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The pre-yield deformation behaviour (i.e., at stresses below the yield stress) of two materials, pure iron
and a low-alloy steel, and its anelastic nature are analysed at room temperature, before and after the
dislocation structures are varied by plastic deformation. It is shown, based on tensile experiments, that
this behaviour can be explained by limited reversible glide of dislocations without essential changes in
the dislocation structure. Moreover, a physically-based model that characterises the dislocation structure
by two variables, the dislocation density and the effective dislocation segment length, is used to quan-
titatively describe this deformation behaviour. The model validity is further evaluated by comparison
with dislocation densities from X-Ray Diffraction measurements.

© 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Sheet metal forming processes are extensively used in many
sectors. Yet, the dimensional control of the formed sheets is a real
challenge: springback -defined as the strain relaxation after release
of the forming stresses- cannot be predicted accurately. Experi-
mental evidence has shown that themagnitude of springback is not
only dependent on the elastically recovered strain, but also on an
anelastic contribution to the total relaxed strain [1e3]. The former,
determined by the atomic interactions, is given by Hooke’s law,
whereas the latter is caused by dislocations within the material
[1,4]. However, how do the dislocations cause this anelasticity?
Already below the yield stress, dislocation segments bow out,
causing an additional strain component, and thus the well-known
reduction of the Young’s modulus after plastic deformation
[2,5,6]. This additional strain component is defined in this study as
anelastic strain, according to [4,7], and is responsible for the non-
linearity that is often observed in the stress-strain curve regime
below the yield stress. If the load is released at any stage before the
material starts to yield, this behaviour is reversible and the dislo-
cations return to an equilibrium configuration. Once the yield stress
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is reached, Frank-Read sources are activated and the dislocations
multiply. After plastic deformation and during unloading, the mo-
bile dislocations move in the reverse direction, so similar mecha-
nisms as those occurring in the pre-yield regime (with an increased
dislocation density) are expected to reverse the anelastic strain, and
lead to the springback phenomenon. Anelastic strain, as it is
defined here, is related to the dislocations’ subcritical bowing
during loading and reversible bowing during unloading [8,9],
which are essentially time independent at room temperature.

A better comprehension of the anelastic dislocation behaviour is
essential for a complete physical model of the pre-yield behaviour
of metals. Recently, a dislocation based model has been developed
by van Liempt et al. [1] to account for the anelastic deformation in
the pre-yield regime. The model, summarised in Section 2, quan-
tifies the anelastic contribution as a function of two variables that
characterise the dislocation structure in the material: the disloca-
tion density and the effective dislocation segment length.

In this work, the pre-yield deformation behaviour of two ma-
terials, pure iron and a low-alloy steel, is analysed at room tem-
perature using tensile tests. It is seen that this behaviour can be
adequately explained by considering that, besides elastic strain,
limited glide of dislocations does occur below the yield stress. The
experimental results are discussed and quantified in relation with
the predictions by the model for anelastic deformation. The model
is validated by means of X-Ray Diffraction (XRD), by comparison of
the dislocation density values obtained through the model
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application to the tensile curves with the values from the XRD
analysis.

2. Anelastic behaviour of dislocations

During loading in the pre-yield regime, purely elastic strain due
to atomic interactions, εe, and anelastic strain due to bowing-out of
dislocation segments, εa, are simultaneously occurring, so the total
strain εpre can be described as the sum of both contributions:

εpre ¼ εe þ εa ¼ ðs=EÞ þ εa (1)

where s is the applied stress and E is the elastic modulus of the
crystal lattice. The stiffness in the pre-yield regime can be charac-
terised by the derivative of the previous equation, which is:

Qpre ¼ ds=dεpre ¼ EQa=ðE þQaÞ (2)

whereQpre is the slope of the pre-yield stress-strain curve andQa¼
ds/dεa is the anelastic contribution to the pre-yield deformation
behaviour. The latter is determined by the dislocation structure and
behaviour. In order to analyse this behaviour, we consider a dislo-
cation segment of length l pinned by other dislocation nodes, solute
atoms or precipitates, as in Fig.1(a). An applied shear stress t causes
the dislocation segment, initially at rest, to bow out and produce
slip under the action of a glide force (Fig. 1(b)). This (limited)
dislocation motion causes the anelastic strain. For N dislocation
segments of length l per unit volume, the total anelastic shear strain
ga can be expressed as:

ga ¼ NbA (3)

inwhich b is the length of the Burgers vector and A is the area swept
by each dislocation. This area can be determined using the
expression for a circle segment area:

A ¼ 1
2
r2ð4� sin 4Þ (4)

in which r is the radius of curvature and 4 is the subtended angle
(see Fig. 1(b)). In order to determine the anelastic contribution for
any stress value within 0 < s � sy, the exact expression for the
subtended angle 4 is used:

4 ¼ 2 arcsinðl=2rÞ (5)

The only force that opposes the applied shear stress t is the back
stress due to the line tension of the dislocation, T ¼ Gb/2r, where G
is the shear modulus. For a small applied stress, the dislocation
segment reaches an equilibrium position when t ¼ T. The radius of
curvature is then given by:

r ¼ Gb=2t (6)
Fig. 1. Scheme of the bow-out mechanism of a dislocation below the yield stress. (a)
The dislocation at an equilibrium configuration, (b) and (c) after bowing out to
different curvatures.
As the shear stress t increases, the area A swept by the
dislocation and thus the anelastic strain ga increase. This process,
as pointed out before, is reversible below the yield stress. At the
yield stress, however, the radius of curvature r reaches its min-
imum (rmin ¼ l/2) and the bowing-out becomes instable. Beyond
this point, Equation (6) is no longer satisfied and dislocation
loops start to form from the Frank-Read source. Plastic defor-
mation has then begun. Consequently, the yield stress sy can be
defined as the critical stress sc above which the bow-out mech-
anism is non-reversible. The yield stress sy can therefore be
expressed by:

sy ¼ sc ¼ MGb
�
l (7)

where M is the Taylor factor. Using Equations (3)e(7), the anelastic
contribution can be determined in the entire pre-yield regime as
follows [1]:

Qa ¼ ds=dεa ¼
�
M

2
Es3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
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��
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where s is the stress normalised by the critical stress, s ¼ s/sc, r is
the dislocation density and n is Poisson’s ratio. It must be noticed
here that Nl3 ¼ rl2. Finally, the pre-yield stiffness is obtained,
substituting Equation (8) into Equation (2), as:

Qpre ¼
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(9)

It should be noted that the lengths of dislocation segments in a
real material will form a distribution, which will cause the yield
stress not to be a single value. The parameter l in the model
description should be regarded as an effective value related to the
effective average yield stress. Longer segments will be activated as
Frank-Read sources at somewhat lower stress, shorter segments at
higher stress. The extension of the yield-stress range is directly
related to the width of the segment-length distribution. A wider
segment-length distribution will cause a more gradual transition
between the pre-yield and post-yield ranges in the extended
Kocks-Mecking plot (see Section 4.1).
3. Experimental procedure

3.1. Materials

Two materials, with chemical compositions listed in Table 1,
were selected for this study: pure iron (ARMCO pure iron, cold
rolled and subsequently annealed, provided by AK Steel Interna-
tional) and a low-alloy steel (99.5% iron foil, as-rolled, provided by
Goodfellow Cambridge Ltd.). The microstructure of the as-received
materials was characterised by optical microscopy and the grain
size was measured according to the equivalent diameter procedure.
Fig. 2 shows the ferritic microstructures, whichwere revealed using
a 2%Nital solution, together with the grain size measured in each
case. The rolling and transverse directions (designated as RD and
TD, respectively) are indicated. From the micrographs, it can be
noticed that the pure iron exhibits a larger grain size than the steel,
that is, 27 vs. 11 mm. Additional analysis revealed that there is no
significant texture, and consequently, grains can be considered
randomly oriented for both materials.



Table 1
Chemical composition (wt.%) of the materials selected for this study.

Material C Mn P S N Si Al Ni Cr

Pure Fe 0.003 0.050 0.005 0.003 0.0051 0.004 0.003 0.015 0.017
Steel <0.08 0.3 <0.04 <0.05 0.1
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3.2. Mechanical tests

Monotonic tensile tests were conducted on an Instron 5500R
electromechanical tester, equipped with a load cell of 10 kN ca-
pacity, at room temperature and in displacement control. The
tensile specimens were rectangular of dimensions 90 � 10 � 2
mm3 and 90 � 10 � 1 mm3 for the pure iron and the steel,
respectively. The axial directions of the samples were aligned with
the rolling direction of the sheets. Experimental evidence has
shown that the derivative of the stress-strain curve (also known as
the Kocks-Mecking plot [10]) is very sensitive to sample bending
and/or incorrect alignment effects, despite these being small. In
order to avoid these effects, two knife-edge type extensometers
(Instron 2620 � 602, 12.5 mm gauge length, ±2.5 mm and an ac-
curacy of ±0.5% of the read value) were placed on either side of the
specimen and the average strain was used for the calculations. The
crosshead speed was maintained constant at 1 mm/min, which is
equivalent to a strain rate of the order of 10�5 s�1 in the pre-yield
regime. At this strain rate, resistance effects due to thermally acti-
vated dislocation glide (i.e., lattice friction) can be considered
negligible [11].

Each specimen was subjected to a double loading procedure,
consisting of the following stages (in all of them, the crosshead
speed was maintained at 1 mm/min):

(I) Loading in the pre-yield regime.
(II) Plastic deformation up to 14% strain for the pure iron and 15%

strain for the low-alloy steel.
(III) Unloading.
(IV) Re-loading in the pre-yield regime.
(V) Plastic deformation by an additional 3%.
(VI) Unloading.

The stages (I) and (IV) were used to analyse the dislocation
structure according to the model presented in Section 2 and
reference [1]. XRD measurements were performed before stage (I)
and after stage (III). For each material, three samples were tested to
check the reproducibility of the results and the dispersion in the
measurements.

Additionally, a different type of experiment was carried out for
the low-alloy steel in order to investigate the strain reversibility in
the pre-yield regime. This test was performed using the same
Fig. 2. Initial microstructures for the as-received (a) pure iron and (b) steel. The grain size,
included in the figure.
conditions as in the monotonic tensile tests and involved a loading-
unloading cycle below the yield stress after 3% plastic deformation.
The maximum stress in this cycle was 266 MPa and the minimum
stress was slightly above zero.

3.3. X-Ray Diffraction (XRD) measurements

The XRD measurements were conducted on a Bruker D8-
Advance diffractometer operating at 45 kV and 30 mA, using Cu
Ka radiation (l ¼ 0.15406 nm) and a scan rate of 0.002 s�1. The
diffraction profiles of the ferrite (110), (200), (211), (220), (310) and
(222) reflections measured for the pure iron and the steel in the as-
received and deformed conditions, respectively, were separated
into Ka1 and Ka2 contributions. Peaks corresponding to Ka2 as well
as the background were subtracted from the profiles [14]. In order
to completely remove instrumental effects, the diffraction patterns
of the as-received undeformed pure iron and steel were used as a
reference. In this way, it is assured that the difference in peak
broadening between the deformed and as-received conditions is
strictly caused by dislocations. Two of these measurements were
performed for eachmaterial. The dislocation density was calculated
combining the modified Williamson-Hall and Warren-Averbach
methods (hereafter mWH and mWA, respectively) [12e14], which
are widely reported in the literature. For more details on the XRD
analysis see Appendix A.

4. Results and discussion

4.1. The experimental pre-yield deformation behaviour

Fig. 3 shows the true stress-true strain curves obtained for the
three samples of the pure iron and the steel tested in this work. The
plots show the pre-yield loading parts of the tensile curves in detail,
stage (I) and stage (IV), respectively, as well as the first unloading,
stage (III). Stage (I) and the beginning of stage (II) are plotted in the
range 0 < ε < 0.0025. Stage (IV) starts at ε¼ 0.1379 for the pure iron
and at ε ¼ 0.1503 for the low-alloy steel. The yield stress values
were determined for each material and deformation step according
to [1], as the intersection of the pre-yield and post-yield branches
in the Kocks-Mecking curves. The first characteristic to notice in
Fig. 3 is that both materials exhibit in stages (I) and (II) upper and
lower yield points followed by a yield plateau, which is associated
measured according to the equivalent diameter criterion, and principal directions are
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Fig. 3. True stress-true strain curves of the three tested specimens (S1, S2 and S3) for the (a) pure iron and (b) steel. The stages (II), (V) and (VI) are not shown.
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with carbon solute atoms diffusing to dislocations. Themacroscopic
yield stress in stage (I), 265 MPa for the pure iron and 229 MPa for
the low-alloy steel, respectively, will be reached after most of the
dislocations break away from these solute atoms and Frank-Read
sources are activated by the mechanism described in Section 2.
Thus, the higher the solute carbon content of the material, the
higher the yield stress: it is more difficult for the dislocations to
leave these obstacles behind. Another important point, which is
also observed in this stage, is that the steel exhibits a lower average
yield stress than the pure iron (229 vs. 265 MPa). Besides the solute
strengthening effect above mentioned, several other strengthening
mechanisms, for example due to grain size, dislocations and pre-
cipitates, can contribute to the yield strength difference [14e16].
Since the carbon content of the pure iron is an order of magnitude
smaller than that of the steel, its grain structure is significantly
coarser (27 mm, see Fig. 2) and no precipitates are present, the
larger yield stress of this material is most likely explained by a
higher dislocation density. During plastic deformation in stage (II)
and just before unloading, by contrast, the highest stress level is
reached for the steel, which displays the greatest degree of work
hardening. The average yield stress values in the second deforma-
tion step (stages IV and V) are 355 and 390 MPa, for the pure iron
and the low-alloy steel, respectively. An additional feature can be
observed in Fig. 3: the stress-strain hysteresis during unloading and
re-loading. This hysteresis behaviour suggests that anelastic strain
does occur and influences the pre-yield and unloading deformation
behaviour [2,3], even for these two simplematerials. The area of the
hysteresis loop is the work dissipated by this anelastic strain.

In order to analyse the anelastic behaviour, the derivative of the
stress-strain curves Qpre ¼ ds/dε was calculated during loading in
the pre-yield regime (for the stages (I) and (IV) in Fig. 3) and plotted
in Fig. 4 as a function of the stress. This sort of plot is frequently
found in the literature for the plastic regime of the materials and
known as the Kocks-Mecking plot [10]. Since these plots aim to
study the plastic behaviour, few of the ones presented in the
literature include the stress range below the yield stress [1,17]. In
the present work, the graph is untypically extended to zero stress
and focusses on the pre-yield regime. For this reason, it will be
referred to hereafter as the “extended” Kocks-Mecking plot [1]. In
Fig. 4, the Qpre vs. s data is plotted for the three tensile tests
repeated for each material. It can be seen that even though small
differences arise between specimens of the same material (red,
blue and black curves), all curves display essentially the same
shape, which can bewell separated into two regions: in a first stage,
the instantaneous modulus (ds/dε) of the material remains
approximately constant (most clearly for the underformed mate-
rials, Fig. 4(a) and (c)) or it decreases slightly (for the deformed
materials, Fig. 4(b) and (d)) whilst the stress increases. In a second
stage, conversely, ds/dε drops rapidly as the applied stress ap-
proaches the yield stress. It can also be noticed that the experi-
mental data remains below the Young’s modulus of the undistorted
crystal lattice (210 GPa for both materials [18]), except for some
points at the beginning of the curves in Fig. 4(a) and (c). It should be
mentioned here that these Qpre values, which correspond to very
small values of strain, are severely influenced by the derivation
process which amplifies any noise present in the stress-strain
curve.

Two key aspects can be extracted from the extended Kocks-
Mecking plots: in this range of stresses the effective modulus is
degraded relative to the Young’s modulus and it is a non-linear
function of the stress. In fact, near the yield stress the effective
modulus decreases very quickly. As has been discussed in Section 2,
this behaviour is due to limited dislocation glide by the bow-out
mechanism, essentially without changes in the dislocation struc-
ture, and can be quantitatively described by Equation (9) (see
Section 4.2).

It is interesting to note that when the curves of stages (I) and (IV)
are compared (Fig. 4(a)-(b) for the pure iron and Fig. 4(c)-(d) for the
steel), the latter always lie below the former. This means that the
effective modulus degradation is larger on the previously deformed
material during stage (IV). This is attributed to an increase in
dislocation density due to the plastic strain applied during stage
(II): the larger the plastic strain, the more dislocations contribute to
the anelastic strain. As a result, the pre-yield modulus decreases
from (I) to (IV). This variation of the effective modulus, dependent
on prior plastic strain, has been reported in the literature [19,20]. In
some cases, it has been observed that after the effective modulus
decreased to certain extent, there was a saturation: successive
deformation did not lead to further decrease [19]. Also, it is known
that the effective modulus can be restored by recovery heat treat-
ments [21]. So far, however, it has not been possible to accurately
predict the modulus degradation after plastic strain.

4.2. Pre-yield model application

Consider the extended Kocks-Mecking plot of the pure iron in
the first test (stage (I), Fig. 4(a)) and take the first specimen (S1, red
curve) as an example. According to [1], the yield stress can be
unambiguously determined as the transition point between the
pre-yield and post-yield regimes (the latter is not included here,
since this work focusses on the former), which have different
slopes. This transition point is reached at the critical stress of sc ¼
267 MPa for this sample. As pointed out before, an effective dislo-
cation segment length can be calculated from this value and
Equation (7), using M ¼ 3.06 [22], G ¼ 81 GPa [18] and b ¼ 0.248
nm, which results in l ¼ 233 nm. It should be mentioned, however,



Fig. 4. Extended Kocks-Mecking plots obtained for the (a)e(b) pure iron and (c)e(d) steel in the pre-yield loading stages (I) and (IV), respectively. Values of the dislocation density r

and effective dislocation segment length l obtained from pre-yield model analysis for sample S1 are included. Also, the theoretical Young’s modulus E (210 GPa) is indicated.

Table 2
Average dislocation density (rT) and effective segment length (lT) calculated through
the model detailed in Section 2. The dispersion in the measurements (SD) and the
product rT l2T is also included.

Material Condition rT (m�2) SD (m�2) lT (nm) SD (nm) rT l
2
T

SD

Pure Fe As-received 1.9$1013 6$1012 235 2 1.0 0.3
Deformed (14%) 1.3$1014 1$1013 174 1 4.0 0.3

Steel As-received 9.5$1012 1$1012 270 2 0.7 0.1
Deformed (15%) 1.8$1014 2$1013 158 1 4.5 0.5
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that Equation (7) does not consider grain boundary effects and
thereby the effective dislocation segment length could be some-
what underestimated. The initial value of the apparent Young’s
modulus or pre-yield stiffness of this sample, Qpre(s / 0), can be
determined from the plot at small stress values. In this case, Qpre(s
/ 0) ¼ 199 GPa. Using now Equation (2), the initial anelastic
contribution to the pre-yield deformation behaviour can be deter-
mined, Qa(s / 0) ¼ 3636 GPa. Once this value is known, the
approximation 4 ¼ l/r, which is valid only for small stress values
and simplifies Equation (8) to

Qa ¼ 3M
2
E
.h

rl2ð1þ nÞ
i

(10)

can be employed to calculate the initial dislocation density within
the material [4]. Using n ¼ 0.29 [19] and the previously derived
value of l, Equation (10) leads to a dislocation density r ¼ 2$1013

m�2. Finally, substituting these values of r and l into Equation (9),
the model curve corresponding to S1 (blue dashed line) in Fig. 4(a)
results. As is seen here, the model is able to accurately reproduce
the entire pre-yield deformation behaviour. It thus allows the
characterisation of the two parameters reflecting the dislocation
structure in the specimen. Note that r and l are calculated with
relatively simple equations and the full curve follows from these
values without additional fitting. Thus, simple mechanical tests can
provide valuable insight into the dislocation structure and mech-
anisms occurring at the scale of dislocations.

This procedure was repeated for the other pure iron samples
and those of the steel, using the extended Kocks-Mecking plots
obtained in each case. The resulting model curves, for the stages (I)
and (IV), corresponding to the first specimen analysed (S1), are
included in Fig. 4. Excellent agreement between experimental data
and model curves is observed in all cases. The values of r and l
calculated for different specimens and averaged for the same stage
and material (i.e., rT and lT) are summarised in Table 2, together
with the standard deviations. The product rl2 is also included.
Regarding the results in Table 2, the pure iron has, in the initial
state, a higher dislocation density and a shorter segment length
than the low-alloy steel, explaining why this material exhibits a
higher yield stress than the steel in stage (I), in spite of its coarser
grains. Due to plastic deformation (stage (II)), the dislocation den-
sity increases for both materials, diminishing the effective segment
length: r ¼ 1·1014 m�2 and l ¼ 174 nm in the case of the pure iron
and r ¼ 2·1014 m�2 and l ¼ 158 nm for the steel. Remarkably, the
two materials present similar values for rl2 (with some small var-
iations) in the as-received state and after plastic deformation. This
rl2 product represents the dislocation structure (different combi-
nations of dislocation densities and effective dislocation segment
lengths) and is usually assumed to be rl 2~ 1 in the literature [4,23].
This is in excellent agreement with the rl2 values obtained for the
as-received pure iron and steel in this work, that is, for relatively
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simple dislocation structures. It is observed here, however, that the
more complex the dislocation network (i.e., higher dislocation
densities), the higher this product, as results for the plastically
deformed pure iron and steel, for which rl 2~ 4. Therefore, the rl2

value can be considered as an indicative of the dislocation network
complexity.
4.3. Reversibility of the anelastic strain

As seen in previous sections, the pre-yield deformation behav-
iour of the pure iron and the low-alloy steel can be accurately
characterised by considering the elastic and anelastic contributions.
The mechanism proposed in this work implies that below the yield
stress, the limited dislocation glide (i.e., the bow-out mechanism)
should in principle be reversible. In order to investigate the validity
of this assumption, a loading-unloading cycle below the yield point
was performed for the low-alloy steel after 3% plastic deformation
(similar behaviour is expected for the pure iron). The aim of this
experiment is to analyse the reversibility of the strain once dislo-
cations can glide (dislocations are released from the C solute atoms
when plastic deformation is applied), exemplifying stage (IV). The
results corresponding to this experiment are plotted in Fig. 5(a) and
Fig. 5(b), respectively, which illustrate the true stress-true strain
cycle below the yield stress and subsequent Kocks-Mecking curves
(Q vs. s curves). Fig. 5(a) confirms that the strain is largely
reversible except for the small stress-strain hysteresis that is
observed. The width of the loop at the end of unloading, which
denotes the unrecoverable strain, i.e. microsplasticity, is εmp ¼
6.2·10�5, which is considerably smaller than the pre-yield strain,
εpre ¼ 1.5·10�3, and its anelastic component, εa ¼ 2.9·10�4 (calcu-
lated as the difference in strain between a straight line with slope
210 GPa and the end of loading in the pre-yield regime). It is
evident from Fig. 5(b) that Q has similar values during loading and
unloading, excluding the last part of the curves, in which the
loading branch shows a larger degradation of Q. Indeed, the initial
values of Q at loading are recovered at the beginning of unloading,
which suggests that the dislocation structure remains essentially
constant during the loading-unloading cycle: Frank-Read sources
do not become operative in this stress region. The microplasticity
seen in Fig. 5(a) is therefore not related to irreversible changes
occurring in these dislocation structures.

The hysteresis behaviour observed in this experiment can be
explained, as thoroughly detailed in Ref. [1], taking the obstacles
within the microstructure into account. During unloading, these
obstacles act opposite to the line tension of the dislocations and in
Fig. 5. Tensile test performed on the low-alloy steel to check the reversibility of strain in t
corresponding Kocks-Mecking curves.
the same direction as the applied stress. Therefore, only when the
stress has decreased to certain extent, the dislocations will be able
to pass these obstacles. This is the origin of the hysteresis that is
observed here: the strain applied during loading is recovered dur-
ing unloading, but at a lower stress level. It may occur, however,
that some obstacles are not passed by the dislocations during
unloading, explaining the differences observed in Fig. 5(b) at the
end of loading and unloading, and some microplasticity occurs. It
should be mentioned that this type of microplasticity, which is
exhausted in the first cycle, occurs only during cyclic straining and
is of no consequence for the events taking place during monoto-
nous loading. It can therefore be concluded that the pre-yield
deformation behaviour involves reversible glide of dislocations.
4.4. Dislocation densities determined by X-Ray Diffraction (XRD)

In order to assess the model validity, the dislocation density was
also determined using XRD. The rather involved analysis of the
XRD-peaks was proposed in Refs. [12,13] and is described in
Appendix A. Fig. 6(a) shows, as an example, the diffraction patterns
that were obtained for the as-received and plastically deformed
steel, in which the peaks were fitted to Voigt functions. The profiles
of the as-received materials were taken as a reference to remove
instrumental broadening (see Appendix A), which implies that the
calculated dislocation density, DrXRD, is the difference in dislocation
densities derived from the deformed and as-received states. In the
following paragraphs some crucial steps of the proposed method
are discussed in detail.

The first step to determine the dislocation density is to calculate
the dislocation contrast factor C, which is given by Equation (A. 8).
According to this equation, C depends on the parameter q, which
indicates the character of the dislocations, the average contrast
factor for the (h00) reflection Ch00, and the constant H2 ¼ (h2k2 þ
h2l2 þ k2l2)/(h2 þ k2 þ l2)2. The parameter q is determined from the
(DK2 � a)/K2 vs. H2 plot, illustrated in Fig. 6(b) for both materials, as
the intercept of the regression line with the horizontal H2 scale.
Here, K is the scattering vector given by K¼ 2sin q/l,DK refers to the
full width at half maximum and a is the inverse of the crystallite
size. The value of Ch00 is determined using ANIZC software [24],
assuming the elastic constants of the iron and the steel as C11 ¼
230.1 GPa, C12 ¼ 134.6 GPa and C44 ¼ 116.6 GPa [25], and equal
proportions of screw and edge dislocations. This results in an
average Ch00 value of 0.29. The experimental values of q are sum-
marised in Table 3. All obtained q values are within the bounds
specified by the theoretical values for edge and screw dislocations
he pre-yield regime. (a) The loading-unloading cycle after 3% plastic strain and (b) its



Fig. 6. (a) XRD diffraction patterns obtained for the steel in the as-received (taken as a reference) and plastically deformed (after stage III) conditions. The Miller indices are
indicated in the figure. (b) Linear relationship between (DK2 � a)/K2 and H2 in Equation (A. 10) for the pure iron and steel. (c) Example of the mWA plot obtained for the steel. Here, L
values are taken in the range between L ¼ 3.9 nm and L ¼ 96.3 nm, with increments of DL ¼ 3.9 nm.
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reported in Ref. [32] for iron, that is, 1.28 and 2.67, respectively.
For the modified Warren-Averbach analysis the Fourier trans-

form of the diffraction peaks is considered. The real part of the
Fourier coefficient AL is determined by [26]:

AL ¼ exp
�
� 2LFL � pL2F2G

�
(11)

where L is the Fourier length and FL and FG are the Lorentzian and
Gaussian components of the full width at half maximum, respec-
tively (see Equations (A. 2)e(A. 6)). Fig. 6(c) displays, as an example,
the mWA plot (ln AL vs. K2C for different L values) obtained for the
steel. From the fitting of a second-order polynomial to the ln AL vs.
K2C curves, X(L) in Equation (A. 15) can be estimated. Dividing X(L)
by L2 and plotting the result as a function of ln L, Fig. 7 results.DrXRD
is determined from the slope of the regression line fitted to the X(L
)/ L2 vs. ln L data points, for the linear part of the curve observed at
small L values. The cut-off radius of dislocations Re is then calcu-
lated from the intersection of that line with the vertical X(L)/L2 axis.
Finally, the parameter M, which indicates the arrangement be-
tween dislocations, can be determined as M ¼ Re

ffiffiffiffiffiffiffiffiffiffiffiffiffi
DrXRD

p
. The

DrXRD and M values determined in this manner from Fig. 7 are
Table 3
Experimental values of q,M and dislocation density (DrXRD) obtained by XRD for the
specimens analysed in Figs. 6 and 7.

Material q DrXRD (m�2) M

Pure Fe 2.1 1.6�1014 1.2
Steel 2.4 2.9�1014 1.5
summarised in Table 3, in which the larger dislocation density of
the steel should be noticed for these specimens.

The average values of DrXRD, which are based on two mea-
surements, are plotted in Fig. 8 together with the values calculated
from the extended Kocks-Mecking curves for the tensile tests, DrT
(i.e., the difference in dislocation densities derived from the stages
(IV) and (I)). The figure evidences the very good agreement be-
tween XRD and the pre-yield model. It is also noticed the higher
accuracy of the latter approach, which is associated with the
0 1 2 3

4

Ln L

Pure iron

Fig. 7. X(L)/L2 vs. ln L plot for the pure iron and steel. The straight line fitted to the
linear part of the curve for small L values is also included. The points considered for the
fitting are in red.



Fig. 8. Dislocation density values obtained by XRD (DrXRD), using the methodology
explained in appendix A, compared with the dislocation density values calculated by
application of the pre-yield model to the tensile curves (DrT).
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smaller sensitivity of DrT, through the analysis method, for
instrumental variations. An important conclusion can be drawn
from this figure: the application of the pre-yield model to the
tensile curves and the XRD analysis lead to similar values of
dislocation density, which confirms the validity of the pre-yield
model as a powerful and valuable tool to quantify dislocation
structures.

5. Conclusions

The pre-yield deformation behaviour of pure iron and a low-
alloy steel has been studied in the present work. It has been
demonstrated that for these simple materials, in addition to linear
elastic behaviour according to Hooke’s law, anelastic strain does
occur during loading in the pre-yield regime. A loading-unloading
cycle below the yield stress, which has been performed for the
low-alloy steel after 3% plastic deformation, has evidenced that
deformation in this regime involves reversible glide of dislocations
without changes in the dislocation structure. A physically-based
model has been used to describe the pre-yield deformation
behaviour and quantify the dislocation structures within the ma-
terials. The main conclusions of the study can be summarised as
follows:

$ The pre-yield model, based on two variables that characterise
the dislocation structure, that is, the dislocation density and the
effective dislocation segment length, accurately describes the
pre-yield deformation behaviour of these materials.

$ Applying the model to the extended Kocks-Mecking curves
obtained by tensile tests, the dislocation structures within the
pure iron and the steel have been characterised at different
deformation conditions. The increase in dislocation density and
the decrease of the segment length have been quantitatively
determined.

$ The dislocation density values obtained through the model have
been confirmed by XRD, using the combination of the mWH and
mWA approaches.
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Appendix A. X-Ray Diffraction (XRD) analysis

The methodology adopted in this work to determine the dislo-
cation density from XRD profiles is based on a combination of the
modified Williamson-Hall and modified Warren-Averbach
methods [12,13]. The first approach is used to calculate the
average contrast factor of dislocations C, which is applied in the
mWA method to determine the dislocation density. The procedure
can be summarised as follows:

Voigt fitting and instrumental broadening. The XRD profiles were
fitted to a Voigt function gV (see Fig. 6(a) for the steel), which is the
convolution of the Lorentzian gL and Gaussian gG functions:

gV ¼ gG5gL (A.1)

The fitting was done in reciprocal space (intensity vs. K) using
the Levenberg-Marquardt algorithm. As input parameters, the
initial estimates of the amplitude, position, Gaussian standard de-
viation (sG) and Lorentzian half width at half maximum (HL) of the
peaks were used. The full width at half maximum for the Gaussian
(FG), Lorentzian (FL) and Voigt (FV) functions were then calculated
for the different materials as[27,28]:

FG ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
sG (A.2)

FL ¼ 2HL (A.3)

FV ¼ 0:5346FL þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:2166F2L þ F2L

q
(A.4)

The instrumental broadening was subtracted using [29]:

�
FyG

�2
p ¼ �

FyG
�2
o �

�
FrefG

�2
(A.5)

�
FyL

�
p ¼ �

FyL
�
o �

�
FrefL

�
(A.6)

where the superscript y refers to the plastically deformed pure iron
and steel, and the superscript ref denotes the reference material
(i.e., the as-received pure iron and steel). Here, ðFyG;LÞp are the
physical Gaussian and Lorentzian widths and ðFyG;LÞo the observed
ones, respectively. Once the physical values of FyG and FyL are known,
those of FyV are calculated by Equation (A. 4).

The modified Williamson-Hall (mWH) approach. Assuming that
strain broadening is caused by dislocations only, the equation to
describe the peak broadening is [12]:

DK ¼ ð0:9=DÞ þ
�
pM2b2

.
2
�1=2

r1=2KC
1=2 þ O

�
K2C

�
(A.7)

in which K is the diffraction vector defined as K ¼ 2sin q/l, where q

is the Bragg angle and l is the wavelength of X-rays. In Equation (A.
7), DK is the full width at half maximum, D is the average crystal
size,M is a constant depending on the effective outer cut-off radius
of dislocations Re and the dislocation density r, byM ¼ Re

ffiffiffi
r

p
[30], C

is average contrast factor of dislocations and O(K2C) stands for
higher order terms in KC

1=2
. Since the fitting of the XRD-peaks to a

Voigt function was done in reciprocal space, DK ¼ FyV in Equation
(A. 7). In this equation, M is a dimensionless parameter which was
first introduced by Wilkens and characterises the arrangement of
dislocations [30]. The lower the value of M, the stronger the cor-
relation between dislocations. For an untextured cubic poly-
crystalline material the average contrast factor of dislocations C can

http://www.m2i.nl
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be calculated using [31]:

C ¼ Ch00

�
1� qH2

�
(A.8)

inwhich Ch00 is the average dislocation contrast factor for the (h00)
reflection, q is a parameter that depends on the edge or screw
character of dislocations and H2 ¼ (h2k2 þ h2l2 þ k2l2)/(h2 þ k2 þ
l2)2. The value of Ch00 and theoretical values of q, for either edge or
screw dislocations, can be determined based on the elastic con-
stants of the material and the active slip systems, and are therefore
known values [12,32]. According to [12], the quadratic form of
Equation (A. 7) can be approximated to:

DK2yð0:9=DÞ2 þ
�
pM2b2

.
2
�
rK2C (A.9)

where higher order terms in K2C are neglected. Moving the size
term to the left-hand side of the equation, dividing by K2 and
substituting Equation (A. 8) into Equation (A. 9), the following
relation results:

�
DK2 � a

�.
K2 ¼

�
pM2b2

.
2
�
rCh00

�
1� qH2

�
(A.10)

where a¼ (0.9/D)2. Applying this relation to DK values obtained for
the different (hkl) reflections, the a parameter can be estimated
from the (DK2 � a)/K2 versus H2 plot, as the optimal value for linear
regression. This is shown in Fig. 6(b) for both materials. Then, the
experimental value of q can be determined as the intercept of that
line with the horizontal H2 axis.

The modified Warren-Averbach (mWA) approach. The Fourier
transform of the X-ray profiles AL can be obtained as the multipli-
cation of the Fourier transforms of size and strain coefficients (AS

L
and AD

L , respectively):

AL ¼ AS
L$A

D
L (A.11)

The logarithm of the Fourier transform of the normalised in-
tensity is expressed as [33]:

ln AL ¼ ln
�
AS
L$A

D
L

�
¼ ln AS

L � 2p2L2K2
D
ε
2
E

(A.12)

where L is the Fourier length defined as L¼na3, in which n are in-
tegers, a3 is the unit of the Fourier length in the direction of the
diffraction vector K, given by a3 ¼ l/2(sin q2 � sin q1), and q1 and q2
are the starting and end values of the diffraction angular range in
which each (hkl) peak is measured. 〈ε2〉 is the mean squared strain
caused by dislocations, which for small L values is approximated as
[30,34]:

D
ε
2
E
¼

�
rCb2

.
4p

�
lnðRe=LÞ (A.13)

Substituting Equation (A. 13) into Equation (A. 12) results in.

ln AL ¼ ln AS
L � r

�
pb2

.
2
�
L2 lnðRe=LÞK2C (A.14)

which is known as the mWA equation. Higher order terms in K2C
are considered negligible. In order to determine r, ln AL as a func-
tion of K2C is fitted by a second-order polynomial for given values
of L (see Fig. 6(c) for the case of the steel). The coefficient of the
cuadratic term, X(L), is then given by

XðLÞ
.
L2 ¼ r

�
pb2

.
2
�
ðln Re � ln LÞ (A.15)

Plotting the result as a function of ln L, the slope of the straight
line fitted to the data at low L, yields the dislocation density (see
Fig. 7). Re and M can be calculated from the intersection of that
straight line with the vertical X(L)/L2 axis and M ¼ Re

ffiffiffi
r

p
,

respectively.
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