t(L>®(X, X), L2(X, X)), || - lly)-continuous linear operator. Assume that either Y*
has the Radon—Nikodym property or Y contains no isomorphic copy of co. Then T is o -smooth.

Proof. Assume first that Y* has the Radon-Nikodym property. By Proposition 4.1 T is (o (L®(X, X), L®(X, X)¥), o (Y,
Y*))-continuous. Let T*:Y* — £%(X, X)} stand for the conjugate operator for T. Then T* is (o (Y*,Y), o (L® (X, X)},
L%°(X, X)))-continuous (see [7, Chapter IV, §6, Proposition 1]). Since By= is o (Y*, Y)-sequentially compact (see [16, Corol-
lary 2]), we obtain that T*(By«) is a relatively o (L®(X, X)¥, L2(X, X))-sequentially compact subset of L£®(X, X)f.
Note that in view of Proposition 4.2 we have that T*(Byx) = {¢'<mr)y*3 y* € Byx}. Hence, by Theorem 3.3 the set
{l(m)y«|: y* € By«} is uniformly countably additive, i.e.,, mr is variationally semi-regular. This means that Ty, is o-smooth
(see Proposition 2.2). Now, arguing as in the proof of Theorem 4.3 we obtain that T = Ty, i.e,, T is o-smooth.

Now we assume that Y contains no isomorphic copy of cg. In view of Proposition 4.2 mt € fasv(X, £(X, Y)) is countably
additive in W*OT. Hence by [5,6, Theorem 6, Theorem 5 and Remark 7] we obtain that my is variationally semi-regular.
Then by Proposition 2.2 Ty, : L2(X, X) — Y is o-smooth. Arguing as in the proof of Theorem 4.3 we derive that T = Ty,
i.e, T is o-smooth. O
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