ropathy, 16 HIV-associated neuropathy and 8 post herpetic neuralgia) with a mean age of 60.3 (12.3) years and an even gender distribution were interviewed. Patient treatment experience ranged from anticonvulsants (73%), antidepressants (34%), opioids (25%), to topical medications (41%). Pain descriptors and treatment attributes were similar across the three NP groups. Pain relief was judged the most important treatment attribute, followed by ability to do activities. Sleep improvement was the most important attribute. Additionally, patients and QL were perceived as too broad and unspecific, and were split into 3 concepts each (self-care, daily and physical activities; sleep, emotions, and social function). A 7-day recall period was introduced. The item stem and response options were made consistent, and a baseline and follow-up questionnaires were developed (except for the satisfaction items). Baseline and follow-up versions made assessments of change over time possible.

CONCLUSIONS: The content validity of the revised SAT was improved by the qualitative research, and NP treatment benefits are reflected in a more consistent fashion by the changes. Baseline and follow-up versions make assessments of change over time possible.

PSY41

EVALUATING THE FREQUENCY AND SEQUENCE OF ITEMS ADMINISTERED USING PROMIS COMPUTER ADAPTIVE TESTING

Blum SI, Tourkodimitris S, Spera A

OBJECTIVES: The National Institutes of Health (NIH) roadmap project: Patient-Reported Outcomes Measurement Information System® (PROMIS®) has developed a series of large calibrated item banks and a computer adaptive testing (CAT) system, allowing for efficient and robust assessment of a wide range of health outcomes. This study assesses the performance of PROMIS-CAT by evaluating the frequency and sequence of items administered in a clinical trial. This was a 13-week randomized, double-blind, placebo-controlled drug switch trial.

RESULTS: Promis-CAT assessments were scheduled for three study visits using AssessmentCenterSM (v.1.0 item banks with standard CAT parameters) for the four following domains: Fatigue, Physical Function (PF), Satisfaction with Sexual Intimacy Activity (DSA), and Wake Disturbance (WD). PROMIS-CAT administers those questions which are most informative to assess individual patients based on their prior responses and their latent trait score. Findings were summarized via descriptive statistics.

RESULTS: A total of 107 randomized patients completed at least one PROMIS-CAT assessment. Each PROMIS-CAT instrument was assessed using CAT. Accuracy and efficiency of item administrations determined the following observations: 36 of 95 (38%) Fatigue items were administered (including 4 items administered >50% of the time). 30/124 (24%) PF items were administered (3 items >50% of the time). All items from the DSA (12-items) and WD (16-items) banks were administered. There were 41 unique item sequences for Fatigue, 48 for FF, 20 for DSA and 21 for WD. DSA and WD each had one sequence of items that was used in over half of the assessments.

CONCLUSIONS: PROMIS-CAT administered a subset of items from the full item banks which are most informative in assessing individual patients with fibromyalgia. Fewer than half the items from the Fatigue and Physical Function item bank were administered. DSA and WD had all items administered and fewer unique item sequences.

PSY42

PATIENT-REPORTED OUTCOME (PRO) INSTRUMENT FOR DETECTION OF PERIPHERAL NEUROPATHY (PN) IN PATIENTS WITH MULTIPLE MYELOMA (MM): THE FACT/GOG-Ntx

Choi S1, Neuwirth R1, Cakana A2, San miguel JF3, Richardson PG4

OBJECTIVES: Peripheral Neuropathy (PN) is a key side effect of several MM therapies, including bortezomib. PRO instruments, such as the FACT/GOG-Ntx (v4.0) have been created to capture the impact of PN, respectively, AUCs were: .52, .53, .57, and .63 at cycle 1; .63, .64, .63, and .85 at cycle 2; and .71, .75, .76, and .96 at cycle 3. At cycle 4, AUCs were .77, .79, and .75, and at cycle 5 were .78, .80, and .79 for grade ≥1, ≥2, and ≥3, and 3 PN, respectively. FACT/GOG-Ntx sensory subscale demonstrated substantial predictive utility for early detection of clinical PN. FACT/GOG-Ntx could be a useful PRO tool for early bortezomib-associated PN detection and management. Similar analyses of additional phase 2 (SUMMIT) and 3 (APEX) studies are planned.

CONCLUSIONS: The National Institutes of Health (NIH) roadmap project: Patient-Reported Outcomes Measurement Information System® (PROMIS®) has developed a series of large calibrated item banks and a computer adaptive testing (CAT) system, allowing for efficient and robust assessment of a wide range of health outcomes. ROC curve (AUC) is a measure of accuracy; AUC should be useful.

**ROC curve analyses were conducted based on logistic regression results for pre-treatment (median age 71 years) received up to nine 6-week cycles of bortezomib-PN, respectively, AUCs were: .52, .53, .57, and .63 at cycle 1; .63, .64, .63, and .85 at cycle 2; and .71, .75, .76, and .96 at cycle 3. At cycle 4, AUCs were .77, .79, and .75, and at cycle 5 were .78, .80, and .79 for grade ≥1, ≥2, and ≥3, and 3 PN, respectively. FACT/GOG-Ntx sensory subscale demonstrated substantial predictive utility for early detection of clinical PN. FACT/GOG-Ntx could be a useful PRO tool for early bortezomib-associated PN detection and management. Similar analyses of additional phase 2 (SUMMIT) and 3 (APEX) studies are planned.

CONCLUSIONS: The National Institutes of Health (NIH) roadmap project: Patient-Reported Outcomes Measurement Information System® (PROMIS®) has developed a series of large calibrated item banks and a computer adaptive testing (CAT) system, allowing for efficient and robust assessment of a wide range of health outcomes.ROC curve (AUC) is a measure of accuracy; AUC should be useful.

**ROC curve analyses were conducted based on logistic regression results for pre-treatment (median age 71 years) received up to nine 6-week cycles of bortezomib-PN, respectively, AUCs were: .52, .53, .57, and .63 at cycle 1; .63, .64, .63, and .85 at cycle 2; and .71, .75, .76, and .96 at cycle 3. At cycle 4, AUCs were .77, .79, and .75, and at cycle 5 were .78, .80, and .79 for grade ≥1, ≥2, and ≥3, and 3 PN, respectively. FACT/GOG-Ntx sensory subscale demonstrated substantial predictive utility for early detection of clinical PN. FACT/GOG-Ntx could be a useful PRO tool for early bortezomib-associated PN detection and management. Similar analyses of additional phase 2 (SUMMIT) and 3 (APEX) studies are planned.

CONCLUSIONS: The National Institutes of Health (NIH) roadmap project: Patient-Reported Outcomes Measurement Information System® (PROMIS®) has developed a series of large calibrated item banks and a computer adaptive testing (CAT) system, allowing for efficient and robust assessment of a wide range of health outcomes. ROC curve (AUC) is a measure of accuracy; AUC should be useful.

**ROC curve analyses were conducted based on logistic regression results for pre-treatment (median age 71 years) received up to nine 6-week cycles of bortezomib-PN, respectively, AUCs were: .52, .53, .57, and .63 at cycle 1; .63, .64, .63, and .85 at cycle 2; and .71, .75, .76, and .96 at cycle 3. At cycle 4, AUCs were .77, .79, and .75, and at cycle 5 were .78, .80, and .79 for grade ≥1, ≥2, and ≥3, and 3 PN, respectively. FACT/GOG-Ntx sensory subscale demonstrated substantial predictive utility for early detection of clinical PN. FACT/GOG-Ntx could be a useful PRO tool for early bortezomib-associated PN detection and management. Similar analyses of additional phase 2 (SUMMIT) and 3 (APEX) studies are planned.