JOURNAL OF NUMBER THEORY 1, 8-10 (1969)

A Combinatorial Problem on Finite Abelian Groups, I*

JOHN E. OLSON

Department of Mathematics, The University of Wisconsin, Madison, Wisconsin 53706

Communicated by H. B. Mann

Received February 2, 1968

If G is a finite Abelian group, for what number s is it true that an arbitrary sequence of length s of group elements has a subsequence whose product is 1? This question is answered for *p*-groups.

1. Let G be a finite Abelian group. Define $s = s(G)$ to be the smallest positive integer such that, for any sequence g_1, g_2, \ldots, g_s (repetition allowed) of group elements, there exist indices

$$
1 \leq i_1 < \ldots < i_t \leq s
$$

for which $g_{i_1} g_{i_2} \ldots g_{i_t} = 1$. In this paper we determine $s(G)$ for all finite Abelian p-groups G.

The problem of finding $s(G)$ was proposed by H. Davenport (Midwestern Conference on Group Theory and Number Theory, Ohio State University, April 1966) in the following connection. If G is the class group of an algebraic number field F, then $s(G)$ is the maximal number of prime ideals (counting multiplicity) in the decomposition of an irreducible integer in F.

2. Let G be a finite Abelian p-group with invariants $p^{e_1}, p^{e_2}, \ldots, p^{e_r}$. We show

$$
s(G) = 1 + \sum_{i} (p^{e_i} - 1). \tag{1}
$$

The right-hand side of (1) is an obvious lower bound for $s(G)$. For let x_1, \ldots, x_r be a basis for G where x_i has order p^{e_i} . Form a sequence of length $\sum (p^{e_i}-1)$ in which each x_i occurs $p^{e_i}-1$ times. No subsequence has product 1.

* Sponsored by the Mathematics Research Center, United States Army, Madison, Wisconsin, under Contract No. DA-31-124-ARO-D-462.

In the other direction, we prove a theorem which we state in terms of the group-ring of G over the rational integers.

THEOREM 1. If
$$
g_1, ..., g_k \in G
$$
 and $k \ge 1 + \sum (p^{e_i} - 1)$, then
\n $(1 - g_1)(1 - g_2)...(1 - g_k) \equiv 0 \pmod{p}$. (2)

Interpret the congruence (2) combinatorially: For $g \in G$ look at all subsequences of g_1, \ldots, g_k that have product g. Let $E(g)$ count those of even length and let $O(g)$ count those of odd length. Equation (2) shows that

$$
E(g) - O(g) \equiv \begin{cases} 0 \pmod{p} \text{ if } g \neq 1, \\ -1 \pmod{p} \text{ if } g = 1. \end{cases}
$$

In particular, we cannot have $E(1) = O(1) = 0$, and this proves (1).

Proof of (2). Again let x_1, \ldots, x_r be a basis for G where x_i has order p^{e_i} . If, for some i, $g_i = uv$, we may "reduce" the product

$$
J=(1-g_1)\ldots(1-g_k)
$$

to the form

$$
J = (1 - g_1) \dots (1 - g_{i-1})(1 - u)(1 - g_{i+1}) \dots (1 - g_k)
$$

+
$$
u(1 - g_1) \dots (1 - g_{i-1})(1 - v)(1 - g_{i+1}) \dots (1 - g_k).
$$

Since each g_i is a product of the basis elements x_i we may, by repeated application of this reduction procedure, arrive at the following expression for J.

$$
J=\sum_{\sigma}g_{\sigma}J_{\sigma},
$$

where each $g_a \in G$ and each J_a is a product of the form

$$
J_{\sigma} = (1 - x_1)^{f_1} (1 - x_2)^{f_2} \dots (1 - x_r)^{f_r}.
$$
 (3)

Here the f_i are nonnegative integers which depend on the index σ , and $\sum f_i = k$. Since $k > \sum (p^{e_i}-1)$ we must have $f_i \ge p^{e_i}$ for some *i* in (3). But $(1-x_i)^{p^{e_i}} \equiv 0 \pmod{p}$.

Thus $J_{\sigma} \equiv 0 \pmod{p}$ for each σ , and this proves (2).

We may state Theorem 1 in more general form. For $g \in G$, define $\alpha(g) = p^n$ where *n* is the largest integer such that *g* is a p^{*n*}th power in $G(\alpha(1) = \infty)$. If $g = h^{p^n}$, then $(1 - g) \equiv (1 - h)^{p^n}$ (mod p). We have, therefore,

THEOREM 2. If
$$
g_1, ..., g_k \in G
$$
 and $\sum \alpha(g_i) \ge 1 + \sum (p^{e_i} - 1)$, then
\n $(1 - g_1) (1 - g_2) ... (1 - g_k) \equiv 0 \pmod{p}$.

10 OLSON

3. If G is any finite Abelian group and H is a subgroup of G , then clearly $s(G) \leq s(H) \cdot s(G/H)$. Hence the results for p-groups give upper estimates for $s(G)$ in the general case. We conjecture, however, that if $G = C_1 \times \ldots \times C_r$ is the direct product of cyclic groups C_i of order $|C_i| = c_i$ where $c_i|c_{i+1}$, then $s(G) = 1 + \sum_{i=1}^{n} (c_i - 1)$.

ACKNOWLEDGMENT

The author wishes to express his gratitude to Professor Henry B. Mann for his interest and stimulation.