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Abstract
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1. Introduction and main results

Consider the second order Hamiltonian systems

ü(t) + ∇F
(
t, u(t)

) = 0 a.e.t ∈ R, (1)

whereF :R × RN → R is T -periodic (T > 0) in t for all x ∈ RN , that is,

F(t + T ,x) = F(t, x) (2)
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for all x ∈ RN and a.e.t ∈ R, and satisfies the following assumption:

(A) F(t, x) is measurable int for eachx ∈ RN and continuously differentiable inx for
a.e.t ∈ [0, T ], and there exista ∈ C(R+,R+), b ∈ L1(0, T ;R+) such that∣∣F(t, x)

∣∣ + ∣∣∇F(t, x)
∣∣ � a

(|x|)b(t)

for all x ∈ RN and a.e.t ∈ [0, T ].

Under the conditions that there existsh ∈ L1(0, T ;R+) such that∣∣∇F(t, x)
∣∣ � h(t) (3)

for all x ∈ RN and a.e.t ∈ [0, T ], and that
T∫

0

F(t, x) dt → +∞ (4)

as |x| → +∞, the existence ofT -periodic solutions is proved in [11]. Meanwhil
[7] proves that problem (1) has infinitely distinct subharmonic solutions (kT -periodic so-
lution for some positive integerk is called to be subharmonic) under (3) and the condi
that

F(t, x) → +∞ (5)

as |x| → +∞ uniformly for a.e.t ∈ [0, T ]. Motivated by the results of [7,11], a natur
question is whether problem (1) has infinitely distinct subharmonic solutions und
and (4). In [6] a positive answer was given if in additionF(t, x) is convex inx for every
t ∈ [0, T ]. In this paper we shall consider the nonconvex case and prove that proble
has infinitely distinct subharmonic solutions under (3) and a condition weaker than (
stronger than (4) (see Theorem 1 below).

It has been proved that problem (1) has infinitely distinct subharmonic solutions
suitable conditions (see [1–13,16–18]). After [12] consider the superquadratic secon
Hamiltonian systems, [1,4] consider the superquadratic second order Hamiltonian s
with a changing sign potential. The convex potentials (see [3,6,18]), the even pot
(see [16,17]), the periodic potential (see [13]), the subquadratic potential (see [8–1
and bounded nonlinearity (see [2,5,7]) were also considered, where [2,5,8,9] only co
the special systems

ü(t) + ∇G
(
u(t)

) = e(t) a.e.t ∈ R.

Recently Chun-Lei Tang [14] generalizes the existence result ofT -periodic solutions in
[11] mentioned above to the sublinear case. The existence ofT -periodic solutions is prove
in [14] under the conditions that there existg,h ∈ L1(0, T ;R+) andα ∈ [0,1) such that∣∣∇F(t, x)

∣∣ � g(t)|x|α + h(t) (6)

for all x ∈ RN and a.e.t ∈ [0, T ], and that

|x|−2α

T∫
F(t, x) dt → +∞
0
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as |x| → +∞. In this paper, we also consider the existence of infinitely distinct sub
monic solutions for problem (1) in the case that∇F(t, x) is sublinear inx (see Theorem 2
below). Some existence theorems are obtained for infinitely distinct subharmonic
tions of problem (1), which generalizes the corresponding result in [7] even if∇F(t, x) is
bounded inx. The following main results are obtained by the minimax methods.

Theorem 1. Suppose thatF satisfies assumption(A), (2) and(3). Assume that there exis
γ ∈ L1(0, T ) such that

F(t, x) � γ (t) (7)

for all x ∈ RN and a.e.t ∈ [0, T ], and that there exists a subsetE of [0, T ] with meas(E)

> 0 such that

F(t, x) → +∞ as|x| → ∞
for a.e. t ∈ E. Then problem(1) has kT -periodic solutionuk ∈ H 1

kT for every positive
integerk such that‖uk‖∞ → ∞ ask → ∞, where

H 1
kT = {

u : [0, kT ] → RN | u is absolutely continuous,

u(0) = u(kT ) andu̇ ∈ L2(0, kT ;RN)
}

is a Hilbert space with the norm defined by

‖u‖ =
( kT∫

0

∣∣u(t)
∣∣2 dt +

kT∫
0

∣∣u̇(t)
∣∣2 dt

)1/2

and

‖u‖∞ = max
0�t�kT

∣∣u(t)
∣∣

for u ∈ H 1
kT .

Remark 1. Theorem 1 extends Theorem 4.1 in [7]. There are functionsF satisfying our
Theorem 1 and not satisfying the results in [1–13,16–18]. For example, let

F(t, x) = |sinωt | ln(
1+ |x|2)

for all x ∈ RN andt ∈ R. ThenF satisfies our Theorem 1. ButF does not satisfy the resul
in [1–13,16–18], because thatF(t, x) is neither superquadratic inx, nor subquadratic inx,
nor convex inx, nor periodic inx, nor uniformly coercive inx for a.e.t , nor belongs to the
special caseG(x) + (e(t), x).

Theorem 2. Suppose thatF(t, x) satisfies assumption(A), (2) and (6). Assume that

|x|−2αF (t, x) → +∞ (8)

as |x| → +∞ uniformly for a.e.t ∈ [0, T ], whereα is the same as in(6). Then problem
(1) haskT -periodic solutionuk ∈ H 1

kT for every positive integerk such that‖uk‖∞ → ∞

ask → ∞.
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Remark 2. Theorem 2 also generalizes Theorem 4.1 in [7] which is the special case
Theorem 2 corresponding toα = 0. There are functionsF satisfying our Theorem 2 an
not satisfying the results in [1–13,16–18]. For example, let

F(t, x) = g(t)|x|1+α,

where 0< α < 1 andg :R → R is T -periodic,g ∈ L1[0, T ] and inft∈[0,T ] g(t) > 0. Then
F satisfies our Theorem 2. ButF does not satisfy the results in [1–13,16–18], because
F(t, x) is neither superquadratic inx, nor subquadratic inx, nor convex inx, nor periodic
in x, nor with bounded∇F(t, x), nor belong toC2-class, nor belong to the special ca
G(x) + (e(t), x).

We shall prove more general results than Theorems 1 and 2.

Theorem 3. Suppose thatF satisfies assumption(A), (2), (6) and (7). Assume that ther
exists a subsetE of [0, T ] with meas(E) > 0 such that

|x|−2αF (t, x) → +∞ as|x| → ∞ (9)

for a.e. t ∈ E. Then problem(1) has kT -periodic solutionuk ∈ H 1
kT for every positive

integerk such that‖uk‖∞ → ∞ ask → ∞.

Remark 3. Without loss of generality, we may assume that functionsb in assumption (A),
g,h in (6) andγ in (7) areT -periodic and assumption (A), (6) and (7) hold for allt ∈ R

by theT -periodicity ofF(t, x) in the first variable.

2. Proof of Theorem 3

Let k be a positive integer. Foru ∈ H 1
kT , let

ū = (kT )−1

kT∫
0

u(t) dt and ũ(t) = u(t) − ū.

Then one has

‖ũ‖2∞ � kT

12

kT∫
0

∣∣u̇(t)
∣∣2 dt (Sobolev’s inequality) (10

and
kT∫
0

∣∣ũ(t)
∣∣2 dt � k2T 2

4π2

kT∫
0

∣∣u̇(t)
∣∣2 dt (Wirtinger’s inequality). (11)

It follows from assumption (A) that the functionalϕk onH 1
kT given by

ϕk(u) = 1
kT∫ ∣∣u̇(t)

∣∣2 dt −
kT∫

F
(
t, u(t)

)
dt
2
0 0
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[15]).

of
is continuously differentiable onH 1
kT (see [11]). Moreover one has

〈
ϕ′

k(u), v
〉 =

kT∫
0

[(
u̇(t), v̇(t)

) − (∇F
(
t, u(t)

)
, v(t)

)]
dt

for all u,v ∈ H 1
kT . It is well known that thekT -periodic solutions of problem (1) corre

spond to the critical points of the functionalϕk .
For convenience to quote we state an analog of Egorov’s theorem (see Lemma 2 in

Lemma 1 [15]. Suppose thatF satisfies assumption(A) andE is a measurable subset
[0, T ]. Assume that

F(t, x) → +∞ as|x| → ∞
for a.e.t ∈ E. Then for everyδ > 0 there exists a subsetEδ of E with meas(E \ Eδ) < δ

such that

F(t, x) → +∞ as|x| → ∞
uniformly for all t ∈ Eδ .

Lemma 2. Assume thatF satisfies assumption(A), (2), (6), (7)and (9). Thenϕk satisfies
the (PS) condition, that is,un has a convergent subsequence whenever it satisfiesϕ′

k(un)

→ 0 asn → ∞ and{ϕk(un)} is bounded.

Proof. By Wirtinger’s inequality, we have( kT∫
0

∣∣u̇n(t)
∣∣2 dt

)1/2

� ‖ũn‖ �
(

k2T 2

4π2
+ 1

)1/2
( kT∫

0

∣∣u̇n(t)
∣∣2 dt

)1/2

(12)

for all n.
It follows from (6) and Sobolev’s inequality that∣∣∣∣∣

kT∫
0

(∇F
(
t, u(t)

)
, ũ(t)

)
dt

∣∣∣∣∣ �
kT∫
0

g(t)
∣∣ū + ũ(t)

∣∣α∣∣ũ(t)
∣∣dt +

kT∫
0

h(t)
∣∣ũ(t)

∣∣dt

�
kT∫
0

2g(t)
(|ū|α + ∣∣ũ(t)

∣∣α)∣∣ũ(t)
∣∣dt +

kT∫
0

h(t)
∣∣ũ(t)

∣∣dt

� 2
(|ū|α + ‖ũ‖α∞

)‖ũ‖∞
kT∫
0

g(t) dt + ‖ũ‖∞
kT∫
0

h(t) dt

� 3 ‖ũ‖2∞ + kT |ū|2α

( kT∫
g(t) dt

)2

+ 2‖ũ‖α+1∞

kT∫
g(t) dt + ‖ũ‖∞

kT∫
h(t) dt
kT 3
0 0 0
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y,
� 1

4

kT∫
0

∣∣u̇(t)
∣∣2 dt + C1|ū|2α + C2

( kT∫
0

∣∣u̇(t)
∣∣2 dt

)(α+1)/2

+ C3

( kT∫
0

∣∣u̇(t)
∣∣2 dt

)1/2

for all u ∈ H 1
kT and some positive constantsC1, C2 andC3.

Hence one has

‖ũn‖ �
∣∣〈ϕ′

k(un), ũn

〉∣∣ =
∣∣∣∣∣

kT∫
0

∣∣u̇n(t)
∣∣2 dt −

kT∫
0

(∇F
(
t, un(t)

)
, ũn(t)

)
dt

∣∣∣∣∣
� 3

4

kT∫
0

∣∣u̇n(t)
∣∣2 dt − C1|ūn|2α

− C2

( kT∫
0

∣∣u̇n(t)
∣∣2 dt

)(α+1)/2

− C3

( kT∫
0

∣∣u̇n(t)
∣∣2 dt

)1/2

for largen. By (12) and the above inequality we have

C|ūn|α �
( kT∫

0

∣∣u̇n(t)
∣∣2 dt

)1/2

− C4 (13)

for some constantsC > 0, C4 > 0 and all largen, which implies that

‖ũn‖∞ � C5
(|ūn|α + 1

)
for all largen and some positive constantC5 by Sobolev’s inequality. Then one has∣∣un(t)

∣∣ � |ūn| −
∣∣ũn(t)

∣∣ � |ūn| − ‖ũn‖∞ � |ūn| − C5
(|ūn|α + 1

)
for all largen and everyt ∈ [0, kT ], which implies that∣∣un(t)

∣∣ � 1

2
|ūn| (14)

for all largen and everyt ∈ [0, kT ].
If (|ūn|) is unbounded, we may assume that, going to a subsequence if necessar

|ūn| → ∞ asn → ∞. (15)

Setδ = measE/2. It follows from (9) and Lemma 1 that there exists a subsetEδ of E with
meas(E \ Eδ) < δ such that

|x|−2αF (t, x) → +∞ as|x| → ∞
uniformly for all t ∈ Eδ , which implies that

measEδ = measE − meas(E \ Eδ) > δ > 0 (16)

and for everyβ > 0, there existsM � 1 such that
|x|−2αF (t, x) � β (17)
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for all |x| � M and allt ∈ Eδ . By (14) and (15), one has∣∣un(t)
∣∣ � M (18)

for all largen and everyt ∈ [0, kT ]. It follows from (13), (7), (18), (17), (14) and (16) th

ϕk(un) �
(
C|ūn|α + C4

)2 −
∫

[0,kT ]\Eδ

γ (t) dt −
∫
Eδ

β
∣∣un(t)

∣∣2α
dt

�
(
C|ūn|α + C4

)2 −
∫

[0,kT ]\Eδ

γ (t) dt − 2−2α|ūn|2αδβ

for all largen. Hence we have

lim sup
n→∞

|ūn|−2αϕk(un) � C2 − 2−2αδβ.

By the arbitrariness ofβ > 0, one has

lim sup
n→∞

|ūn|−2αϕk(un) = −∞,

which contradicts the boundedness ofϕk(un). Hence(|ūn|) is bounded. Furthermore,(un)

is bounded by (13) and (12). Arguing then as in Proposition 4.1 in [11], we conclud
the (PS) condition is satisfied.�
Proof of Theorem 3. It follows from Lemma 2 thatϕk satisfies the (PS) condition. W
now prove thatϕk satisfies the other conditions of the saddle point theorem. Set

ek(t) = k(cosk−1ωt)x0

for all t ∈ R and somex0 ∈ RN with |x0| = 1, whereω = 2π/T . Then we have

ėk(t) = −ω(sink−1ωt)x0

for all t ∈ R, which implies that

‖ėk‖2
L2(0,kT ;RN)

= 1

2
kT ω2.

Hence one has

ϕk(x + ek) = 1

4
kT ω2 −

kT∫
0

F
(
t, x + k(cosk−1ωt)x0

)
dt

for all x ∈ RN . It follows from (17) that

ϕk(x + ek) � 1

4
kT ω2 −

∫
[0,kT ]\Eδ

γ (t) dt − β

∫
Eδ

∣∣x + k(cosk−1ωt)x0
∣∣2α

dt

� 1

4
kT ω2 −

∫
[0,kT ]\Eδ

γ (t) dt − βM2α measEδ

� 1
kT ω2 −

∫
γ (t) dt − β measEδ
4
[0,kT ]\Eδ
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for all |x| � M + k, which implies that

ϕk(x + ek) → −∞ as|x| → ∞ (19)

by the arbitrariness ofβ.
Let H̃ 1

kT be the subspace ofH 1
kT given by

H̃ 1
kT = {

u ∈ H 1
kT | ū = 0

}
.

Then one has

ϕk(u) → +∞ (20)

as‖u‖ → ∞ in H̃ 1
kT . In fact, it follows from Sobolev’s inequality that

∣∣∣∣∣
kT∫
0

[
F

(
t, u(t)

) − F(t,0)
]
dt

∣∣∣∣∣ =
∣∣∣∣∣

kT∫
0

1∫
0

(∇F
(
t,su(t)

)
, u(t)

)
ds dt

∣∣∣∣∣
�

kT∫
0

1∫
0

g(t)
∣∣su(t)

∣∣α∣∣u(t)
∣∣ds dt +

kT∫
0

1∫
0

h(t)
∣∣u(t)

∣∣ds dt

�
kT∫
0

g(t)
∣∣u(t)

∣∣α∣∣u(t)
∣∣dt +

kT∫
0

h(t)
∣∣u(t)

∣∣dt

� ‖u‖α+1∞

kT∫
0

g(t) dt + ‖u‖∞
kT∫
0

h(t) dt

� C5

( kT∫
0

∣∣u̇(t)
∣∣2 dt

)(α+1)/2

+ C6

( kT∫
0

∣∣u̇(t)
∣∣2 dt

)1/2

for all u ∈ H̃ 1
kT and some positive constantsC5 andC6.

Hence one has

ϕk(u) = 1

2

kT∫
0

∣∣u̇(t)
∣∣2 dt −

kT∫
0

[
F

(
t, u(t)

) − F(t,0)
]
dt −

kT∫
0

F(t,0) dt

� 1

2

kT∫
0

∣∣u̇(t)
∣∣2 dt − C5

( kT∫
0

∣∣u̇(t)
∣∣2 dt

)(α+1)/2

− C6

( kT∫
0

∣∣u̇(t)
∣∣2 dt

)1/2

−
kT∫
0

F(t,0) dt
for all u ∈ H̃ 1
kT , which implies (20) by (12).
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ists a
By (19), (20) and the saddle point theorem (see Theorem 4.6 in [11]), there ex
critical pointuk ∈ H 1

kT for ϕk such that

−∞ < inf
H̃1

kT

ϕk � ϕk(uk) � sup
RN+ek

ϕk.

For fixedx ∈ RN , set

Ak = {
t ∈ [0, kT ] | ∣∣x + k(cosk−1ωt)x0

∣∣ � M
}
.

Then we have

measAk � kδ/2 (21)

for all largek. In fact, if measAk > kδ/2, there existst1 ∈ Ak such that

1

8
kδ � t1 � 1

2
kT − 1

8
kδ (22)

or
1

2
kT + 1

8
kδ � t1 � kT − 1

8
kδ. (23)

Moreover, there existst2 ∈ Ak such that

|t2 − t1| � 1

8
kδ (24)

and ∣∣t2 − (kT − t1)
∣∣ � 1

8
kδ. (25)

It follows from (25) that∣∣∣∣1

2
(k−1t1 + k−1t2) − 1

2
T

∣∣∣∣ � 1

16
δ. (26)

By (22) and (23), one has

1

16
δ � 1

2
(k−1t1 + k−1t2) � T − 1

16
δ. (27)

From (26) and (27) we obtain∣∣∣∣sin

(
1

2
(k−1t1 + k−1t2)ω

)∣∣∣∣ � sin

(
1

16
ωδ

)
.

Furthermore, by (24) we have∣∣cos(k−1ωt1) − cos(k−1ωt2)
∣∣

= 2

∣∣∣∣sin

(
1

2
(k−1t1 + k−1t2)ω

)∣∣∣∣
∣∣∣∣sin

(
1

2
(k−1t1 − k−1t2)ω

)∣∣∣∣ � 2 sin2
(

1

16
ωδ

)
.

But due tot1, t2 ∈ Ak , one has∣∣cos(k−1ωt1) − cos(k−1ωt2)
∣∣

1∣ ( )∣ 2M
=
k
∣x + k(cosk−1ωt1)x0 − x + k(cosk−1ωt2)x0 ∣ �

k
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ry,
which is a contradiction for largek. Hence (21) holds. Let

Ek =
k−1⋃
j=0

(jT + Eδ).

Then it follows from (21) that

meas(Ek \ Ak) � 1

2
kδ

for largek. By (17) we have

k−1ϕk(x + ek) = 1

4
T ω2 − k−1

kT∫
0

F
(
t, x + k(cosk−1ωt)x0

)
dt

� 1

4
T ω2 − k−1

∫
[0,kT ]\(Ek\Ak)

γ (t) dt − k−1β meas(Ek \ Ak)

� 1

4
T ω2 +

T∫
0

∣∣γ (t)
∣∣dt − 1

2
δβ

for everyx ∈ RN and all largek. Hence one has

sup
x∈RN

k−1ϕk(x + ek) � 1

4
T ω2 +

T∫
0

∣∣γ (t)
∣∣dt − 1

2
δβ

for all largek, which implies that

lim sup
k→∞

sup
x∈RN

k−1ϕk(x + ek) � 1

4
T ω2 +

T∫
0

∣∣γ (t)
∣∣dt − 1

2
δβ.

By the arbitrariness ofβ, we obtain

lim sup
k→∞

sup
x∈RN

k−1ϕk(x + ek) = −∞,

which follows that

lim sup
k→∞

k−1ϕk(uk) = −∞. (28)

Now we prove that‖uk‖∞ → ∞ ask → ∞. If not, going to a subsequence if necessa
we may assume that

‖uk‖∞ � C7
for all k ∈ N and some positive constantC7. Hence we have



C.-L. Tang, X.-P. Wu / J. Math. Anal. Appl. 304 (2005) 383–393 393

stems,

nics of

, Arch.

ltonian

, Proc.

opol.

nlinear

1995)

in. Dy-

chang-

989.
(1980)

eriodic

y, Proc.

ential,

ss of

(6) 3
k−1ϕk(uk) � −k−1

kT∫
0

F
(
t, uk(t)

)
dt � −k−1 max

0�s�C7
a(s)

kT∫
0

b(t) dt

= − max
0�s�C7

a(s)

T∫
0

b(t) dt.

It follows that

lim inf
k→∞ k−1ϕk(uk) > −∞,

which contradicts (28). Therefore we complete our proof.�
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