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Résumé

An elementary proof is given that the projection from the space of all symmetric p × p matrices
onto a linear subspace is positive if and only if the subspace is a Jordan algebra. This solves a problem
in a statistical model.
c⃝ 2013 Elsevier GmbH. All rights reserved.
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1. Introduction

The result of the paper gives a solution to a problem in a statistical model. In [7,
Theorem 3.1], it was proved that the orthogonal projection of the set S p of symmetric
p × p-matrices onto a Jordan subalgebra M is a positive projection (the ‘if part’ of
Theorem 1), and a conjecture of the opposite statement was presented (the ‘only if part’ of
Theorem 1). The concept of a Jordan algebra goes back to Jordan [8]; see also [1,5].

It turns out that the validity of the conjecture follows from a more general result in [2,
Theorem 1.4]. And in fact, the conjecture follows directly from the inequality of Kadi-
son [9] in the finite dimensional case; see Remark 1. For further information, see [4,10].
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Although the theorem seems to be well known (Størmer, personal communication), we
have not been able to find the theorem explicitly stated in the literature. Concerning the ‘if
part’ it is proved in [2, Lemma 2.3] that the orthogonal projection is positive if M is a spin
factor, and our proof of the ‘if part’ in the general finite dimensional case is essentially the
same.

We shall present an elementary proof also of the ‘only if part’ of Theorem 1. A major
step is the reduction to the commutative case. Our proof is furthermore based on the
concept of an hyperorthogonal p-tuple of vectors in Rn (Definition 1, see also Theorem 2
in the closing section of the paper).

We thank Professor Erling Størmer for valuable comments to the manuscript.

2. The main result

For given p ∈ N we denote by S p the linear space of all symmetric p × p matrices with
real entries. The dimension dim S p = N equals 1

2 p(p + 1). An inner product on S p is
defined by

⟨A, B⟩ = Tr(AB) = Tr(B A), A, B ∈ S p.

Consider a (linear) subspace M of S p containing the unit matrix I = (δi j ), and write
dim M = m (≤N ). By PM we denote the operator of (orthogonal) projection from S p
onto M. The positive cone S +

p consists of all positive semidefinite matrices in S p. We say
that PM is positive and write PM ≥ 0 if PM(S +

p ) ⊆ S +
p , that is if

PM(S) ∈ S +
p for every S ∈ S +

p . (1)

Theorem 1. PM ≥ 0 holds if and only if M is a Jordan algebra, that is, A2
∈ M for

every A ∈ M .

This is obvious for m = 1 because, on the one hand, I 2
= I ∈ M, so M is Jordan,

and on the other hand, PM(S) = p−1Tr(S)I ∈ S +
p if S ∈ S +

p . Henceforth we assume that
m ≥ 2 and hence p ≥ 2.

For any matrix S = (si j ) ∈ S p we denote by S(x), x ∈ Rp, the quadratic form
associated with S:

S(x) =

p
i, j=1

si j xi x j , x = (x1, . . . , x p) ∈ Rp.

The condition PM ≥ 0 is then characterized as follows.

Lemma 1. Let (A1, . . . , Am) be an orthonormal base of M. Then PM ≥ 0 holds if and
only if

m
k=1

Ak(x)Ak(y) ≥ 0 for x, y ∈ Rp. (2)
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Proof. For S ∈ S +
p write

S =

p
i=1

λi Ei ,

where λi ≥ 0 are the eigenvalues of S, and Ei are pairwise orthogonal 1-dimensional
projections. This spectral decomposition of S shows that it suffices to verify (1) for all
1-dimensional projections S. Any 1-dimensional projection has the form

E = (xi x j )i, j=1,...,p,

where x = (x1, . . . , x p) ∈ Rp has norm |x | =


x2

1 + · · · + x2
p = 1. Note that

PM(E) =
m

k=1 Tr(Ak E)Ak . For any A = (ai j ) ∈ S p we have

Tr(AE) =

p
k=1

ai j xi x j = A(x).

It follows for y ∈ Rp that

PM(E)(y) =

m
k=1

Tr(Ak E)Ak(y) =

m
k=1

Ak(x)Ak(y), (3)

which indeed is ≥0 for all rank 1 symmetric matrices E = (xi x j ) (x ∈ Rp) and for all
y ∈ Rp, if and only if (2) holds. �

3. An elementary result

Proof of the ‘if part’ of Theorem 1. Supposing that M is a Jordan algebra (and that
m, p ≥ 2) we shall prove that PM ≥ 0. For given S ∈ S +

p the projection PM(S) ∈

M ⊆ S p is determined by

Tr

(S − PM(S))B


= 0 for all B ∈ M.

When M is Jordan and A ∈ M we may take B = A2 to obtain

Tr(APM(S)A) = Tr(PM(S)A2) = Tr(S A2) = Tr(AS A). (4)

This leads to PM(S) ∈ S +
p as follows.

Let PM(S) = U−1ΛU where U ∈ O(p) is an orthogonal matrix and Λ =

diag(λ1, . . . , λp) is the diagonal matrix of eigenvalues of PM(S), λ1 = · · · = λd being
the smallest eigenvalue of PM S and of multiplicity d . If λ1 were the only eigenvalue
of PM(S), that is if d = p, then λ1 ≥ 0, for if λ1 < 0 then PM(S) = λ1 I and
hence Tr(APM(S)A) = λ1T r(A2) < 0 for non-zero A ∈ M (for example A = I ),
in contradiction with (4) because Tr(AS A) ≥ 0 (since S ∈ S +

p ). Thus actually d < p.
Let L be the Lagrange interpolation polynomial over R given by

L(X) =
(X − λd+1) · · · (X − λp)

(λ1 − λd+1) · · · (λ1 − λp)
. (5)
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Then L(λ1) = 1 and L(λ j ) = 0, j = d + 1, . . . , p. Because M is Jordan and
contains I we have U−1L(Λ)U = L(U−1ΛU ) = L(PM(S)) ∈ M, and by (4) applied
to A = U−1L(Λ)U

0 ≤ Tr((U−1L(Λ)U )S(U−1L(Λ)U )) = Tr((U−1L(Λ)U )U−1ΛU (U−1L(Λ)U ))

= Tr(U−1L(Λ)ΛL(Λ)U ) = Tr(L(Λ)ΛL(Λ)) =

p
i=1

(L(λi ))
2λi = dλ1.

Since the smallest eigenvalue λ1 of PM(S) = U−1ΛU is non-negative, it follows that
PM(S) ∈ S +

p . �

For the proof of the ‘only if part’ of Theorem 1 we begin by reducing it to the case
where M is commutative, by application of the following expression for the projection on
the intersection of two (not necessarily orthogonal) subspaces of Rp.

Lemma 2. Let P and Q be two subspaces of a finite dimensional Hilbert space H, and let
P and Q denote the operators of orthogonal projection from H onto P and Q, respectively.
The operator R of orthogonal projection on R := P ∩ Q is then given by

Rx = lim
n→∞

(P Q)n x = lim
n→∞

(Q P)n x, x ∈ H.

Proof. Write x = y + z with y ∈ R and z ∈ R⊥. The restrictions P ′ and Q′ of P
and Q, respectively, to R⊥ are the orthogonal projections from R⊥ onto P ⊖ R and
Q ⊖ R, respectively, and these two subspaces of R⊥ have only 0 in common. In terms
of the operator norm ∥ · ∥ it follows that ∥P ′Q′

∥ < 1, for if ∥P ′Q′
∥ = 1 there would

exist z ∈ R⊥ with z ≠ 0 and |P Qz| = |P ′Q′z| = |z|. It would then follow that
|z| = |P Qz| ≤ |Qz| ≤ |z| hence that |P Qz| = |Qz|, and so Qz ∈ P and of course
Qz ∈ Q. Thus Qz ∈ R and also Qz = Q′z ∈ R⊥, so Qz = 0, in contradiction with
|P Qz| = |z| ≠ 0. This shows that indeed ∥P ′Q′

∥ < 1, and since y ∈ R = P ∩ Q we
obtain P Qy = Py = y and hence

(P Q)n x = (P Q)n y + (P Q)nz = y + (P ′Q′)nz → y = Rx as n → ∞. �

Proof of the ‘only if part’ of Theorem 1. Supposing that PM ≥ 0 (and dim M =

m ≥ 2) we shall prove that the (linear) subspace M of S p is a Jordan algebra. Denote by
D p the subspace of S p consisting of all diagonal p × p matrices, and by D+

p = D p ∩ S +
p

the positive cone in D p. For any subspace N of S p let Nd = N ∩ D p denote the subspace
of N consisting of all diagonal matrices in N . As before, PM denotes the projection from
S p onto M, and we write PM ≥ 0 if PM(S +

p ) ⊆ S +
p .

In particular, for any S ∈ S p, PD p (S) is the diagonal matrix Sd formed by the diagonal
entries of S. Clearly, PD p ≥ 0. Furthermore, Md is Jordan if M is so. It is therefore to be
expected that

PM ≥ 0 implies PMd ≥ 0. (6)

And this is indeed the case because Md = M ∩ D p and hence by Lemma 2 applied to
H = S p
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PMd (S) = lim
n→∞

(PM PD p )
n(S) ∈ S +

p for any S ∈ S +
p ,

S +
p being closed in S p.
Now suppose that the remaining ‘only if part’ of Theorem 1 has been established for the

particular case that M consists solely of diagonal matrices (this is essentially equivalent
to M being commutative). For an arbitrary subspace M of S p let A ∈ M be given, and
let us prove that A2

∈ M. There is an orthogonal matrix U ∈ O(p) such that U−1 AU is
diagonal. Then U−1 MU is a subspace of U−1 S pU = S p containing I . For any S ∈ S +

p

the projection S′
= PU−1 MU (S) satisfies U S′U−1

= PM(U SU−1) ∈ S +
p because

PM ≥ 0 and U SU−1
∈ S +

p . Thus S′
∈ S +

p , and so PU−1 MU ≥ 0. It follows by (6)
applied with M replaced by U−1 MU that P(U−1 MU )d

≥ 0. By hypothesis, (U−1 MU )d

is therefore Jordan, and consequently the diagonal matrix U−1 AU ∈ (U−1 MU )d has the
square (U−1 AU )2

= U−1 A2U ∈ (U−1 MU )d ⊆ U−1 MU , that is A2
∈ M, as claimed.

For the completion of the proof of the ‘only if part’ of Theorem 1 it thus remains to
show that if M denotes a subspace of S p consisting entirely of diagonal matrices (that is,
if M ⊂ D p) and if PM ≥ 0 then M is Jordan. The restriction of PM from S p to D p is
of course likewise positive. Furthermore, D p ∼= Rp when we identify a diagonal matrix
diag(s1, . . . , sp) ∈ D p with the vector (s1, . . . , sp) ∈ Rp. From now on we therefore
change the previous notation by replacing M ⊆ D p with M ⊆ Rp and by replacing
(D p)+ with Rp

+, the positive cone in Rp. Denote by M⊥ the orthogonal complement of
M in Rp. As before, dim M = m ≥ 2, and we now write dim M⊥

= n, whereby
m + n = p. Theorem 1 is trivial for M = Rp, and we may therefore assume that n ≥ 1
and hence p ≥ 3.

Consider an n × p matrix whose rows bl = (bl1, . . . , blp) are linearly independent
vectors in M⊥. The corresponding columns are denoted by vi = (vi1, . . . , vin), where
vil = bli . For any vector s = (s1, . . . , sp) ∈ M we have

⟨s, bl⟩ =

p
i=1

si bli =

p
i=1

sivil = 0 for l ∈ {1, . . . , n},

that is,

p
i=1

sivi = 0 for every s = (s1, . . . , sp) ∈ M. (7)

Now suppose that (b1, . . . , bn) is even an orthonormal base of M⊥. Extend the
normalized identity vector

a1 =
1

√
p
(1, . . . , 1) ∈ M

to an orthonormal base (a1, . . . , am) for M, and write

ak = (ak1, . . . , akp) ∈ Rp, k ∈ {1, . . . , m}.

We then have the orthonormal base (a1, . . . , am, b1, . . . , bn) for M⊕M⊥
= Rp. Consider

the orthogonal p × p matrix Ω with rows a1, . . . , am, b1, . . . , bn . For i ∈ {1, . . . , p} write

ui = (a1i , . . . , ami ) ∈ Rm, vi = (b1i , . . . , bni ) ∈ Rn . (8)
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The i’th column of Ω is formed by ui followed by vi , i = 1, . . . , p. Then

⟨ui , u j ⟩ + ⟨vi , v j ⟩ = δi j , i, j ∈ {1, . . . , p},

and hence by Lemma 1 applied to Ak = diag(ak1, . . . , akp) and to x = ei , y = e j (where
e1, . . . , ep denote the standard basic vectors in Rp), noting that Ak(ei ) = aki :

− ⟨vi , v j ⟩ = ⟨ui , u j ⟩ =

m
k=1

aki ak j =

m
k=1

Ak(ei )Ak(e j ) ≥ 0 for i ≠ j. (9)

Thus the p-tuple (v1, . . . , vp) in Rn is hyperorthogonal in the following sense.

Definition 1. Let p, n ∈ N. A p-tuple (v1, . . . , vp) of vectors in Rn is said to be
hyperorthogonal if ⟨vi , v j ⟩ ≤ 0 for any distinct i, j ∈ {1, . . . , p}, that is, if the angle
between any two distinct non-zero vi and v j (if there are such) is no less than π/2.

Thus the vectors vi are neither required to be distinct nor to be non-zero. However, the
non-zero vectors vi must clearly be distinct, and at most two of them can be real multiples
of the same vector. Any orthogonal p-tuple is of course hyperorthogonal. The 2n-tuples of
non-zero hyperorthogonal vectors in Rn are explicitly described in Theorem 2 at the end
of the paper (but that description is not used in the present proof).

Lemma 3. For any subspace M of Rp, the projection from Rp onto M is positive if and
only if the p-tuple (v1, . . . , vp) from (8) is hyperorthogonal.

Proof. The ‘only if part’ of this lemma was established in (9) as a consequence
of Lemma 1. Conversely, suppose (v1, . . . , vp) is hyperorthogonal, that is by (9),m

k=1 aki ak j ≥ 0 for i, j ∈ {1, . . . , p}, the case i = j being trivial. It follows that

m
k=1

Ak(x)Ak(y) =

p
i, j=1


m

k=1

aki ak j


x2

i y2
j ≥ 0

for x, y ∈ Rp, and this implies PM ≥ 0, again by Lemma 1. �

Returning to the proof of the ‘only if part’ of Theorem 1, the hypothesis is that
(v1, . . . , vp) is hyperorthogonal. Not all vi can be 0 because the corresponding rows bl
are normalized and in particular non-zero. We may therefore assume for example that
vp ≠ 0. By projecting v1, . . . , vp onto (Rvp)

⊥ within Rn we obtain another p-tuple
(v′

1, . . . , v
′
p) in Rn , whereby v′

p = 0. Put w = vp/|vp|. Then v′

i = vi − ⟨vi , w⟩w and
v′

j = v j − ⟨v j , w⟩w, and for distinct indices i, j ∈ {1, . . . , p − 1} we have ⟨v′

i , v
′

j ⟩ =

⟨vi , v j ⟩ − ⟨vi , w⟩⟨v j , w⟩ ≤ 0, because ⟨vi , v j ⟩ ≤ 0, ⟨vi , w⟩ ≤ 0, and ⟨v j , w⟩ ≤ 0. Hence
the (p − 1)-tuple (v′

1, . . . , v
′

p−1) is hyperorthogonal in Rn , and so is therefore the p-tuple

(v′

1, . . . , v
′
p) because v′

p = 0. From (7) we get by projection on (Rvp)
⊥

p
i=1

siv
′

i = 0 for every s = (s1, . . . , sp) ∈ M. (10)

If (v′

1, . . . , v
′

p−1) ≠ (0, . . . , 0) in Rn , say v′

p−1 ≠ 0, we project the hyperorthogonal p-

tuple (v′

1, . . . , v
′
p) (where v′

p = 0) onto (Rv′

p−1)
⊥ within Rn and obtain a hyperorthogonal
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p-tuple (v′′

1 , . . . , v′′
p) in Rn . Note that v′′

p−1 = v′′
p = 0. This process of repeated projection

ends after at most p − 1 steps with a hyperorthogonal p-tuple (z1, . . . , z p) ≠ (0, . . . , 0)

in Rn , say with z j ≠ 0, such that the projections of z1, . . . , z p on (Rz j )
⊥ are all zero.

Hence there are numbers ci ∈ R such that zi = ci z j for i ≠ j . As in (10) we obtain

p
i=1

si zi = 0 for every s = (s1, . . . , sp) ∈ M. (11)

Since the p-tuple z1, . . . , z p is hyperorthogonal, the inequality ci ≠ 0 holds for at most
one index i ≠ j . Actually, ci ≠ 0 holds for precisely one index i ≠ j in view of (11)
applied to s = (1, . . . , 1). For simplicity of writing we assume that this index i is 1 and
that j = 2. Then z3 = 0, . . . , z p = 0 and (11) reads s1z1 + s2z2 = 0 for every s ∈ M. For
s = (1, . . . , 1) this becomes z1 + z2 = 0. Since (z1, z2) ≠ (0, 0) it therefore follows from
(11) that

s1 = s2 for every s = (s1, . . . , sp) ∈ M. (12)

Defining the injective linear map T = (T1, . . . , Tp) : Rp−1
→ Rp by

T (x1, x2, . . . , x p−1) = (x1, x1, x2, . . . , x p−1)

we thus have M ⊆ T (Rp−1), and the pre-image N = T −1(M) is a subspace of Rp−1

and is mapped bijectively by T onto M. We show that PM ≥ 0 implies PN ≥ 0 (this is
to be expected because N obviously is Jordan if M is so). Since dim N = dim M = m
we have dim N ⊥

= p − 1 − m = n − 1. Let b∗

1, . . . , b∗

n−1 be an orthonormal base
of N ⊥ (⊂Rp−1), and write in coordinates b∗

l = (b∗

l1, . . . , b∗

l,p−1). Define new vectors
bl = (0, b∗

l1, . . . , b∗

l,p−1) for l ∈ {1, . . . , n − 1}. Clearly, ⟨bl , T (s)⟩ = ⟨b∗

l , s⟩ = 0 for any

s = (s1, . . . , sp−1) ∈ N , that is, for T (s) ∈ M, and so bl ∈ M⊥ for l ∈ {1, . . . , n − 1}.
Like the b∗

l in N ⊥, the bl form an orthonormal (n − 1)-tuple in M⊥, and since
dim M⊥

= n an orthonormal base of M⊥ is obtained from (b1, . . . , bn−1) by adjoin-
ing a single normalized vector bn = (bn1, . . . , bnp) ∈ M⊥ orthogonal to b1, . . . , bn−1. By
Lemma 3 the new (column) vectors vi = (b1i , . . . , bni ), i ∈ {1, . . . , p}, cf. (8), satisfy (9),
that is

⟨vi , v j ⟩ = b1i b1 j + · · · + bni bnj ≤ 0 for distinct i, j ∈ {1, . . . , p}. (13)

For j = 1 and i > 1 this implies that bni bn1 ≤ 0 since b11, . . . , bn−1,1 = 0.
Suppose first that bn1 = 0 and hence bl1 = 0 for all l ∈ {1, . . . , n}, which means that

the first basic vector e1 = (1, 0, . . . , 0) in Rp is orthogonal to b1, . . . , bn and thus belongs
to M⊥⊥

= M in contradiction with (12).
Hence bn1 ≠ 0 and it follows from (13) with j = 1 that bni for i ∈ {2, . . . , p} all have

the same sign (if unequal to 0), and hence bni bnj ≥ 0 for (distinct) i, j > 1. Corresponding
to (8) (now with p replaced by p − 1) we define

v∗

i = (b∗

1i , . . . , b∗

n−1,i ) = (b1,i+1, . . . , bn−1,i+1) ∈ Rn−1

for i ∈ {1, . . . , p − 1}. Consequently,

⟨v∗

i , v∗

j ⟩ = ⟨vi+1, v j+1⟩ − bn,i+1bn, j+1 ≤ 0
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for distinct i, j ∈ {1, . . . , p−1}, and the (p−1)-tuple (v∗

1 , . . . , v∗

p−1) on Rn−1 is therefore
hyperorthogonal along with the new p-tuple (v1, . . . , vp) in Rn . According to Lemma 3
this shows that indeed PN ≥ 0. By induction with respect to p we may again assume that
the ‘only if part’ of Theorem 1 holds when p is replaced by p − 1. Thus N is Jordan, and
so is therefore M = T (N ). �

Remarks.

Remark 1. As in [2], the proof of the ‘only if part’ can be obtained right away by the
inequality of Kadison [9], which asserts that if the orthogonal projection PM is positive,
then

PM(A2) ≥ (PM(A))2 for every A ∈ S p. (14)

For if A ∈ M, then PM(A) = A and PM(A2) ≥ A2. Since

Tr(PM(A2)) = ⟨PM(A2), I ⟩ = ⟨A2, I ⟩ = Tr(A2)

it follows that A2
= PM(A2) ∈ M.

As noticed by Kadison [9, p. 500], the inequality (14) is the ordinary Schwarz inequality
in the commutative case.

Remark 2. Let H p denote the R-linear space of all hermitian p× p matrices with complex
entries. In a natural way, H p is a Jordan subalgebra of S2p. Hence the orthogonal projection
of S2p onto H p is positive, and a complex version of Theorem 1 is obtained for a real
subspace M of H p.

The representation of a Jordan algebra as symmetric p × p-matrices with real entries
is given in [6], and based on this representation an explicit expression of the orthogonal
projection is obtained.

In the special case of a spin factor the same representation is given by Jacobson [5].

Hyperorthogonal p-tuples on the unit sphere in Rn .
We propose to determine all hyperorthogonal p-tuples (see Definition 1) of non-zero

vectors, or just as well of normalized vectors, in Rn , in the particular case where p = 2n.
Let Σn denote the unit sphere in Rn (n ≥ 1), and d the standard distance on Σn .
Hyperorthogonality of a p-tuple (v1, . . . , vp) on Σn then amounts to d(vi , v j ) ≥ π/2
for distinct i, j ∈ {1, . . . , p}. Every 1-tuple is of course hyperorthogonal, so we assume
that p ≥ 2.

A pair (v1, v2) of points of Σn is termed an antipodal pair if v1 = −v2, in other words
if d(v1, v2) = π .

Theorem 2. (a) Every hyperorthogonal 2n-tuple on Σn consists of n mutually orthogonal
antipodal pairs. In other words, every hyperorthogonal 2n-tuple is obtained from an
orthonormal base (v1, . . . , vn) for Rn by adjoining the opposite base (−v1, . . . ,−vn).

(b) There exists a hyperorthogonal p-tuple on Σn if and only if p ≤ 2n.

Thus, for n = 3, the only hyperorthogonal 6-tuple on the 2-sphere Σ3 consists of
the vertices of a regular octahedron inscribed in the unit ball in R3. For an explicit
determination of all hyperorthogonal p-tuples on Σn for arbitrary p ≤ 2n, see [3].
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Proof of Theorem 2. For n = 1, (a) is obvious, so assume that n ≥ 2. For the inductive
proof suppose that (a) holds for smaller values of n.

As shown in the paragraph containing (10) the orthogonal projection of (v1, . . . , v2n−1)

on (Rv2n)⊥ is a hyperorthogonal (2n − 1)-tuple (v′

1, . . . , v
′

2n−1). At most one of the
vectors v1, . . . , v2n−1 could be proportional to v2n . Therefore, at most one of the vectors
v′

1, . . . , v
′

2n−1 is 0. We may assume for example that v′

i ≠ 0 for i = 1, . . . , 2n − 2.
Let wi = v′

i/∥v
′

i∥, i = 1, . . . , 2n−2. Then (w1, . . . , w2n−2) is a hyperorthogonal 2n−2
tuple on the ‘equator’ Σ ∗ ∼= Σn−1 corresponding to the ‘pole’ v2n :

Σ ∗
= {x ∈ Σn : d(x, v2n) = π/2}. (15)

By induction, this hyperorthogonal (2n − 2)-tuple consists of n − 1 mutually orthogonal
antipodal pairs, say (w1, wn), . . . , (wn−1, w2n−2), where (w1, w2, . . . , wn−1) is an
orthonormal base for (Rv2n)⊥ and −wi = wi+n−1, i = 1, . . . , n − 1.

Since ⟨v′

2n−1, v
′

i ⟩ ≤ 0 for i = 1, . . . , 2n − 2, it follows that ⟨v′

2n−1, ±wi ⟩ ≤ 0 for
i = 1, . . . , n − 1 and therefore that v′

2n−1 = 0. Since ⟨v2n−1, v2n⟩ ≤ 0 it follows
that v2n−1 = −v2n , and ⟨vi , ±v2n⟩ ≤ 0 for i = 1, . . . , 2n − 2. Thus ⟨vi , v2n⟩ = 0
for i = 1, . . . , 2n − 2, and (v1, . . . , v2n−2) = (v′

1, . . . , v
′

2n−2) = (w1, . . . , w2n−2),
and it follows that (v1, . . . , v2n) = (w1, . . . , w2n−2, v2n−1, v2n) consists of n mutually
orthogonal antipodal pairs.

The ‘if part’ of (b) is of course a consequence of (a). For the ‘only if part’ of (b),
suppose that (v1, . . . , v2n+1) is an hyperorthogonal (2n + 1)-tuple of normalized vectors
in Rn . According to (a) we may suppose that (v1, . . . , v2n) is as described in (a) (the latter
description). Then ⟨v2n+1, ±vi ⟩ ≤ 0 for i ≤ n, and so v2n+1 is orthogonal to each vi , in
contradiction with |v2n+1| = 1. This completes the proof of Theorem 2. �

References

[1] A.A. Albert, On Jordan algebras of linear transformations, Trans. Amer. Math. Soc. 59 (1946) 524–555.
[2] E.D. Effros, E. Størmer, Positive projections and Jordan structure in operator algebras, Math. Scand. 45

(1979) 127–138.
[3] B. Fuglede, Hyperorthogonal families of vectors, 2012, Manuscript.
[4] U. Haagerup, E. Størmer, Positive projections of von Neumann algebras on JW-algebras, Rep. Math. Phys.

36 (1995) 317–330.
[5] N. Jacobson, Jordan algebras of real symmetric matrices, Algebras Groups Geom. 4 (1987) 291–304.
[6] S.T. Jensen, Covariance hypotheses which are linear in both the covariance and the inverse covariance, Ann.

Statist. 16 (1988) 302–322.
[7] S.T. Jensen, J. Madsen, Estimation of proportional covariances in the presence of certain linear restrictions,

Ann. Statist. 32 (2004) 219–232.
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