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Absent any indirect tests on the thermal history of the Universe prior to the formation of light nuclear
elements, it is legitimate to investigate situations where, before nucleosynthesis, the sound speed of
the plasma was larger than c/

√
3, at most equalling the speed of light c. In this plausible extension of

the current cosmological paradigm, hereby dubbed Tensor-�CDM (i.e. T�CDM) scenario, high-frequency
gravitons are copiously produced. Without conflicting with the bounds on the tensor to scalar ratio
stemming from the combined analysis of the three standard cosmological data sets (i.e. cosmic microwave
background anisotropies, large-scale structure and supenovae), the spectral energy density of the relic
gravitons in the T�CDM scenario can be potentially observable by wide-band interferometers (in their
advanced version) operating in a frequency window which ranges between few Hz and few kHz.

© 2008 Elsevier B.V. Open access under CC BY license.
The only direct informations on the early thermal history of
the Universe come, at present, from a background of relic pho-
tons which last scattered the electrons at an approximate redshift
of zdec � 1087 according to the 5-yr WMAP data release [1,2]. The
scrutiny of the Cosmic Microwave Background (CMB) observables
is always conducted within a commonly accepted framework, i.e.
the so-called �CDM paradigm where � qualifies the dark-energy
component (parametrized in terms of a cosmological constant) and
CDM qualifies the (cold) dark matter component. The �CDM sce-
nario represents a useful compromise between the available data
and the number of ascertainable parameters. A class of plausi-
ble completions of the �CDM model contemplates the addition
of a post-inflationary phase expanding at a rate which is slower
than radiation. From the point of view of the fluid properties, the
sources generating such a dynamics are often called stiff. The spec-
tral energy density of the gravitons reentering the Hubble radius
during the stiff phase increases with the frequency rather than be-
ing nearly constant as in the conventional �CDM paradigm. Such
an extension requires two parameters: a typical frequency scale,
be it νs (corresponding to the end of the stiff epoch) and the
slope of the spectral energy density during the stiff phase. The
supplementary parameters characterizing this scenario (which will
be dubbed, in what follows, as T�CDM for tensor-�CDM) can be
determined by analyzing the three conventional cosmological data
sets (i.e. CMB [1,2], large-scale structure [3,4] and supernovae [5,
6]) in conjunction with the forthcoming data of wide-band inter-
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ferometers [7–10]. At the moment interferometers are only able
to provide interesting upper limits on the spectral energy den-
sity of the relic gravitons [11]. The foreseen sensitivities of the
so-called advanced Ligo [7] will still be inadequate to probe the
relic gravitons produced within the conventional �CDM scenario.
Nonetheless the very same sensitivities of the interferometers in
their advanced version will be definitely sufficient to probe directly
the parameter space of the T�CDM scenario.

Consider therefore the evolution of the tensor modes in confor-
mally flat background geometries which are, incidentally, the ones
currently preferred in the context of the �CDM paradigm [1,2].
A conformally flat background geometry in four space–time dimen-
sions, by definition, is characterized by a metric ḡμν = a2(τ )ημν

where ημν is the Minkowski metric with signature mostly mi-
nus and τ is the so-called conformal time coordinate. The tensor
fluctuations of the geometry are defined with respect to the three-
dimensional Euclidean sub-manifold as

δ
(1)
t gij = −a2hij, δ

(1)
t gij = hij

a2
,

δ
(2)
t gij = −hi

khkj

a2
, ∂ih

i
j = hi

i = 0, (1)

where Latin indices run over the spatial dimensions; δ
(1)
t and δ

(2)
t

denote, respectively, the first and second order tensor fluctuations
of the corresponding quantity. Since hij is a (divergenceless and
traceless) rank-two tensor in three spatial dimensions, it carries
two physical polarizations. Defining three mutually orthogonal di-
rections as k̂i = ki/|�k|, m̂i = mi/| �m| and n̂i = ni/|�n|, the two po-
larizations of the gravitons in a conformally flat background are
nothing but
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ε
(⊕)
i j (k̂) = (m̂im̂ j − n̂in̂ j), ε

(⊗)
i j (k̂) = (m̂in̂ j + n̂im̂ j),

ε
(λ)
i j ε

(λ′)
i j = 2δλλ′ . (2)

By perturbing the Einstein–Hilbert action to second order in the
tensor amplitude hij , the action for the gravitons can be written,
up to total derivatives, as

Sgw = δ
(2)
t S = 1

8
2
P

∫
d4x

√−ḡ ḡμν∂μhij∂νhij,


P = √
8πG = 8π

MP
= 1

M̄P
. (3)

Up to a rescaling of the amplitude in terms of the Planck length,
the canonical normal modes of the action (3) are given by μi j =
ahij since, in a conformally flat background,

√−ḡ ḡμν → a2(τ )ημν .
The mode expansion of the canonical field operator is thus given
by:

μ̂i j(�x, τ ) =
√

2
P

(2π)3/2

×
∑
λ

∫
d3k ε

(λ)
i j (k̂)

[
â�k,λ

fk,λ(τ )e−i�k·�x + â†
�k,λ

f ∗
k,λ(τ )ei�k·�x],

(4)

where [â�k,λ
, â†

�p,λ′ ] = δ(3)(�k − �p)δλλ′ . It will be hereby assumed that
the field operators are in the vacuum at the onset of the infla-
tionary evolution. Thus the initial state |0〉 (annihilated by â�k,λ

)
minimizes the tensor Hamiltonian when all the wavelengths of the
field are shorter than the event horizon at the onset of the infla-
tionary evolution (see, for instance, [12]). In Eq. (4) fk,λ are the
(complex) tensor mode functions obeying

f ′
k,λ = gk,λ, g′

k,λ = −[
k2 − (

H′ +H2)] fk,λ, H = a′

a
, (5)

where the prime denotes a derivation with respect to the confor-
mal time coordinate τ . Defining pt and ρt as the total pressure and
as the total energy density of the plasma, the Friedmann–Lemaître
equations read:

H2 = 8πG

3
a2ρt, H2 −H′ = 4πGa2(ρt + pt),

ρ ′
t + 3H(ρt + pt) = 0. (6)

If the inflationary phase is suddenly followed by the radiation-
dominated phase, the energy density of the inflaton is instanta-
neously converted into a radiation. This approximation is custom-
arily employed to assess the number of inflationary e-folds [12,13].
Given our ignorance on the thermal history of the plasma prior
to nucleosynthesis, the inflationary phase might not be suddenly
followed by the radiation dominated phase [14,15]. Provided the
transition between inflation and radiation is sufficiently stiff (and
long) high-frequency gravitons can be copiously produced [14,15].
A relativistic plasma is said to be stiff if its sound speed is larger
than the sound speed of a gas of ultra-relativistic particles1 i.e.
1/

√
3. The total sound speed and the barotropic index are defined,

respectively, as:

c2
st = ∂ pt

∂ρt
= wt − 1

3

∂(wt + 1)

∂ ln a
, wt = pt

ρt
, (7)

where, in the second equality defining c2
st, Eq. (6) has been used.

In the primeval plasma, stiff phases can arise: this idea goes back
to the pioneering suggestions of Zeldovich [16] in connection with
the entropy problem. If an inflationary phase precedes a stiff phase

1 Natural units h̄ = c = kB = 1 are used throughout the Letter.
the spectral energy density of the relic gravitons increases with
frequency and the typical length of the stiff epoch can be deter-
mined by back-reaction effects [14]. In [15] the techniques of [14]
were applied to assess the spectral energy density in the models of
quintessential inflation which were developed in [17]. There were
various reprises of these ideas (see, for instance, [18] and refer-
ences therein). A (causal) upper limit on wt and cst is the speed of
light, i.e. wt � cst � 1 [19].

Collisionless species couple to the tensor modes of the geom-
etry. Defining as Πi j the anisotropic stress of the plasma we will
actually have that below temperatures O(MeV), i.e. after weak in-
teractions fall out of thermal equilibrium, the evolution equations
for the classical amplitude corresponding to the quantum opera-
tors of Eq. (4) reads

μ′′
i j − ∇2μi j − (

H′ +H2)μi j = −16πGa3Πi j . (8)

The coupling to the anisotropic stress induces computable differ-
ences on the spectral energy density of the relic gravitons. The
effects of neutrino free streaming has been investigated both semi-
analytically and numerically in [20] (see also [21–23]). With this
caveat on collisionless species, Eqs. (5) and (6) can be solved nu-
merically; the spectral energy density of the relic gravitons (and
the related power spectrum) can then be assessed.

The definition of the energy–momentum pseudo-tensor of the
gravitational field always involves a certain degree of ambiguity.
After getting rid of the tensor structure by making explicit the two
physical polarizations, the action of Eq. (3) is just the action of two
minimally coupled scalar fields in a conformally flat geometry of
Friedmann–Robertson–Walker (FRW) type. The energy–momentum
pseudo-tensor of relic gravitons in a FRW background just given
by [24]

T ν
μ = 1

4
2
P

[
∂μhij∂

νhij − 1

2
δν
μ ḡαβ∂αhij∂βhij

]

= 1

2
2
P

∑
λ

[
∂μh(λ)∂

νh(λ) − 1

2
ḡαβ∂αh(λ)∂βh(λ)δ

ν
μ

]
, (9)

where the second equality follows from the first by using hij =∑
λ h(λ)ε

λ
i j and by recalling the orthogonality condition appear-

ing in Eq. (2). In a complementary perspective [25], the energy–
momentum pseudo-tensor is instead defined from the second-
order fluctuations of the Einstein tensor, i.e.

T ν
μ = − 1


2
P

δ
(2)
t Gν

μ, Gν
μ = Rν

μ − 1

2
δν
μR, (10)

where the superscript at the right-hand side denotes the second-
order fluctuation of the corresponding quantity while the subscript
refers to the tensor nature of the fluctuations. The two definitions
seem very different but the energy densities and pressures derived
in the two approaches give coincident results as soon as the corre-
sponding wavelengths are inside the Hubble radius, i.e. k > H. In
the opposite limit Eqs. (9) and (10) seem superficially different but
give consistent quantitative results once they are compared on a
particular background geometry [26].

By definition, ρGW(�x, τ ) = 〈0|T 0
0 (�x, τ )|0〉 where |0〉 is, again, the

state annihilated by ak,λ . Recalling that the mode functions of each
polarization coincide (i.e., in Eq. (5), fk,⊕ = fk,⊗ = fk and analo-
gously for gk) the spectral energy density in critical units can then
be expressed as:

ΩGW(k, τ ) = 1

ρcrit

dρGW

d ln k
= k3

2π2a4ρcrit
Δρ(k, τ ),

ρcrit = 3H2

= 3M̄2
P H2,
8πG
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Δρ(k, τ ) = {∣∣gk(τ )
∣∣2 + (

k2 +H2)∣∣ fk(τ )
∣∣2

−H
[

f ∗
k (τ )gk(τ ) + fk(τ )g∗

k (τ )
]}

. (11)

The spectral energy density of the relic gravitons can be related
to the power spectrum which is, by definition, the Fourier trans-
form of the two-point function evaluated at equal times, i.e. using
Eq. (4)

〈0|ĥi j(�x, τ )ĥi j(�y, τ )|0〉 =
∫

d ln kPT(k, τ )
sin kr

kr
,

PT(k, τ ) = 4
2
P

k3

π2a2(τ )

∣∣ fk(τ )
∣∣2

, (12)

where r = |�x − �y|. Quantum fluctuations present during the infla-
tionary phase are amplified with nearly scale-invariant slope. The
inflationary power spectra are then parametrized in terms of the
tensor and scalar spectral indices, i.e., respectively, nT and ns:

rT = AT

AR
,

P̄T(k) =AT

(
k

kp

)nT

, P̄R(k) =AR

(
k

kp

)ns−1

, (13)

where kp = 0.002 Mpc−1 is the so-called pivot wave-number
which corresponds to an effective multipole 
eff � 30. In the con-
text of the �CDM paradigm, the 5-yr WMAP data alone imply
AR = 2.41 × 10−9 (slightly different values can be obtained if dif-
ferent data sets are combined but these differences do not affect
the features addressed here). The tensor amplitude is therefore
estimated by setting limits on rT which is, by definition, the ra-
tio between the tensor and the scalar amplitudes evaluated at
the pivot scale kp. The inferred upper bounds on rT, range from
rT < 0.2 (in the case of the WMAP 5-yr data alone [1,2]) up to
rT < 0.43 when the WMAP 5-yr data are combined with the large-
scale [3,4] and supernova data [5,6] (see also the thorough analyses
reported in [1,2]). In the minimal version of the inflationary dy-
namics the tensor spectral slope (i.e. nT), the slow roll parameter
ε as well as rT are all related:

nT � − rT

8
� −2ε, ε = − Ḣ

H2
> 0, (14)

where ε measures, as indicated, the (slight) decrease of the Hub-
ble H rate during the quasi-de Sitter phase of expansion and the
overdot in the last equation denotes a derivation with respect to
the cosmic time coordinate. Usually Eq. (12) is computed at the
present epoch and then, in a second step, the spectral energy den-
sity of the relic gravitons is derived [27] (see also, for instance,
[21–23]). The spectral energy density can be also directly assessed
by numerical means without passing through the transfer function
of the amplitude: this will be the approach followed here. Within
the first strategy the power spectrum is given by

PT(k, τ0) = 9 j2
1(kτ0)

|kτ0|2
[

1 + c1

(
k

keq

)
+ b1

(
k

keq

)2]
P̄T(k), (15)

where,2 according to [21], c1 = 1.34 and b1 = 2.50. In Eq. (15)
j1(y) = (sin y/y2 − cos y/y) is the spherical Bessel function of first
kind which is related to the approximate solution of the evolu-
tion equations for the tensor mode functions whenever the so-
lutions are computed deep in the matter-dominated phase (i.e.

2 By repeating the analysis of [21] we obtained a1 = 1.260 and b1 = 2.683 which
is fully compatible with the results of [21]. In the approach of [21] the calculation of
the amplitude transfer function, in fact, involve a delicate matching on the phases of
the tensor mode functions. Conversely, if the transfer function is computed directly
for the spectral energy density, the oscillatory contributions are suppressed as the
wavelengths get shorter than the Hubble radius (see below).
a(τ ) � τ 2). To obtain the spectral energy density, Eq. (11) must
then be evaluated in the limit k2  H2 (i.e. wavelengths inside
the Hubble radius). In the latter limit the tensor mode functions
satisfy |gk(τ )| � kfk(τ ) and Eq. (11) then gives:

ΩGW(k, τ0) = k2

12H2
0

PT(k, τ0),

lim
kkeq

ΩGW(k, τ0) � 3b1

8a2
0 H2

0τ
4
0 k2

eq

(
k

kp

)nT

. (16)

Since PT(k, τ0) oscillates also ΩGW(k, τ0) will oscillate. In the limit
k  keq the cosine will dominate the expression of j1(kτ0) and
the second result of Eq. (16) arises by replacing cos2(kτ0) → 1/2.
If we take b1 = 2.5 in the second relation of Eq. (16), then 3b1/8 ≡
15/16 = 0.9375. If we take instead our results (i.e. b1 = 2.683) we
will get, for the same quantity, 1.006. What appears in Eq. (15) is
the transfer function of the tensor amplitude which literally trans-
fers the power spectrum P̄T inside the Hubble radius.

In a complementary perspective, the consistent numerical so-
lution of Eqs. (5) and (6) allows for a numerical calculation of
ΩGW(k, τ ) according to Eq. (11). Instead of fitting the final re-
sult in terms of a putative (semi-analytic) amplitude for the mode
function, the momentum (or frequency) profile of the spectral en-
ergy density will be obtained directly by numerical methods. As
usual, initial conditions for the numerical integration are given for
kτ � 1. The system is then followed through Hubble crossing (i.e.
kτ � 1). Finally, when kτ  1 the expression of Δρ(k, τ ) can be
read-off in the asymptotic regime. In Fig. 1 (plot at the left) the
numerical integration across the radiation–matter transition is il-
lustrated. Instead of phrasing the numerical integration in terms of
k and τ , it is practical to use x = kτ and κ = k/keq as preferred
variables. To be accurate on the initial conditions a fully analytic
solution of Eq. (6), valid across the radiation–matter transition, can
be safely employed:

a(τ ) = aeq

[(
τ

τ1

)2

+ 2

(
τ

τ1

)]
,

a0

aeq
= 1 + zeq = 3195.17

(
h2

0ΩM0

0.1326

)(
h2

0ΩR0

4.15 × 10−5

)−1

,

τeq = (√
2 − 1

)
τ1 = 120.658

(
h2

0ΩM0

0.1326

)−1( h2
0ΩR0

4.15 × 10−5

)1/2

Mpc.

(17)

In the limit x � 1 the initial conditions for the mode functions
are determined directly (and up to phase factors) from Eq. (13).
Since the system is linear, the tensor mode functions can be always
rescaled through their initial value; the energy transfer function is
therefore defined by the following limit

lim
x1

Δρ(κ, x) ≡ T 2
ρ(κ)Δρ(κ, xi), xi � 1. (18)

In Fig. 1 the results of the numerical integration are reported in
terms of Δρ(κ, x) for different values of κ (see plot at the left).
Always in Fig. 1 (plot at the right), T 2

ρ(κ) can be computed nu-
merically: the diamonds correspond to the numerical points and
the full line (in the plot at the right) is the numerical fit obtained
by means of standard methods in the analysis of the regressions:

Tρ(k/keq) =
√

1 + c2

(
keq

k

)
+ b2

(
keq

k

)2

,

c2 = 0.5238, b2 = 0.3537. (19)

For a successful numerical determination of Tρ(κ) the initial in-
tegration variable should be sufficiently small (i.e. xi = kτi � 1) in
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Fig. 1. The spectral energy density (see Eq. (11)) is integrated across the radiation matter transition for different values of κ = k/keq (plot at the left). A finer grid in κ (plot
at the right), allows for the computation of the energy transfer function whose form can be fitted by an appropriate analytical expression (see Eq. (19)).

Fig. 2. The spectral energy density is integrated across the transition between the stiff epoch and the radiation-dominated epoch for different values of κ (plot at the left).
Following the same procedure used in the case of Fig. 1 the energy transfer function can be obtained and fitted by the appropriate analytic expression (plot at the right).
such a way that, at the initial time, the mode keq = τ−1
eq had a cor-

responding wavelength much smaller than the Hubble radius at τi .
Second, xf should be sufficiently large so that, effectively, Δρ(xf, κ)

is constant up to terms O(1/xf) (see also below Eq. (22)). Finally,
the grid in κ should be sufficiently fine to allow for a reasonable
fit. Using Eq. (19), the spectral energy density can be written, in
the absence of free streaming, as

h2
0ΩGW(ν, τ0) =Nρ T 2

ρ(ν/νeq)rT

(
ν

νp

)nT

e−2β ν
νmax ,

Nρ = 4.165 × 10−15
(

h2
0ΩR0

4.15 × 10−5

)
, (20)

where β = 6.33 has been determined numerically assuming a
smooth transition between inflation and radiation [28]. Eq. (20),
unlike Eqs. (15) and (16), is not strongly oscillating. The rationale
for this difference is that, when computing Δρ(κ, x), the oscillat-
ing contributions get dynamically suppressed as the wavelengths
get shorter than the Hubble radius. A way of understanding this
effect is to notice that the crudest approximation for the mode
functions in the limit kτ  1 are simple plane waves, i.e.

f̄k(τ ) = 1√
2k

[
c+(k)e−ikτ + c−(k)eikτ ]

,

ḡk(τ ) = −i

√
k [

c+(k)e−ikτ − c−(k)eikτ ]
. (21)
2

Using Eq. (21) into Eq. (11) and enforcing the limit x → xf  1,

Δρ(κ, xf) = κ
(∣∣c+(κ)

∣∣2 + ∣∣c−(κ)
∣∣2) +O

(
1

xf

)
, (22)

which proofs that the oscillating contributions are suppressed and
that Δρ(κ, xf) is proportional to what are called, in the jargon,
mixing coefficients. The considerations developed in the case of
the radiation–matter transition also apply, for instance, to the stiff-
radiation transition. In Fig. 2, for instance, the transition between
a radiation-dominated phase and a stiff phase (with wt = 1) is il-
lustrated. This time the energy transfer function will be increasing
with the wavenumber (see Fig. 2, plot at the right) and the energy
transfer function will be given, this time, by

T 2(k/ks) = 1.0 + 0.204

(
k

ks

)1/4

− 0.980

(
k

ks

)1/2

+ 3.389

(
k

ks

)
− 0.067

(
k

ks

)
ln2 (k/ks), (23)

where ks = τ−1
s and τs the time at which the plasma becomes

dominated by radiation. The fact that the spectral energy density
increases linearly (up to logarithmic corrections) fits with the an-
alytical results of [14,15] where, however, the slow-roll corrections
were neglected. Further details on this approach will be given in a
forthcoming paper [28].
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Fig. 3. The spectral energy density of the relic gravitons is illustrated in the case of the (conventional) �CDM paradigm supplemented by the tensor to scalar ratio rT. The
parameters are fixed to the best-fit values derived by comparing the �CDM paradigm with the WMAP 5-yr alone [1,2].
The outlined computational procedure allows for a reasonably
accurate estimate of the spectral energy density of the relic gravi-
tons in a variety of models. In Figs. 3 and 4 the spectral energy
density is reported, respectively, in the conventional case and in
the T�CDM scenario taking into account, in both cases, the late-
time effects which can marginally reduce the amplitude. Depend-
ing upon Rν (i.e. the neutrino fraction in the radiation plasma),
the tensor amplitude and the spectral energy density get reduced.
For three families of massless neutrinos (as implied by the WMAP
5-yr best fits and as assumed in the pivotal �CDM paradigm)
Rν = 0.405 and the amount of suppression is, approximately, 0.64
of the value ΩGW(ν, τ0) has when the very same effect is not taken
into account.

The effect of a progressive reduction of relativistic degrees of
freedom has been approximately taken into account. In the least
favourable case the reduction of the relativistic degrees of free-
dom is flat in frequency and proportional to (gρ/gρ0)(gs/gs0)

−4/3

where gρ0 = 3.36, gs0 = 3.90 [21,22]. Note that gρ and gs are
the relativistic degrees of freedom appearing, respectively, in the
energy and in the entropy density. Finally, there is a modifica-
tion in the spectrum connected with the late dominance of the
dark energy [21]. The most prominent effect is independent on
the frequency: the spectral energy density is suppressed by an
extra-factor, i.e. (ΩM0/Ω�)2. In the case of the WMAP 5-yr data
alone, the �CDM paradigm gives Ω� = 0.742 and ΩM0 = 0.258.
Intuitively this means that Nρ (appearing in Eq. (20)) is further
suppressed by a factor O(0.120). In Fig. 3 (plot at the left) h2

0ΩGW
is illustrated as a function of the frequency ν = k/(2π) by taking
into account all the late-time effects mentioned above. The pivot
frequency νp = 3.092 aHz corresponds3 to the pivot wavenumber
of Eq. (13). The spectral energy density (see Fig. 1 plot at the left)
consists of a decreasing region (at low frequencies) which is fol-
lowed by a nearly scale-invariant plateau for frequencies ν > νeq
where

νeq = keq

2π
= 1.281 × 10−17

(
h2

0ΩM0

0.1326

)(
h2

0ΩR0

4.15 × 10−5

)−1/2

Hz, (24)

is the frequency corresponding to matter–radiation equality.4 The
WMAP 5-yr Collaboration [1,2] give an experimental determination

3 Whenever needed, the prefixes of the International System of units will be con-
sistently adopted: 1 aHz = 10−18 Hz, 1 fHz = 10−15 Hz and so on.

4 In Eq. (24) ΩM0 and ΩR0 are, respectively, the critical fractions of matter and
radiation of the putative �CDM model.
of keq (i.e. keq = 0.00999+0.00028
−0.00027 Mpc−1) which is fully compati-

ble with the analytical estimate of Eq. (24). According to Fig. 3,
h2

0ΩGW(ν, τ0) decreases exponentially for ν > νmax where

νmax = 0.346

(
ε

0.01

)1/4( AR
2.41 × 10−9

)1/4

×
(

h2
0ΩR0

4.15 × 10−5

)1/4

GHz. (25)

While νeq does not depend upon the specific model, νmax depends,
in principle, from the amount of redshift between the end of infla-
tion and the present epoch. The shallow depression arising in the
nearly scale-invariant plateau of Fig. 3 (plot at the left) is due to
neutrino free streaming and it is present for νeq < ν < νbbn where

νbbn = 2.252 × 10−11
(

Neff

10.75

)1/4( Tbbn

MeV

)(
h2

0ΩR0

4.15 × 10−5

)1/4

Hz

� 0.01 nHz. (26)

The frequency band of the terrestrial interferometers [7–10] ranges
between few Hz and 10 kHz with a maximum in the sensitiv-
ity to a stochastic background5 for, approximately, νLV � 0.1 kHz.
Since νeq < νLV < νmax, Fig. 1 implies (plot at the left) that
h2

0ΩGW(νLV, τ0) � 10−17. To be even more quantitative, in Fig. 3
(plot at the right), h2

0ΩGW(νLV, τ0) is illustrated as a function of
rT. In the same plot, the dot-dashed curve refers to the standard
case discussed in Eq. (14); the full and dashed curves refer instead
to the situation where the spectral index depends upon the fre-
quency as nT = −rT/8 + (rT/16)[(ns − 1) + (rT/8)] ln (ν/νp). Fig. 3
shows that, in both situations, h2

0ΩGW(νLV, τ0) �O10−17 given the
current limits on rT.

In the case of an exactly scale invariant spectrum the correla-
tion of the two (coaligned) LIGO detectors with central corner sta-
tions in Livingston (Lousiana) and in Hanford (Washington) might
reach a sensitivity to a flat spectrum which is [29]

h2
0ΩGW(νLV) � 6.5 × 10−11

(
1 yr

T

)1/2

SNR2, νLV = 0.1 kHz, (27)

5 The sensitivity to a given signal depends upon various factors. For intermediate
frequency the signal to noise ratio is also sensitive to the form of the overlap reduc-
tion function which depends upon the mutual position and relative orientations of
the interferometers. The overlap reduction function effectively cuts-off the integral
which defines the signal to noise ratio for a typical frequency ν � 1/(2d) where d
is the separation between the two detectors.
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Fig. 4. The spectral energy density of the relic gravitons in the case of the T�CDM scenario. The parameters are fixed to the best-fit values derived by comparing the �CDM
paradigm with the WMAP 5-yr alone [1,2].
where T denotes the observation time and SNR is the signal to
noise ratio. Eq. (27) is in close agreement with the sensitivity of
the advanced Ligo apparatus [7] to an exactly scale-invariant spec-
tral energy density [30]. Eq. (27) together with the plots at the
right in Fig. 3 suggest that the relic graviton background predicted
by the �CDM paradigm is not directly observable by wide-band
interferometers in their advanced incarnation. The minuteness of
h2

0ΩGW(νLV, τ0) stems directly from the assumption that the in-
flationary phase is suddenly followed by the radiation-dominated
phase.

Let us then posit that between the end of inflation and the on-
set of the radiation-dominated phase a sufficiently long stiff phase
takes place. In this case the spectral energy density of the relic
gravitons will increase for frequencies larger than νs = ks/(2π).
Assuming that the inflationary phase is be of quasi-de Sitter type
and characterized by a given value of rT, it must always happen,
no matter how the parameters of the model are assigned, that
νs > νbbn.

The frequency scale νs is related to the duration of the stiff
phase and it is bounded from below by the nucleosynthesis fre-
quency. The slope of the spectral energy density in the high-
frequency branch is related, ultimately, to the sound speed and it
is bounded, from above, by the speed of light. These are the two
supplementary parameters of T�CDM scenario. In Fig. 4 (see plot
at the left) the spectral energy density computed in the T�CDM
scenario is illustrated for two different values of wt and rT. For
ν > νs the spectral energy density acquires a blue spectrum.6

Defining as H � (επAR)1/2MP the typical inflationary curva-
ture scale and as Hr the Hubble rate at the onset of the radiation
epoch, νs and νmax can be written, in the T�CDM scenario, as

νs = 1.177 × 1011Σγ (πεPR)
γ +1

4

(
h2

0ΩR0

4.15 × 10−5

)1/4

Hz, (28)

νmax = 1.177 × 1011Σ−1
(

h2
0ΩR0

4.15 × 10−5

)1/4

Hz,

Σ =
(

H

MP

) γ +1
2γ

(
Hr

MP

) 1
2γ

, (29)

6 The spectrum is blue, in general terms, if it is increasing with frequency. The
slow-roll dynamics always implies, within the �CDM scenario, much milder scal-
ing violations which involve only red spectra, i.e. spectra which are very slowly
decreasing in frequency like those of Fig. 1 (see plot at the left).
where γ ≡ γ (wt) = 3(wt + 1)/(3wt − 1). By definition Σ is fully
determined by fixing Hr. So, Σ and γ (wt) can be chosen as the
two pivotal parameters of the T�CDM scenario. Equivalently Σ

and γ can be traded for νs and for the slope of the spectral energy
density during the stiff phase (which is given, up to logarithmic
corrections) by (6wt − 2)/[(3wt + 1)]. As stressed above, the nat-
ural upper limit for the spectral slope is exactly 1 which is the
maximally stiff fluid compatible with causality [19].

The frequency νs can be much larger than νbbn (for instance
ν � mHz in [15]) but cannot be smaller than νbbn which consti-
tutes a natural lower limit for νs. If νs < νbbn the plasma would be
stiff also throughout nucleosynthesis which is unacceptable. The
observed abundances of the light elements (together with CMB
data) also constrain the total energy density of the relic gravitons,
i.e. the integral of ΩGW(ν, τ0) over the frequency. This bound is
usually expressed as7:

h2
0ΩGW(τ0) = h2

0

νmax∫
νbbn

ΩGW(ν, τ0)d lnν

= 5.6 × 10−6
(

h2
0Ωγ 0

2.47 × 10−5

)
�Nν (30)

where �Nν is the equivalent number of extra-relativistic species
at the onset of standard big-bang nucleosynthesis.8 In the stan-
dard scenario for the synthesis of light nuclei, 0.2 < �Nν < 1, and
therefore h2

0ΩGW(τ0) will be constrained accordingly. In Fig. 2 (plot
at the right) the spectral energy density is reported as function
of rT in the context of the T�CDM scenario and for typical fre-
quencies in the operating window of wide-band interferometers.
As rT diminishes, the amplitude of the spectral energy density
is almost constant. The latter occurrence arises for two indepen-
dent reasons. On one hand the most relevant constraint, in the
case of growing spectral energy densities, is the one provided by
Eq. (8) and enforced in both plots of Fig. 2. On the other hand,
the frequency νs depends also upon rT (through ε , see Eqs. (14)
and (29)). It should be finally appreciated, from Figs. 2 and 3,

7 Coherently with established conventions ln will denote the natural logarithm,
while the logarithms to base 10 (i.e. common logarithms) will be denoted by log.

8 The language of Eq. (30) may seem a bit contrived but it is a simple conse-
quence of the historical development of the field. The extra-relativistic species were
associated, in the past, with families of neutrinos. The nature of the bound on �Nν

(and hence on h2
0ΩGW(τ0)) does not change if the relativistic species are bosonic

(like in the case of gravitons). For a discussion of the derivation of Eq. (8) see [31].
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that the pulsar timing bounds (recently revisited [32]) still im-
ply that h2

0ΩGW(νpulsar, τ0) < 1.9 × 10−8 for a νpulsar � 10 nHz
which is roughly comparable with the inverse of the observation
time along which the pulsars timing has been monitored. Such a
bound is not constraining for the T�CDM model. The proof goes as
follows. Assuming the maximal growth of the spectral energy den-
sity (i.e. that h2

0ΩGW(ν, τ0) ∝ ν) and the minimal value of νs (i.e.
ν > νbbn), we will have that, at the frequency scale of the pulsars,
h2

0ΩGW(νpulsar, τ0) � 10−13 or even 10−14 depending upon rT. But
this value is always much smaller than the constraint stemming
from pulsar timing measurements.

In this Letter it has been suggested that the �CDM parameter
can be complemented by adding a post-inflationary phase charac-
terized by a sound speed larger than the one of an ultra-relativistic
plasma (i.e. 1/

√
3 ). Causality constrains the maximal barotropic

index and the maximal sound speed. Big bang nucleosynthesis
sets limits both on the maximal duration of the stiff phase and
on the total energy density of the relic gravitons. Two new pa-
rameters will then be added to the �CDM paradigm which has
been dubbed, throughout the Letter, as tensor-�CDM (T�CDM)
paradigm since relic gravitons are copiously produced at high fre-
quencies (i.e. larger than 0.1 nHz). The new pivot frequency defines
the scale at which the spectral energy density of the relic gravi-
tons starts increasing with a slope which is dictated by the stiff
barotropic index. In the T�CDM scenario, which may be seen as
an improved version of the models proposed in [14,15], the spec-
tral energy density of the relic gravitons can even be from 6 to 7
orders of magnitude larger than in conventional inflationary mod-
els. Along a more technical perspective, a numerical recipe for the
calculation of the spectral energy density has been presented.

The advanced versions of wide-band interferometers are ger-
mane to the theme of the present investigation. At the moment
the CMB data [1,2], large-scale structure observations [3,4] and su-
pernovae light curves [5,6] are used in combined analysis to put
bounds on rT, i.e. the tensor to scalar ratio. Few years from now
the three aforementioned cosmological data sets will still be used
to constrain (and hopefully determine) rT while, given the foreseen
sensitivities, the (terrestrial) wide-band interferometers will still be
unable to set concurrent limits to backgrounds of relic gravitons.
Provided the claimed sensitivities will be reached in due time,
the considerations presented here give a concrete opportunity of
using interferometers data together with the more classic cosmo-
logical data sets to rule out (or, more optimistically, rule in) a class
of specific models. It is productive to stress that, in the present
context, any potential upper limit from wide-band interferometers
will directly constrain the post-inflationary thermal history. Cos-
mology is not tested in a laboratory: therefore the nature of the
observations is inextricably bound to the models employed to an-
alyze the data and to the potential redundancy of different data
sets. It has been shown here that by complementing a known
model with supplementary physical considerations, the three es-
tablished cosmological data sets can also profit of a qualitatively
new class of observations, such as the ones provided by wide-band
interferometers. It is tempting to speculate that the perspective of
the present Letter could provoke a useful synergy between com-
munities scrutinizing different branches of the graviton spectrum.
The fruitful dialogue between the experiments sensitive to small
(i.e. νp � aHz) and to intermediate frequencies (i.e. νLV � 0.1 kHz)
could be extended, in principle, also to conceptually different kinds
of detectors such as microwave cavities [33] and waveguides [34].
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