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A growing body of literature suggests functional connectivity alterations in schizophrenia. While findings have
been mixed, evidence points towards a complex pattern of hyper-connectivity and hypo-connectivity. This al-
tered connectivity can be represented and analyzed using the mathematical frameworks provided by graph
and information theory to represent functional connectivity data as graphs comprised of nodes and edges linking
the nodes. One analytic technique in this framework is the determination and analysis of network community
structure, which is the grouping of nodes into linked communities or modules. This data-driven technique
finds a best-fit structure such that nodes in a given community have greater connectivity with nodes in their
community than with nodes in other communities. These community structure representations have been
found to recapitulate known neural-systems in healthy individuals, have been used to identify novel functional
systems, and have identified and localized community structure alterations in a childhood onset schizophrenia
cohort. In the present study, we sought to determine whether community structure alterations were present
in an adult onset schizophrenia cohort while stringently controlling for sources of imaging artifacts. Group
level average graphs in healthy controls and individuals with schizophrenia exhibited visually similar network
community structures and high amounts of normalized mutual information (NMI). However, testing of individ-
ual subject community structures identified small but significant alterations in community structure with alter-
ations being driven by changes in node community membership in the somatosensory, auditory, default mode,
salience, and subcortical networks.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A growing body of literature suggests that persons with schizo-
phrenia exhibit altered functional brain connectivity (Fornito et al.,
2012; Pettersson-Yeo et al., 2011; van den Heuvel and Fornito,
2014), as well as altered anatomical connectivity (Ellison-Wright
and Bullmore, 2009; Patel et al., 2011). These findings lend further
credence to the “dysconnectivity” theory of this disease (Friston,
1998; Stephan et al., 2006). As such, a better understanding of the
patterns of dysconnectivity may yield clinically relevant diagnostic
predictors (Sheffield et al., 2015) or improve models of psychosis
through explication of subtypes or dimensional models of the dis-
ease (Cuthbert and Kozak, 2013) leading to new or improved treat-
ment approaches.
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One promising approach to link functional brain connectivity with
pathophysiology and etiology is through the use of graph theory and
complex network analysis. In these analyses, the data are transformed
into a graph by representing locations in the brain as nodes and using
measures of connectivity (such as Pearson's correlation) as the connec-
tions (also known as ties or edges) between those regions (Bullmore
and Sporns, 2009). The graph can then be studied by computing and
comparing measures of properties of the graph (see (Rubinov and
Sporns, 2010) for an excellent treatment). These approaches have
been used to examine brain organization in schizophrenia at the level
of the whole brain and within and/or between specific networks and
regions. As will be described below, many of these studies point to the
suggestion that the organization of brain networks may be altered in
schizophrenia. However, few studies have directly tested this hypothe-
sis, which is the goal of the current study.

Several studies of schizophrenia at the whole brain level have
suggested that resting state networks in schizophrenia exhibit overall
reductions in functional connectivity as compared to healthy controls
(Pettersson-Yeo et al., 2011; van den Heuvel and Fornito, 2014).
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Graph theoretic analyses at thewhole brain level have found significant
differences in graph properties between persons with schizophrenia
and healthy controls (Fornito et al., 2012; Jiang et al., 2013). For exam-
ple, multiple studies have found decreased overall local efficiency
(Alexander-Bloch et al., 2010; Liu et al., 2008), and decreased clustering
and small-worldness in schizophrenia (Alexander-Bloch et al., 2010;
Bassett et al., 2012; Liu et al., 2008; Lynall et al., 2010; Ma et al., 2012).
While informative, these analyses aggregate across different networks
in the brain that themselves may show varying levels of alteration,
and thus may mask important psychosis-related differences between
networks.

To avoid this issue, a number of studies have examined the proper-
ties of specific networks in schizophrenia. Generally, these studies rely
on network definitions generated through study of healthy brains
(Dosenbach et al., 2007; Fox et al., 2005).While results across such stud-
ies are somewhat mixed, a number of studies have found reduced con-
nectivity among regions in the dorsal frontal–parietal network (Cole
et al., 2011;Woodward et al., 2011; Zhou et al., 2007) or between dorsal
frontal regions and other networks (Cole et al., 2011; Repovs et al.,
2011; Zhou et al., 2007). In addition, a number of studies have examined
connectivity within the default mode network. While results are again
variable, some work suggests increased connectivity within the default
mode network (Jafri et al., 2008; Öngür et al., 2010; Whitfield-Gabrieli
et al., 2009), as compared to thedecreased connectivity found for frontal
networks.

Alternatively, rather than studying specific networks, some studies
have examined specific types of connections, such as connections with
“hub” regions that are thought to be critical for integrating between di-
verse brain systems (Rubinov and Bullmore, 2013). Two studies
(Bassett et al., 2012; Lynall et al., 2010) found evidence for overall de-
creased probability of hubs or strength of hubs in schizophrenia
(Bassett et al., 2012) and localized decreases to temporal association
and limbic areas (Rubinov and Bullmore, 2013). Alexander-Bloch and
colleagues found that individuals with childhood onset schizophrenia
(COS) had similar spatial patterns of hub locations, but that there was
significantly increased hub strength in the bilateral dorsolateral pre-
frontal cortex, right anterior medial cortex, and right inferior parietal
lobule (Alexander-Bloch et al., 2012). Thus, a growing body of evidence
suggests that there are differential patterns of dysconnectivity across
different brain networks in schizophrenia.

Taken together, the results from the whole brain, specific network,
and specific connections studies suggest that the underlying communi-
ty structure (how nodes organize into tightly connected modules or
communities) of brain networks in schizophrenia might be fundamen-
tally altered. However, few studies have directly examined community
structure alterations. In a series of two studies, Alexander-Bloch
and colleagues found evidence in COS demonstrating significant
decreases in network modularity (Alexander-Bloch et al., 2010)
as well as fundamental differences in community structure
(Alexander-Bloch et al., 2012). Their work was the first to demon-
strate alterations in community structure of brain functional net-
works, but used an atypical (COS) population of individuals with
schizophrenia. Thus, the present study assesses whether alter-
ations in community structure are unique to COS or are present in
a more typical schizophrenia population.

It is important to consider subject head motion when applying net-
work analyses to resting state fMRI data. Recent discoveries by several
independent groups have revealed that head motion induces a non-
linear and distance-dependent artifact into resting state data (Power
et al., 2012; Satterthwaite et al., 2012; Van Dijk et al., 2012). Increased
subject head motion causes an artifactual increase in the measures of
correlation between areas that are spatially close and an artifactual de-
crease in the measures of correlation between areas that are spatially
distant (Power et al., 2012). These findings are especially worrisome,
as persons with schizophrenia tend to exhibit greater amounts of head
motion during scans than controls. Thus, the present study employed
a “scrubbing” strategy (Power et al., 2014) in order to reduce the effects
of motion upon measures of network community structure.

Here, we present the results of our study of the alterations in brain
network organization in adults with stable schizophrenia while strin-
gently controlling for sources of imaging artifacts. We combined two
similar but separately collected resting state fMRI datasets in order to
maximize our ability to examine community structure alterations in
schizophrenia compared to demographically matched healthy controls.
Resting state data were pre-processed using “scrubbing” methods to
stringently control for sources of imaging artifacts and other artifacts
(Power et al., 2014). The resultant correlation matrices were analyzed
using graph theory and information theory analyses similar to those in
Alexander-Bloch et al. (2012). We examined the question of whether
the community structure of resting state brain networks in schizophre-
nia is altered compared to healthy, demographically matched controls.

2. Materials and methods

2.1. Participants

There were two groups of participants: individuals with schizophre-
nia (SCZ) and demographically similar healthy controls (CON). The par-
ticipants were drawn from two separately collected resting state
functional magnetic resonance imaging (rs-fMRI) data sets. One data
set was reported on in 2011 (Repovs et al., 2011). The other was not
previously published. The study inclusion and exclusion criteria were
similar across the two data sets: SCZ participants all met DSM-IV diag-
nostic criteria for schizophrenia, were in outpatient treatment, and
were on a stablemedication regimen for at least twoweeks. CON partic-
ipants had no lifetime or history of Axis I psychotic or mood disorders
and no first-degree family members with psychotic mood disorders.
CON and SCZ participants were excluded if they: 1) met DSM-IV diag-
nostic criteria for substance dependence or severe/moderate abuse dur-
ing the prior threemonths; 2)metDSM-IV diagnostic criteria formental
retardation; 3) had a clinically unstable or severe medical disorder; or
4) had current or past head trauma with documented neurological
sequelae or loss of consciousness. This resulted in a combined initial
83 SCZ participants and 91 CON participants. Participants were further
excluded for several reasons, including: a) 30 CON and 37 SCZ excluded
due to motion scrubbing (see below); b) 12 CON and 1 SCZ excluded
due to age; c) 7 CON for within-group relatedness (see below); and,
d) 1 CONand 1 SCZdue to irrecoverable data corruption during process-
ing. This yielded a final count of n = 41 CON and n = 44 SCZ. Table 1
presents the demographic and clinical characteristics of the retained
participants. Participants excluded due to motion were significantly
older than the participants that were retained post-scrubbing
(Table S1), but did not differ on gender or parental years of education.

In one of the studies described above (Repovs et al., 2011), we re-
cruited healthy controls and their first degree siblings. Prior research
has shown that some aspects of functional connectivity are heritable
(Glahn et al., 2010). Thus, because only one group contained related in-
dividuals, potentially biasing results, only one sibling from a pair of sib-
lings was included in the control group. The sibling with the greatest
amount of data remaining after motion scrubbing (described below)
was included and data from the second sibling excluded. This resulted
in the exclusion of an additional 7 CON participants that had data that
would otherwise meet all other inclusion requirements.

2.2. fMRI pre-processing

Both studies were acquired on the same Siemens 3T Tim Trio
(Siemens, Erlangen, Germany) scanner at the Washington University
in St. Louis Neuroimaging Laboratory facility. Resting state functional
magnetic imaging (rs-fMRI) images using blood oxygenation level-
dependent (BOLD) contrast were acquired using an asymmetrical
spin-echo, echo-planar T2* sequence with (TR = 2200 ms or 2000 ms



Table 1
Demographics, clinical assessments, and motion parameters from participants.

Group CON (N = 41) SCZ (N = 44) Stats

Mean SD Mean SD

Age (years) 28.10 8.08 31.59 9.34 F(1,83) = 0.993, p = 0.322
Gender (% male) 54% 75% Fishers exact Χ2 test p = .045
Highest parental years of education 14.54 1.60 13.61 3.59 F(1,83) = 2.319, p = 0.132
Subject years of education 14.07 1.72 13.11 2.10 F(1,83) = 5.245, p = 0.025
IQ — WAIS scaled score 10.51 3.10 8.95 3.65 F(1,83) = 4.470, p = 0.037
SAPS positive symptoms 0.049 0.22 3.43 2.82 F(1,83) = 58.49, p b 0.000
SAPS disorganized symptoms 1.37 1.34 3.11 2.62 F(1,83) = 14.705, p b 0.000
SANS negative symptoms 1.07 1.77 8.34 3.28 F(1,83) = 158.06, p b 0.000
Olanzapine equivalents – – 19.86 18.82
Mean frames lost in subjects retained after scrubbing 93.63 66.62 105.66 105.66 F(1,83) = 0.993, p = 0.322
Mean frames remaining after scrubbing 254.9 62.5 244.2 53.6 F(1,83) = 0.723, p = 0.397
Mean pre-scrubbing FD (framewise displacement) in mm 0.16 0.13 0.16 0.10 F(1,83) = 0.161, p = 0.689
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depending on study, TE = 27 ms, FoV = 256 mm, 90° flip angle,
4 × 4 × 4 mm3 voxels). Participants were presented with a fixation
crosshair and data were collected in two eyes-open runs of 164 or 180
frames each, depending on study. Each resting-state scan was pre-
processed by correcting slice-timing, realigning to compensate for
rigid body movement, normalizing to a whole-brain mode intensity of
1000, linearly transforming to Talairach atlas space, and resampling to
333 space. Pre-processing was completed using a set of in-house tools
written by Avi Snyder in the Washington University in St. Louis Neuro-
imaging Labs.

Anatomical T1 images were collected using a magnetization
prepared rapid gradient echo (MPRAGE) sequence with either
1.2 × 1 × 1 mm or 1 × 1 × 1 mm voxels, depending on study.
These images were segmented using Freesurfer-5.3 on the
Washington University Center for High Performance Computing
supercomputer. These segmentations were then resampled to 333
space and used to generate subject-specific nuisance regressor
seed masks for white matter, ventricular, and global signals.

Participants' rs-fMRI scan runs were then pre-processed according
to the methodology presented in Power et al. (2014) using a suite of
MATLAB (The Mathworks, Natick, MA) tools developed by Jonathan
Power in the Petersen and Schlaggar labs at Washington University in
St. Louis. The first five frames of each scanning run were removed to
allow BOLD signal dynamics to reach steady state. Each run was then:
(1) demeaned and detrended to compensate for scanner offset and
drift; (2) nuisance signals were regressed out using the Freesurfer gen-
erated seed masks and rigid-body motion estimates generated by a 24
parameter Volterra expansion (Friston et al., 1996; (3) frequency fil-
tered using a zero phase, second order Butterworth filter with pass-
band 0.009 Hz b f b 0.08; and (4) spatially blurred using a 6 mm
FWHM Gaussian filter.

Motion-derived artifact was “scrubbed” by generating temporal
masks censoring frames exceeding a framewise displacement (FD) of
greater than 0.2 mm. Frames were additionally censored if there were
not 5 contiguous frames. That is, if scrubbing censored frames resulted
in a set of 1–4 non-censored frames that were discontinuous from
other frames, then those 1–4 frames were additionally censored. Entire
runs were censored if there were not at least 50 frames per run, and a
participant had to have at least 100 usable frames to be included in
the analyses. The entire dataset was then reprocessed using the steps
described above excluding the censored frames and interpolating be-
tween epochs of low (uncensored) motion and high (censored)motion
in order to prevent spread of motion-related artifact into adjacent non-
censored frames. This resulted in the exclusion of 30 CON and 37 SCZ
participants leaving a final N = 41 CON and N = 44 SCZ participants
with analyzable data. Two less stringent FD criteria (0.5 mm and
1.0mm)were also examined and assessed for effects upon downstream
analyses of community structure (described below) (Figs. S4, S5 and
Tables S4, S5). The less stringent FD criteria yielded higher NMI values
in general and somewhat diminished significance of the strongest re-
sults of the Phi-test (see below). It is possible that this might reflect
motion-induced structured artifact, or alternatively, increased struc-
tured signal content in the data. Overall, the findings with the less strin-
gent FD criteria did not substantively alter our conclusions and thus in
the manuscript we focus on the most conservative approach (FD =
0.2 mm).

2.3. Region of interest selection

Regions of interest (ROIs) were selected by generating masks corre-
sponding to spheres with 10 mm diameters centered at the set of 264
Talairach coordinates described in Power et al. (2011). These regions
were generated by combing two approaches: 1) a set of 151 stably acti-
vating and non-overlapping regions were identified from a meta-
analysis of task fMRI studies, and 2) a set of 193 non-overlapping ROIs
generated using a resting state functional connectivity mapping ap-
proach in forty young, healthy adults. When analyzed using a network
analysis approach, these regions were found to organize and recapitu-
late many known neural systems and thus represent a reasonable and
validated choice for exploring the changes in neural functional connec-
tivity in schizophrenia. For each subject, timecourses corresponding to
each of the 264 ROIs were extracted and cross-correlated to generate
a 264 × 264 matrix of Pearson's ρ correlation coefficients. This matrix
represents the correlation between any two ROIs from a given subject's
rs-fMRI data. The effect of excluding ties between nodes within close
proximity (20 mm) was also examined due to concern in the literature
(Power et al., 2011) for these ties to be more affected bymotion artifact
and non-biological noise (Fig. S3, Table S3). While this resulted in some
modest alterations in node significance in the Phi-test (described
below) and a decrease in shared structure (e.g., overall reduced similar-
ity in community structure), the overall results were similar and did not
alter our conclusions. As such, we present the results with the close
proximity ties included.

2.4. Group-level analyses of community structure

While development of algorithms to determine community struc-
ture is an active area of research (Fortunato, 2010), several methods,
such as Newman's spectral modularity (Newman, 2006) and Infomap
(Rosvall and Bergstrom, 2008), have emerged and have been used in
the neural imaging literature to develop maps of normative human
brain organization (Blumensath et al., 2013; Power et al., 2011;
Rubinov and Sporns, 2010). We chose to use Infomap because it has
been successfully used to characterize the functional organization of
the healthy human brain (Power et al., 2011) as well as its high perfor-
mance in detecting communities in graphs (Fortunato, 2010; Rosvall
and Bergstrom, 2008).
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To examine group level community structure, 264 × 264 group-
level mean correlation matrices were generated by taking the
mean edge correlation coefficient (the correlation between two
ROIs) of participants' Fisher R-to-Z transformed data for each
group. This group average correlation matrix was then sparsified
and binarized at a range of thresholds and then processed with
Infomap to generate a partitioning of the graph into communities.
Sparsification was accomplished by taking the 264 × 264 group
mean correlation coefficient matrix and removing the weakest cor-
relation coefficients until the density of remaining correlations
(also known as tie-density) reached a specific value. Sparsification
in this manner allows for comparison between different graphs
that may have different mean levels of correlation and was
performed such that each group had ten graph representations of
their data at the strongest 10% to 1% correlation values in 1%-density
steps. The matrices were then binarized for each tie-density level by
setting all remaining correlations to a value of one. Community
structure was then determined for each group's ten sparsified graphs
using the Infomap algorithm (Rosvall and Bergstrom, 2008). This re-
sulted in a 10 × 264 (tie-density × ROI) matrix for each group com-
prised of integer values representing community assignments at
each element. Communities that were comprised of less than five
unique ROIs at a given tie-density were censored from further anal-
ysis due to the lack of plausible biological explanations for such com-
munities. Weighted sparsified graphs were also examined and
results can be found in the supplement (Table S6 and Fig. S6).
These analyses resulted in some modest alterations in node signifi-
cance in the Phi-test (described below) and a decrease in shared
structure (e.g., overall reduced similarity in community structure).
However the overall results were similar and did not alter our
conclusions.

Group-level community structure was visualized by assigning a
color to each community's set of ROIs. This was then graphed in two
ways: (1) as a two dimensional graph with the x axis representing de-
creasing tie density percentages and the y axis representing the ROI as
numbered in the Power, 2011 atlas; and (2) by overlaying 10mmdiam-
eter spheres colored by community and placed at the appropriate coor-
dinates on the PALS-B12 atlas using Caret 5.65 (Van Essen, 2005; Van
Essen andDierker, 2007; VanEssen et al., 2001). Nodes thatwerewithin
5 mm of midline were reflected to the contralateral hemisphere to ac-
count for errors in MRI alignment and registration.

Because the integer value and color representing a community as-
signment is stochastically assigned by Infomap, visual comparison
across groups was simplified by recoloring matching networks across
groups. The CON group was chosen as a template and the color of
ROIs of matching communities in SCZ were recolored to match CON,
without changing community assignments. For example, if ROIs the in
the visual network were colored green in CON, then the ROIs in the
visual network in SCZ were also colored green, even if the ROIs were
not identical across groups.

In order to quantitatively determine the extent to which group-
level network structures were similar across groups, normalized
mutual information metrics (described below) were computed be-
tween the CON and SCZ groups in the current study, as well as be-
tween the CON and SCZ groups in the current study and the two
cohorts of normative participants described in Power et al. (2011).
This pairwise similarity measure, normalized mutual information
(NMI), varies between zero (complete dissimilarity) and one (iden-
tical community assignments). MATLAB tools provided by Jonathan
Power (available at http://www.nitrc.org/projects/graphtools/)
were used to compute NMI using information theory definitions
(see Eqs. (16.2)–(16.6) for reference, (Manning et al., 2008)). X
and Y are individual graphs with X = {x1, x2, …, xn}, and Y = {y1,
y2, …, yn} representing community assignments of node xn and yn;
I(X, Y) is the mutual information between X and Y; and, H(X) and
H(Y) are the entropy of X and Y. These computations were
performed per tie-density and resulted in a NMI value of similarity
between community assignments for each tie-density.

I X;Yð Þ ¼
Xn

k

Xn

j

P xk ∩ yj

� �
� log

P xk ∩ yj

� �

P xkð Þ � P yj

� �

H Xð Þ ¼ −∑kP xkð Þ � log P xkð Þð Þ NMIðX; YÞ ¼ IðX;YÞ
ðHðXÞ þ HðYÞ=2

2.5. Subject-level analyses of community structure

The above methods are useful for qualitatively describing the group
level differences between CONand SCZ. However, they do not allow sta-
tistical evaluation of the degree of variability among individuals within
a group nor do they allow for determination of whether the community
structure differs significantly between groups. To do so, graphs were
generated and community detection performed as described above
except that graphs were generated for each individual subject at each
tie-density rather than group average graphs at each tie-density. As
above, communities with less than five nodes were censored from
downstream analyses.

The normalized mutual information (NMI) pairwise similarity met-
ric can be extended to test for group differences. If some variance in
the community structure data is reliably explained by group member-
ship greater than chance, then the mean NMI between all possible
pairs of participants within that group should be higher than the
mean NMI of pairs of participants chosen from random groups. As the
underlying distribution of group mean NMI is unknown, statistical
tests upon the mean NMI require generation of a null-distribution
through a permutation method. The method developed by Alexander-
Bloch et al. (2012) was modified to run in MATLAB. This method used
group label permutation to determine when participants within a diag-
nostic group were more similar than participants across diagnostic
group. An NMI value was calculated for each pair of participants at all
tie-densities and used to calculate the true mean within-group NMI as
well as the true mean NMI for all between-group pairs. Group labels
were then randomly shuffled 10,000 times and the permuted mean
“within-group” NMI was calculated at each tie-density. p-Values were
then calculated separately for each tie-density as the count of the num-
ber of instanceswhen thepermutedmeanwithin-groupNMIwas great-
er than the true mean within-group NMI, divided by the number of
permutations.

2.6. Phi-test and heat maps of community structure

The NMI permutation test described above indicates whether group
membership makes a significant difference for community structure.
However, it does not reveal how community structures may differ
across groups or how the community assignment of specific ROIs may
differ across groups. To identify the ROIs responsible for group differ-
ences in NMI, we used a second permutation test developed by
Alexander-Bloch et al. (2012). This tested whether an ROI's participa-
tion in a given community varied between participants more when
they belonged to different diagnostic groups than when they belonged
to the same diagnostic group. For each subject and tie-density, a
264 × 264 binary-valued matrix was generated corresponding to
whether, for a given ROI, all other ROIs shared the same community.
ROIs were marked as either participating (1) or not participating
(0) in the given ROI's community. For example, Fig. 1 shows three
9-ROI toy graphs generated on the same ROIs and their corresponding
binary community assignmentmatrices. The binary community assign-
mentmatriceswere then used to generate subject-by-subject node sim-
ilarity measures using Pearson's Phi (similar to Pearson's correlation
coefficient, but for binary values). The community membership column

http://www.nitrc.org/projects/graphtools/


Fig. 1. Example schematic of generation of ROI and subject pair Phi values. Left column: illustration of three toy graphs comprised of the same set of ROIs but with different community
structures. Middle column: the binarymatrix corresponding to which ROIs belonged to the same community. Right column: each subject's data (capital letter) are comprised of the set of
column vectors from the subject's binarymatrix of communitymembership. The value of Pearson's Phi is computed for all subjects' nodes across the corresponding columns (e.g.: a1with
b1, but not a1 with a2).
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for each subject's ROI 1 was correlated to each other subject's ROI 1 col-
umnusing Pearson's Phi, and so forth for all other ROIs. AswithNMI, the
pair-wise similarity metric was extended to test for group differences
through permutation of group labels. The true within-group mean Phi
was calculated for all within-group subject-by-subject ROI pairs, then
labels were shuffled 10,000 times, and mean permuted within-group
Phi values were calculated and compared with the real data to generate
a p-value. Values returned from this procedure were similar to NMI in
that they are both pairwise similarity metrics, but Phi provides per-
ROI resolution. Thus, for each tie-density, a set of 264 p-values was
generated corresponding to whether a given ROI's community was
more similar for participants from the same group than permuted
groups. The set of 264 p-values generated at each tie-density were
corrected for multiple comparisons using FDR (Benjamini and
Hochberg, 1995) with MATLAB tools available at (http://www.
mathworks.com/matlabcentral/fileexchange/27418).

2.7. Seed map verification of Phi-test results

The Phi-test identified nodes whose community assignment
significantly varied across the two groups. To validate these results,
traditional seed map analyses were performed using ROIs that
were identified as significant across two or more tie density thresh-
olds. In-house software (FIDL 2.65, http://www.nil.wustl.edu/labs/
fidl/index.html) was used to perform group t-tests for differences
in connectivity for “CON–SCZ” using an unequal assumption of var-
iance and a Monte-Carlo correction factor for significance requiring
a cluster of 35 ormore voxelswith a Z-score greater than or equal to 2.5.
Test results were visualized using Connectome Workbench software
(http://www.humanconnectome.org/software/connectome-workbench.
html) at a threshold of Z N 2.5 and Z b −2.5.

3. Results

3.1. Demographics

Following scrubbing and exclusions (detailed in Table 1), N =
41 CON and N = 44 SCZ participants retained sufficient data for
analysis. The retained participants did not differ on the number of
retained or lost frames, pre-scrubbing mean framewise displace-
ment, age, or parental years of education. Participants did signifi-
cantly differ on gender (more males in SCZ), personal years of
educational attainment (less in SCZ), IQ (less in SCZ), and clinical
symptoms (more in SCZ).

3.2. Group level analyses

Qualitative examination of group average network structure (Fig. 2)
as well as the full unthresholded correlation matrices (Fig. S2) revealed
that overall, resting state connectivity and network structure was
relatively well preserved in SCZ. This visual similarity was quantified
using normalized mutual information (NMI) between the mean CON
and SCZ network structures (Table 2). This revealed a high level of shared
information confirming the overall visual similarity of network structures

http://www.mathworks.com/matlabcentral/fileexchange/27418
http://www.mathworks.com/matlabcentral/fileexchange/27418
http://www.nil.wustl.edu/labs/fidl/index.html
http://www.nil.wustl.edu/labs/fidl/index.html
http://www.humanconnectome.org/software/connectome-orkbench.html
http://www.humanconnectome.org/software/connectome-orkbench.html


Fig. 2. Group level community structure revealed overall similar structure between CON and SCZ cohorts. Panel A: ROI numbers corresponding to the Power 264 atlas are on the vertical
axis and tie densities are on the horizontal axis. Regions are colored by community assignment and white regions correspond to communities with less than five ROIs. Panel B: CON ROIs
colored by communities detected at the 4% tie density and superimposed on the very inflated PALS-B12 atlas. Panel C: SCZ ROIs colored by communities detected at the 4% tie density and
superimposed on the very inflated PALS-B12 atlas.
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(across tie density mean NMI = 0.74, std = 0.03). Additionally, NMI be-
tween our CON and SCZ groups was computed with the two cohorts of
healthy controls described in Power et al. (2011) revealing a high level
of agreement between our participants and the healthy participants de-
scribed in Power et al. (2011). The average NMI between our CON and
SCZ groups (0.74) was as high as the average NMI between our CON
group and the two CON groups from Power et al. (2011) (0.73). Thus,
the overall network structure differences between our controls and
schizophrenia participants were on the same order as differences be-
tween our community control participants and the healthy Washington
University community population used in the Power 2011 study.

3.3. Subject level analyses

Subject level community detection generated ten sets of network
structures for each subject, one at each tie density. Although the group
Table 2
NMI values between CON, SCZ, and the Power 2011 healthy cohorts exhibited high level of sim

Tie density CON × SCZ JP_MAIN × CON

10% 0.79 0.81
9% 0.78 0.79
8% 0.72 0.78
7% 0.73 0.72
6% 0.74 0.68
5% 0.70 0.69
4% 0.72 0.69
3% 0.74 0.70
2% 0.71 0.67
1% 0.77 –
Mean across tie density 0.74 0.73
Standard deviation 0.03 0.05

JP_MAIN is the main cohort used in Power et al. (2011); JP_REP is the replication cohort used i
level community structure analyses suggested very similar patterns,
the NMI permutation on these individual subject network structures
revealed that the mean of all within-group subject pairings was signifi-
cantly higher than themeanof all between-group subject pairings for all
but one tie-density (Table 3). Thus, the community structurewas signif-
icantly less similar in the permuted groups than within the real groups.
Additionally, at all tie densities, the mean within-CON NMI was greater
than the mean within-SCZ NMI, implying possibly greater heterogene-
ity (i.e., less overall shared information) of network structure in the
SCZ group.

While NMI permutation is able to assess whether there are signifi-
cant differences in community structure, it does not indicate the regions
responsible for the differences. Follow-up permutation tests of commu-
nity assignments (Fig. 3), described by Alexander-Bloch et al. (2012),
were used to reveal ROIs whose community assignments varied signif-
icantly between groups and across most tie densities. Two images were
ilarity of network structure across all three cohorts.

JP_REP × CON JP_MAIN × SCZ JP_REP × SCZ

0.81 0.75 0.75
0.82 0.72 0.74
0.82 0.70 0.70
0.75 0.70 0.76
0.69 0.67 0.69
0.70 0.72 0.70
0.68 0.73 0.71
0.67 0.72 0.68
0.66 0.70 0.68
– – –
0.73 0.71 0.71
0.07 0.02 0.03

n Power et al. (2011).



Table 3
NMI permutation testing revealed significant differences between CON and SCZ network
structures.

Tie
density

p-value:
real N
permuted
data

Mean of all
within-group
NMI pairings

Mean of all
between-group
NMI pairings

Mean
within-CON
NMI

Mean
within-SCZ
NMI

10% 0.0009 0.256 0.251 0.271 0.243
9% 0.0006 0.273 0.268 0.280 0.267
8% 0.0075 0.291 0.287 0.301 0.281
7% 0.0044 0.314 0.310 0.330 0.300
6% 0.0062 0.331 0.328 0.344 0.319
5% 0.0194 0.356 0.353 0.371 0.343
4% 0.0306 0.370 0.368 0.386 0.357
3% 0.0171 0.380 0.378 0.399 0.364
2% 0.1574 0.373 0.372 0.395 0.354
1% 0.0143 0.315 0.312 0.339 0.294
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generated to visualize the pattern of significance across ROIs and across
tie-densities. First, nodes were first grouped into their (Power et al.,
2011) networks using FDR corrected p b 0.05 as the significance criteri-
on, and the percent of significant nodeswithin a networkwere counted.
As shown in Fig. 3, therewas variability across groups in the community
assignments of a relatively high percentage of ROIs in the subcortical
network across all tie density levels. In addition, there was variability
across groups in the somatosensory hand and mouth, auditory, default
mode, and salience networks for a small percentage of nodes. To further
illustrate the pattern of significant ROIs, an aggregate “heatmap” of sig-
nificance was generated by summing the number of tie-densities for
which a given ROI was significant at an FDR corrected p b 0.05. These
ROIs, colored by the count of significant tie-densities, were overlaid on
the PALS-B12 atlas using Caret and each ROIwas surroundedwith a col-
ored circle corresponding to its a priori network from the Power atlas
(Power et al., 2011). This map (Fig. 4) illustrates the spatial location
and relative consistency across tie densities of ROIs contributing to dif-
ferences in NMI and community structure differences between CON and
SCZ. This map revealed ROIs showing significant group effects at multi-
ple tie densities in bilateral thalamus, as well as significant effects in the
bilateral paracentral lobules, left anterior cingulate, and the right insula
and pulvinar (see Table S6 for full details).
Fig. 3.Phi test results exhibited alterations innode communitymembership in the subcortical, sa
fraction of nodes with significant (FDR corrected p b 0.05) alterations at that tie density.
To validate the results of the Phi-test, nodes that were found to be
significant sources of variation in community participation at two or
more tie-densities were identified and used to perform seed map anal-
yses. These ROIs included the left (Fig. 5) and right (Fig. S7) medial dor-
sal nuclei, the left paracentral lobule (Fig. 6), as well as several others
(see Table S7 and Figs. S8–S11). Examination of the ROI in the left medi-
al dorsal thalamic nucleus revealed clear differences in connectivity be-
tween CON and SCZ (Fig. 5) with SCZ exhibiting bilaterally symmetric
hyper-connectivity with somatomotor and somatosensory regions and
hypo-connectivity with prefrontal, striatal, and cerebellar regions. The
corresponding ROI in the right medial dorsal nucleus exhibited similar
results (Fig. S7). Examination of the left paracentral lobule/BA 31 exhib-
ited significant dysconnectivity (Fig. 6), with SCZ exhibiting cerebellar
dysconnectivity, hypo-connectivity with somatomotor, right insular,
and left posterior cingulate, as well as hyper-connectivity with the infe-
rior parietal lobule and frontal gyri.

4. Discussion

The goal of the current studywas to determinewhether the commu-
nity structure of resting state functional connectivity networks was al-
tered in adults with schizophrenia. Our results suggested that while
network structures were overall quite similar, especially at the group
level, there are small but significant changes in functional network com-
munity structure in persons with schizophrenia. Specifically, group
average network structures exhibited highly visually similar communi-
ty structure across tie densities between the two groups. Quantitative
follow-up examining NMI between group average network structures
confirmed the visual similarities at matched tie densities. However, sta-
tistical evaluation across individual participants revealed evidence for
small but significant differences in network community structure.
Follow-up analyses revealed that alterations in node community partic-
ipation in the subcortical, somatosensory, auditory, default mode, and
salience networkswere the strongest contributors to differences in net-
work community structure. Finally, the nodes that were most strongly
responsible for alterations in community participation exhibited statis-
tically significant patterns of dysconnectivity in a seed map analysis.

As described above, the group-level analyses suggested that the
network community structure was relatively intact in adults with
lience, auditory, somatomotor, anddefaultmodenetworks. Each network is colored by the



Fig. 4. Phi test heatmap at FDR corrected p b .05 revealed significant community assignment alterations in ROIs including the somatosensory, insular, anterior cingulate, and thalamic re-
gions. ROIs are colored by number of significant (FDR corrected p b 0.05) tie densities. Significant ROIs are surrounded by a colored ring corresponding to their a-priori network definitions
from the Power et al. (2011) atlas.
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schizophrenia. Further, at the group level, both controls and individuals
with schizophrenia had near-equal amounts of shared informationwith
both sets of network structures generated using data from two different
Fig. 5. Left medial dorsal nucleus exhibited significant dysconnectivity in schizophrenia. Contra
blue voxels correspond to statistically significant SCZ N CON connectivity.
samples of healthyWashingtonUniversity students previously reported
in Power et al. (2011). Thus, at the group level, the amount of variation
between the present community controls and participants with
st CON–SCZ. Red voxels correspond to statistically significant CON N SCZ connectivity and



Fig. 6. Left paracentral lobule/BA31 exhibited significant dysconnectivity in schizophrenia. Contrast CON–SCZ. Red voxels correspond to statistically significant CON N SCZ connectivity and
blue voxels correspond to statistically significant SCZ N CON connectivity.
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schizophrenia was similar to the amount of variation between the
present controls and the controls used in the Power et al. (2011)
study. As such, although there are some significant differences in com-
munity structure apparent upon finer grained analysis, these results
suggest that at least at a gross level, there is relatively well-preserved
functional structure of organization of the human brain in schizophre-
nia, though further work will be required to replicate this finding.

Although community structure appeared relatively well preserved
at the group level, examination of subject level network structures
and statistical assessment via permutation testing did identify signifi-
cant differences in community structure between participants with
schizophrenia and healthy controls. Follow-up testing revealed that
community participation of nodes in the somatosensory hand and
mouth, subcortical, auditory, default mode, and salience networks
were the largest contributors to these differences in community struc-
ture, though it was still a relatively small percentage of ROIs in each of
these networks that displayed group differences in community partici-
pation. More specifically, nodes that displayed group differences were
in bilateral medial frontal gyrus and bilateral thalamus, with a minority
of additional responsible nodes including the right insula and other
locations (Table S6).

These findings are partially consistent with the findings from
Alexander-Bloch et al. (2012), which identified primarily right lat-
eral somatomotor and right anterior insular nodes as the those re-
sponsible for driving differences in community structure. The
present study also identified those nodes as significant, with the
additional identification of significant alterations in the contralat-
eral (left hemisphere) somatomotor nodes, as well as significant
alterations in bilateral thalamic and mediofrontal nodes. The find-
ing of similarly implicated areas further adds to the evidence that
suggests that childhood onset schizophrenia exists on a continuum
with adult schizophrenia and shares etiologic factors, but is charac-
terized by a more severe and homogenous presentation (Driver
et al., 2013; Rapoport and Gogtay, 2011). However, in our adult
sample, the presence of the additional bilateral thalamic and
mediofrontal ROIs as well as less consistently significant results
in the right insula (compared to Alexander-Bloch and colleagues)
implies additional and/or different factors at play in the disease
processes between adult onset schizophrenia and childhood
onset schizophrenia.

The regions identified by Alexander-Bloch et al. (2012) and the pres-
ent study have been identified as showing altered connectivity in other
studies in schizophrenia as well. For example, Palaniyappan et al.
(2013) identified abnormalities in right anterior insular connectivity
between the dorsolateral prefrontal cortex and visual cortices using
Granger causal modeling performed on resting state fMRI. Moran et al.
(2013) also used resting state fMRI and found decreased functional con-
nectivity between the right ventral anterior insula and regions in thede-
fault mode network. They also identified decreased group Granger path
coefficients in schizophrenia from the dorsal anterior insula to the
DLPFC, posterior cingulate cortex, and lateral parietal cortex. Finally,
Moran et al. also identified significant decreases in connectivity from
the dorsal anterior insula to the DLPFC, and mPFC using structural con-
nectivity modeling. Previous studies have also identified alterations in
thalamic connectivity. Specifically, Woodward et al. (2012) identified
decreased resting state functional connectivity in schizophrenia be-
tween themedial dorsal and right anterior thalamic nuclei and prefron-
tal regions as well as increased connectivity in schizophrenia between
somatosensory and motor areas and the pulvinar and ventrolateral
thalamic nuclei. Anticevic et al. (2014a) also identified alterations
in thalamic resting state functional connectivity in schizophrenia
and found that participants with schizophrenia had increased tha-
lamic coupling to sensory cortices and decreased coupling to pre-
frontal cortex, striatum, and cerebellum. Anticevic et al. (2014b)
and Woodward and Heckers (in press) also identified significant
thalamocortical dysconnectivity in schizophrenia, an effect that
was independently identified here via the Phi-test and replicated in
the seed map analyses. Thus, the present study adds to this body of
evidence by demonstrating that not only are there alterations in con-
nectivity strength and directionality in areas such as the insula and
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the thalamus, but that these areas may also be contributing to differ-
ences in network community structure observed in persons with
schizophrenia.

5. Limitations and future directions

First, participants with schizophrenia were on a stable medication
regimen at the time of scanning and it is possible thatmedications influ-
ence the patterns of functional connectivity. Second, we did not control
for structural brain differences in SCZ beyond standard image registra-
tion to an atlas space. Further, there were demographic differences
between the groups such that SCZ had lower measures of IQ and de-
creased years of education, though the groups were not different in pa-
rental education, a proxy measure of developmental exposure to
educational resources. Such differences in personal IQ and education
are often present among individuals who have illnesses that can strike
in adolescence and impair academic achievement. Nonetheless, future
work with larger samples should examine the degree to which IQ or
education effects may influence outcomes. Additionally, while every
effort was made to remove headmotion derived artifact, such stringen-
cy forced the exclusion of 67 of participants and large number of frames
from some of the participants that exceeded the minimum inclusion
criteria. The stringent removal of motion artifact by censoring affected
frames resulted in slightly different distributions of contiguous frames
between the two groups (Fig. S1). This may have differentially affected
our ability to fully resolve high-frequency signal components in the
data. Future studies will need to address these issues by increasing sub-
ject recruitment, aggregating across multiple studies, matching for
number of contiguous frames removed, or collectingmore data per sub-
ject through additional resting state scans or by regressing out of task
structure (Cole et al., 2014) to generate pseudo-resting state data. Re-
cruitment of larger studies will have an added benefit of allowing for
the investigation of increased variability in connectivity seen across in-
dividualswith schizophrenia (reflected in the lowermeanwithin-group
NMI in SCZ). This could allow for the study of whether certain aspects of
community structure correlate with specific symptom or behavioral di-
mensions of psychosis (Cuthbert and Insel, 2010). Additionally, the
present study examined binarized and thresholded network structures
rather than full weighted network structures. While this approach
yields analyses that are more computationally tractable than weighted
network structures, thresholding the data focuses upon a core set of
strongest edges (i.e.: in this study, the edges which were among the
strongest 10% to 1% of edges) and may fail to detect effects in edges
that are in a lower strength range of the distribution. However, these
methods have been informative when applied to the healthy brain
(e.g.: (Power et al., 2011)), and thus represent a valid approach to
studying how the brain changes with psychopathology. Related to
this, the selection of a threshold at which to exclude edges from the
graph is a required step and an unsolved issue in the neuroimaging
graph theory field.While it is common to examine a range of thresholds,
this results in a set of non-independent tie densities, which makes the
testing for significance across densities a non-trivial problem.

6. Conclusions

Our findings indicate that while overall network community struc-
ture is broadly preserved in adult schizophrenia, there is evidence for
statistically significant alterations in the community participation of
specific brain regions. These differences were localized to the somato-
sensory, auditory, default mode, salience, and subcortical networks.
These alterations in adult schizophrenia community structure were
consistent with alterations observed in childhood-onset schizophrenia,
pointing towards some shared etiology between the disorders (Driver
et al., 2013; Rapoport and Gogtay, 2011). However, the presence of dif-
ferences in thefindings showing altered connectivity between adult and
childhood onset schizophrenia implies that there may be additional
and/or different factors involved in the adult formof thedisease. Further
studies are required to answer these questions and help explain how
network structures evolve over time and over the course of this debili-
tating disease.
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