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Abstract We propose an alternative treatment to describe the spatial-dependence of the non-

resonant two-photon mazer. Previous work presented a treatment for studying the cold atom

micromaser (mazer) but under certain restrictive conditions. We now extend those results to a gen-

eral case taking into account the spatial dependence, off-resonant interaction and Stark-shift. In a

mesa mode profile, we obtain an exactly analytic solution of the model, by means of which we ana-

lyze the analytical form of the emission probability. We demonstrate that, when the spatial depen-

dence effects are taken into consideration, the feature of the emission probability is influenced

significantly.
ª 2011 University of Bahrain. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Cold and ultracold atoms introduce new regimes in atomic
physics often not considered in the past (Wieman et al.,
1999). Many new concepts and new phenomena, that involve

ultracold atoms, are proposed or observed. Among them are
atom optics (Adams et al., 1994), Bose Einstein condensation
(Griffin et al., 1995), atom lasers (Bloch et al., 1999), nonlinear

atom optics (Lenz et al., 1994), nonlinear optics of matter
waves (Goldstein et al., 2000) and mazer action (Scully et al.,
.W. Ahmed).
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1996; Meyer et al., 1997; Loffler et al., 1997; Schröder et al.,
1997; Zhang et al., 1999; Aran et al., 2000). In these phenom-

ena, the interaction between ultracold atoms and quantum
radiation fields plays an important role (Haroche et al.,
1991; Englert et al., 1991) and the quantization of the center-

of-mass (c.m.) motion of atoms must be taken into account
in studies on this kind of interaction. Studies in Haroche et
al. (1991) and Englert et al. (1991) have been extended by
including the dissipation of the photon energy into the descrip-

tion in Battocletti and Englert (1994). In all these previous
studies, the mazer properties were always presented in the res-
onant case where the cavity mode frequency is equal to the

atomic transition frequency. In Obada and Abdel-Aty (2000)
and Abdel-Aty and Obada (2002a,b) those restrictions have
been removed and a general theory of the mazer has been

established. Further, the research on quantum treatment of
the atomic motion has been extended to study the off-resonant
case (Bastin and Martin, 2003).

On the other hand, during the last decade many theoretical

and experimental efforts have been done in order to study two-
photon processes involving atoms inside a cavity, stimulated
by the experimental realization of a two-photon micromaser.
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In view of continuing technological improvements in micro-

cavities even at optical frequencies recent work (Concannon
et al., 1997) has motivated the examination of certain aspects
of the two-photon mazer theory that are fundamental to the
process. These aspects have their counterpart in the usual sin-

gle-photon mazer, but rather different behavior is to be ex-
pected in the two-photon case, owing to the essential
nonlinearity of the process. We have here in mind a degenerate

two-photon mazer with the upper state connected to the lower
one by a two-photon process.

We discuss the emission probability of the two-photon sys-

tem, taking into account the spatio-temporal dependence. This
is most conveniently accomplished in a quantum theory of the
mazer formalism in terms of the dressed state approach (Scully

et al., 1996; Meyer et al., 1997; Loffler et al., 1997; Schröder
et al., 1997; Si-de et al., 1998, Zhang and He, 1998 and Zhang
et al., 2002). To make the two-photon processes closer to the
experimental realization, we include the effect of the dynamic

Stark shift in the evolution of the emission probability, which
is necessary and interesting. Related treatment discussing the
quantum theory of the two-photon maser without the spatial

dependence (i.e. in front and after leaving the cavity), have been
presented in the literature (Zhang et al., 1999). However in this
problem three regions are distinguished: in front of the cavity

described by l(z) where incident and reflected waves are pres-
ent, inside the cavity represented by l(z), l(z,L) where transient
regime occurs; and after leaving the cavity described by l(z,L)
where transmitted waves are present with l(z) the step-func-

tion. Other extensions are made namely the off-resonance case
and the Stark shift effect are considered. Contrary to what is
claimed in Bastin and Martin, 2003 we find that the problem,

in the mesa mode case, reduces to an elementary scattering
problem over a potential barrier and a potential well defined
by the cavity even in the presence of detuning and Stark shift.

The material of this paper is arranged as follows: in the sec-
tion ‘General scheme’ we start with the theoretical description
of the model. We obtain an exactly analytic solution of the

model, by means of which we analyze the analytical form of
the emission probability. Finally conclusions are presented in
the last section.

2. General scheme

The concept of the mazer has been applied to the two-photon

process in Zhang et al. (1999). They have studied the quan-
tized-z-motion-induced emission and the photon statistics of
the micromaser pumped by slow atoms after leaving the cavity

thus they did not include terms which describe the incident and
transient parts in the wave function, which when added alter
the dynamics of the system. However in this problem we have

three regions: one of them described by l(z) which represents
the wave function in front of the cavity, l(z) � l(z,L) which
represents inside the cavity of length L, and the last one with

l(z,L) which describes the wave function after leaving the cav-
ity. But, if the ideas are to be contemplated for applications,
the issue of propagation inside the cavity is crucial. Addressing
this issue is the purpose of the present paper.

We consider a two-level atom moving along the z-direction
in the way to a cavity of length L. The atom is coupled with a
two-photon transition to a single-mode of the quantized field

present in the cavity. The atom-field interaction is modulated
by the cavity field mode function. The atomic center-of-mass

motion is described quantum mechanically and the rotating-
wave approximation is made. The Hamiltonian describing
the system is given by

bH ¼ bP2
z

2m
þ �hxðâyâþ ðj "ih" j � j #ih# jÞ þ âyâðb1j "i

� h" j þ b2j #ih# jÞÞ þ
�h

2
Dðj "ih" j � j #ih# jÞ

þ �hkuðzÞðj #ih" jây2 þ â2j "ih# jÞ; ð1Þ

where Pz is the atomic center-of-mass momentum along z-axis.
We denote by k, the atom-field coupling strength for the inter-

action between the cavity field and the atom, u(z) is the mode
function of the cavity field and m is the atomic mass. b1 and b2
are parameters describing the intensity-dependent Stark shifts

of the two levels that are due to the virtual transitions to the
intermediate relay. The operator a (a+) is the annihilation (cre-
ation) operator for the cavity field, x is the field frequency and
D the detuning parameter. When a cold atom is approaching

the interaction region, it can be reflected or transmitted
according to quantum scattering theory.

In the interaction picture, let us write Eq. (1) in the follow-

ing form:

bH ¼ bP2
z

2m
þ bV;

bV ¼ b1ðj "ih" j þ b2â
yâj #ih# jÞ þ �h

2
Dðj "ih" j � j #ih# jÞ

þ �hkuðẑÞðj #ih" jây2 þ â2j "ih# jÞ:

ð2Þ

The global Hilbert space of the system is given by
H= Hz � HA � HR with Hz the space of the wave functions
describing the one-dimensional atomic center-of-mass motion,
HA the space describing the atomic internal degree of freedom,

and HR the space of the cavity single mode radiation. It is
expedient to expand the atom-field state in terms of the states

jU0i ¼ j0; #i;
jU1i ¼ j1; #i;

jUþn i ¼ sin
.n

2

� �
jn; "i þ cos

.n

2

� �
jnþ 2; #i;

jU�n i ¼ cos
.n

2

� �
jn; "i � sin

.n

2

� �
jnþ 2; #i;

ð3Þ

where

.n ¼ 2� tan�1
kuðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þðnþ 2Þ

p
ln � D

2
þ 1

2
½nb2 � ðnþ 2Þb1�

� � !
;

ln ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D
2
þ 1

2
½nb2 � ðnþ 2Þb1�

� �2

þ k2u2ðzÞðnþ 1Þðnþ 2Þ

s
:

ð4Þ

The states jU�n i are z-dependent through the trigonometric
functions, they satisfy

@

@z
jU�n i ¼ �jU�n i

d.n

dz
;

@2

@z2
jU�n i ¼ �jU�n i

d2.n

dz2
� jU�n i

d.n

dz

� �2

:

ð5Þ

Then, Æz|W(t)æ can be expanded in the form hzjWðtÞi ¼P
nc
�
n ðz; tÞjU�n i and it satisfies the Schrödinger equation
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@

@t
jhzjWðtÞi ¼ bHhzjWðtÞi:

Hence the coefficients C�n ðz; tÞ satisfy the coupled equation

@Cþn ðz; tÞ
@t

¼ � 1

2m

@2

@z2
þ Vþn �

d.n

dz

� �2
 !

Cþn ðz; tÞ

� 2
C�n ðz; tÞ
@z

d.n

dz

� �
þ C�n ðz; tÞ

d.n

dz

� �2
 !

; ð6Þ

@C�n ðz; tÞ
@t

¼ � 1

2m

@2

@z2
þ V�n �

d.n

dz

� �2
 !

C�n ðz; tÞ

þ 2
Cþn ðz; tÞ
@z

d.n

dz

� �
þ Cþn ðz; tÞ

d.n

dz

� �2
 !

; ð7Þ

where

V�n ðzÞ¼
�h

2
½nb2þðnþ2Þb1�

��h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D
2
þ1

2
½nb2�ðnþ2Þb1�

� �2

þk2u2ðẑÞðnþ1Þðnþ2Þ

s
;

ð8Þ

Eqs. (6) and (7) mean that, we get for each n two coupled par-
tial differential equations. But once u(z) is taken to be con-

stant, then dqn
dz

will vanish and these equations are decoupled
over the entire z-axis and the problem reduces to an elemen-
tary scattering problem over a potential barrier and a potential

well defined by the cavity even in the presence of detuning and
Stark shift. This can be contrasted with what has been claimed
earlier (Bastin and Martin, 2003).

In what follows we study the mesa-mode case of the field
which means that u(z) is constant inside the cavity and zero
outside the cavity. In this case the states (3) become the dressed

states of the system. We assume that, initially, the atomic cen-
ter-of-mass motion is not correlated to the other degrees of
freedom. We describe it by the wave packet

XðzÞ ¼ hzj/ð0Þi ¼
Z

dkGðkÞeikzhð�zÞ: ð9Þ

We denote by h(�z) the Heaviside step function (indicating
that the atoms are incident from the left of the cavity). The
Fourier amplitudes G(k) are adjusted such that the center of

the wave packet enters the cavity at time t= 0. The initial
state of the system can be written

jwð0Þi¼
X1
n¼0

qnjni cos
s
2

� �
j "iþ sin

s
2

� �
e�iuj #i

h i
¼ sin

s
2

� �
e�iuðq0j0;#iþq1j1;#iÞ

þ
X1
n¼0

qn cos
s
2

� �
jn;"iþqnþ2 sin

s
2

� �
e�iujnþ2;#i

n o
¼ sin

s
2

� �
e�iuðq0jU0iþq1jU1iÞþ

X1
n¼0
ðYn�jU�n iþYnþjUþn iÞ;

ð10Þ
where

Ynþ ¼ qn sin
.n
2

� �
cos

s
2

� �
þ qnþ2 cos

.n
2

� �
sin

s
2

� �
e�iu;

Yn� ¼ qn cos
.n
2

� �
cos

s
2

� �
� qnþ2 sin

.n
2

� �
sin

s
2

� �
e�iu:

ð11Þ
In a mesa mode profile, the wave function of the atom-field

interaction can be obtained using a straightforward calcula-
tion, in the following form

hzjWðtÞi ¼
Z

dkGðkÞ exp �i�hk
2t

2M

� �Xn¼0
1

qn

� eikz þ Aþn sin
.n
2

� �
cos

s
2

� ��n�h
þA�n cos

.n
2

� �
sin

s
2

� �
e�iu

�
e�ikz

o
hð�zÞ

þ Bþn sin
.n
2

� �
cos

s
2

� �
þB�n cos

.n
2

� �
sin

s
2

� �
e�iu

n o
�eikðz�LÞhðz�LÞ

þ aþn e
ikþn z þ bþn � e�ik

þ
n z

� �
sin

.n
2

� �
cos

s
2

� �n
� a�n e

ik�n z þ b�n e
�ik�n z

� �
cos

.n
2

� �
sin

s
2

� �
� eiu

o
�½hðzÞ � hðz� lÞ�Þjn;"i

þ Aþn cos
.n
2

� �
sin

s
2

� �
e�iu �A�n sin

.n
2

� �
cos

s
2

� �n o�
� e�ikzhð�zÞ þ Bþn cos

.n
2

� �
sin

s
2

� �
e�iu �B�n sin

.n
2

� �n
� cos

s
2

� �o
eikðz�LÞhðz�LÞ

þ aþn e
ikþn z þ bþn e

�ikþn z
� �

cos
.n
2

� �
sin

s
2

� �n
� e�iu a�n e

ik�n z � b�n e
�ik�n z

� �
� sin

.n
2

� �
cos

s
2

� �o
�½hðzÞ � hðz�LÞ�Þjnþ 2;#i�; ð12Þ

where, the coefficients A�n , of the reflected waves B�n , of the
transmitted waves and a�n and b�n of the transient regime are

given by

A�n ðkÞ ¼
i��n sinðk

�
n LÞ

cosðk�n LÞ � id�n sinðk
�
n LÞ

; B�n ðkÞ ¼
e�ikL

cosðk�n LÞ � id�n sinðk
�
n LÞ

;

a�n ðkÞ ¼
1
2

1þ k
k�n

� �
e�ik

�
n Le�ikL

cosðk�n LÞ � id�n sinðk
�
n LÞ

; b�n ðkÞ ¼
1
2

1� k
k�n

� �
eik
�
n Le�ikL

cosðk�n LÞ � id�n sinðk
�
n LÞ

;

ð13Þ

where

d�n ¼
1

2

k�n
k
þ k

k�n

 !
; ��n ¼

1

2

k�n
k
� k

k�n

 !
;

k20 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þmD

�h

r
; k21 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm

�h
ðD� 2b2Þ

r
;

k�n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � c2

2
½nb2 � ðnþ 2Þb1� � c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2=k2 þ ðnþ 1Þðnþ 2Þ

qr
:

ð14Þ

It is to be noted that the vacuum coupling energy
�hk ¼ ð�hcÞ2=2m, and �hk is the atomic center-of-mass momen-
tum. To make a shortcut to the two-photon JC-model consid-

ered in the standard studies of the quantum optics we may
write the time dependent exponent exp½it�hk2=2m� in the term
with [h(z) � h(z � l)], i.e., inside the cavity in the following

form exp �i �hk�n
2m
� En

h i
t

� �
, where En ¼ 1

2
½nb2 þ ðnþ 2Þb1� þ

�h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ k2ðnþ 1Þðnþ 2Þ

q
.

When the spatial dependence is not taken into consider-
ation, the wave function goes automatically to the well known

wave function for the standard two-photon JC-model. The
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solution (10) contains the regions inside and outside the cavity.

The region inside the cavity, the contributions of the dynamic
Stark effect and the off-resonant case have not been considered
in earlier studies for the two-photon cases (Zhang et al., 1999).

3. Emission spectra

If the cavity field is initially prepared in the coherent state, we

have the following photon-number distribution

PðnÞ ¼ expð�nÞ �nn

n!
¼ q2n; ð15Þ

where �n is the averaged photon number. With the wave func-

tion calculated, any property related to the atom or the field
can be calculated. Let us denote by q(t) the atom-field density
matrix, that its elements qij are

qij ¼
X
n

hi; zjwðtÞihwðtÞjz; ji: ð16Þ

With the wave function calculated, any property related to the
atom or the field can be calculated.

qij ¼
X
n

jhi; zjwðtÞij2: ð17Þ

The probability of finding the atom in the upper state is given

by qee = ÆC|Cæ and the probability of being in the ground state
is given by qgg = ÆS|Sæ, where

jCi ¼
Z

dkGðkÞ exp �i �hk
2t

2M

� �X
n

qn

� eikz þ Aþn sin hn þ A�n cos hn

� �
� e�ikz

	 

hð�zÞ

�
þ Bþn sin hn þ B�n cos hn

� �
eikðz�LÞhðz� LÞ

þ aþn � eik
þ
n z þ bþn e

�ikþn z
� �

sin hn

n
þ a�n e

ik�n z þ b�n e
�ik�n z

� �
cos hn

�
½hðzÞ � hðz� LÞ�

�
jni; ð18Þ

jSi¼
Z

dkGðkÞexp �i�hk
2t

2M

� �X
n

qn Aþn coshn�A�n sinhn

� �
e�ikz

�
�hð�zÞþ Bþn coshn�B�n sinhn

� �
eikðz�LÞhðz�LÞ

þ aþn e
ikþn zþbþn e

�ikþn z
� �

coshn� a�n e
ik�n z�b�n e

�ik�n z
� �

sinhn

n o
�½hðzÞ�hðz�LÞ�Þjnþ2i: ð19Þ

In what follow, we shall investigate the properties of the spatial
dependence on the emission probability when we take the dis-
tribution function G(k) = d(k � k0). The emission probability
is given by

Ps¼
X
n

PðnÞ Aþn coshn�A�n sinhn

� �

 

2
þ Bþn coshn�B�n sinhn

� �

 

2
þ aþn e

ikþn zþbþn e
�ikþn z

� �
coshn� a�n e

ik�n z�b�n e
�ik�n z

� �
sinhn

n o


 


2:
ð20Þ

The spatial dependence of the cavity field shows that the emis-

sion probability depends not only on the statistics of the field
but also on the momentum distribution of the atomic mass
center. The first part in Eq. (20) is the contribution from the

reflected waves, the second part is due to the transmitted
waves, and the third part is the contribution of the transient
regime.
This last part plays an essential role in the emission prob-

ability. It does not appear possible to express the sums in
Eq. (20) in closed form, but for not too large mean photon
number, direct numerical evolutions can be performed.
Resorting to Eq. (20), in the following we investigate the re-

sponse of the atom to the coherent cavity field when it expe-
riences a transition from classical regime to the quantum
regime.

4. Conclusions

In this paper we have presented the non-resonant two-photon
mazer in the presence of Stark shift effect taking into account
the spatial-dependence. The full solution is given and the case

of the inter-cavity is considered in detail. The situation here is
somewhat different from the cold atom scheme that has al-
ready been examined (Scully et al., 1996; Meyer et al., 1997;

Loffler et al., 1997; Schröder et al., 1997). The emission prob-
ability of the system is also calculated and investigated with
special emphasis on its spatial dependence. The results of this
paper may be tested with micromaser-like experiments by

using a high-Q micromaser pumped by cold atoms with very
high principal quantum number (Walther et al., 2000; Varcoe
et al., 2000; Weidinger et al., 1999).

References

Abdel-Aty, M., Obada, A.-S.F., 2002a. J. Phys. B: At. Mol. Opt. Phys.

35, 807–813.

Abdel-Aty, M., Obada, A.-S.F., 2002b. Mod. Phys. Lett. B 16, 117–

125.

Adams, C., Sigel, M., Mlynek, J., 1994. Phys. Rep. 240, 143–192.

Aran, R., Agarwal, G.S., Scully, M.O., Walther, H., 2000. Phys. Rev.

A 62, 023809–023821.

Bastin, T., Martin, J., 2003. J. Phys. Rev. A 67, 053804–053816.

Battocletti, M., Englert, B.-G., 1994. J. Phys. II France 4, 1939–1945.

Bloch, I., Hansch, T.W., Esslinger, T., 1999. Phys. Rev. Lett. 82, 3008–

3011.

Concannon, H.M., Brown, W.J., Gardner, J.R., Gauthier, D.J., 1997.

Phys. Rev. A 56, 1519–1523.

Englert, B.-G., Schwinger, J., Barut, A.O., Scully, M.O., 1991.

Europhys. Lett. 14, 25–32.

Goldstein, E.V., Moore, M.G., Meystre, P., 2000. Nonlinear optics of

matter waves. In: Letokhov, V.S., Meystre, P. (Eds.), Advances in

Laser Physics. Harwood, Amsterdam, pp. 117–124.

Griffin, A., Snoke, D.W., Stringari, S., 1995. Bose Einstein Conden-

sation. Cambridge University Press, Cambridge.

Haroche, S., Brune, M., Raimond, J.M., 1991. Europhys. Lett. 14, 19–

27.

Lenz, G., Meystre, P., Wright, E.M., 1994. Phys. Rev. A 50, 1681–

1696.

Loffler, M., Meyer, G.M., Schroder, M., Scully, M.O., Walther, H.,

1997. Phys. Rev. A 56, 4153–4163.

Meyer, G.M., Scully, M.O., Walther, H., 1997. Phys. Rev. A 56, 4142–

4152.

Obada, A.-S.F., Abdel-Aty, M., 2000. Acta Phys. Pol. 31, 589–601.
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