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Sufficient conditions for asymptotic stability of the solutions of a linear singularly
perturbed system of differential equations with unbounded delay have been found.
Under the same conditions it is proved that for a locally Lipschitz initial function
the initial value problem for the system degenerates regularly.  © 1991 Academic

Press, Inc.

1. INTRODUCTION

Singularly perturbed systems of differential equations are often used in
the applications. In the last few decades the theory of singularly perturbed
ordinary differential equations develops intensively. One of the principal
problems of this theory is the finding of sufficient conditions for regular
degeneration of the system, i.c., conditions under which the solutions of the
initial value problem tend as p — 0 to the solutions of the initial value
problem for the corresponding degenerate system. (Here u is the perturbing
parameter.)

In some mathematical models the history of the process described is
taken account of. Thus the problem of finding sufficient conditions for
regular degeneration of a singularly perturbed system of differential equa-
tions with retarding argument arises quite naturally. For systems with
constant delay this problem was considered by A.Halanay [4], A.L
Klimushev [7,8], K. L. Cooke [1], and K. L. Cooke and K. R. Meyer
[2]. Linear singularly perturbed systems with variable bounded delay were
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considered by N. V. Stojanov and H. D. Voulov [16] and L. T. Magalhaes
[11-137].

In the present paper sufficient conditions for asymptotic stability of the
solutions of a linear singularly perturbed nonautonomous system with
unbounded delay are found. Under the same conditions it is proved that
for locally Lipschitz initial function the initial value problem for the system
degenerates regularly.

II. NOTATIONS: PHASE SPACE AND DEFINITIONS

We shall denote the Euclidean norm by |-|. If v is a scalar function of
a scalar argument 1, denote by (d/dt)v its derivative, by ¢ its night
derivative and by D*v, D, v, D v, D_v its Dint derivatives. Set v'(f}) =
DYu(t), 2 v(y=max{|{D*o(0)}, (D, v(t)l}, 2 o(t)=max{|D v(t}],
|ID_v(t)]} and 2v(t)y=max{P*v(1),2 v(r)}. If x is a vector-valued
function of a scalar argument, set D*x=col(D*x,,..,D%x,), 2 x=
col(@*x, 2 x3,.. 9%x,). D, x, D" x, D_x, 2 x, and Px are defined
in the same way. Denote by #[z,, +o0) the set of all functions
ge C[zy, o0) such that g(r)<1t for t>2z, and g(t) > +o0 as t » +c0. Set
x,(s)=x(t+s) and I=[t,, +0), where t, is fixed. Let B be the linear
space of the functions ¢: (— oo, 0] - R” provided with the seminorm |- ||
and let B, be the space of the functions : (—cc, 0] - R” such that ¢ is
continuous in [ —z,0] and ¥ _,e B, 1= 0, where ¥ ,(s) = y({t+s) for s <0.
The space B is called admissible if for t >0 and y € B, we have

(B8,) y,eBforte[—1,0]
(B,) 1, is continuous in ¢ with respect to | -|| for te [ —1, 0]
(Bs) Mo [y(0) <Yl < K(t)sup < <o W)+ M(2) I _.II,

where M >0 is a constant and K(s), M(s) are continuous functions.
An admissible space B is said to have a fading memory if the functions
K(s) and M(s) in (B;) satisfy the condition:

{8,) K(sy=K=const, M(s)—>0as s— +c0.
Assume, moreover, that

(Bs) for each s< 0 there exists a number M*(s) such that

lo(s)| < M*(s) ||| for ¢@eB.

From [5, Lemma 2.4] it follows that under the conditions (B,)-(83,) the
function M*(s) in (B5) can be chosen continuous, positive, and monotone
decreasing.
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An important example of a phase space satisfying conditions (8,)-(8) is
the Banach space C, of the continuous functions ¢:(—o0,0]— R” for
which there exists the limit lim,_, __ " |@(s)|, provided with the norm

ol =sups<qe” |p(s)].
Consider the initial value problem

Xt)=L(t,x,), x,=¢@€B, (1)

where t=c¢el, L(t, ¢) is a functional which is defined and continuous for
(t, p)eIx B and linear on ¢. From [5, Theorem 2.1, Lemma 3.1; 15,
Theorems 2.1, 2.2] it is known that for any ¢>1¢,, @ € B there exists a
unique solution x(t) = x(a, ¢)(t) of the initial value problem (1) defined for
all t>a0.

DEerFINITION.  The trivial solution of (1) is called
(x,) stable in R” if for any £ >0, ¢ € I there exists § = d(a, £) > 0 such
that |x(o, @)(t)| <¢ for t =g, ||@| <9;
(2,) uniformly stable in R” if in (a,) 6 does not depend on o;

(x3) equiasymptotically stable in R” if it is stable and there
exist functions 6,=90y(c) and T=T(a,¢) such that |x(g, ¢)(t)] <¢ for
12 1(a,¢), lloll <do(0);

(x4) uniformly asymptotically stable in R” if («3;) is valid and
T(o, ¢} — o does not depend on o;

(xs) exponentially stable in R” if there exist positive constants «, M,
such that

|x(o, @) <M, @] e~ (2)
fort>oel

If in the above definition we replace |x(o, ¢)(¢)| and R” respectively by
lx{o, )| and B, we obtain the respective definitions of stability in B.
Since B is an admissible space with a fading memory, the notions of
uniform asymptotic stability in B and R” are equivalent (see [S5,
Theorem 6.1]).

III. MAIN RESULTS

Let o € I. Consider for ¢ > ¢ the system

X(1y=LV(, X, p) + A1, p) Y(1)
uY(t)=L2(t, X,, u)+ C(t, u) Y(2)
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with initial conditions X,=¢e B, Y(c)=yv,e R", where pe(c, u,].
X(t)eR”?, Y(t)e R", A and C are real matrices whose entries are functions
of (t, u)eIx[0,uol, L™, @, ), v=1,2, are real vectors whose com-
ponents are continuous functionals defined for (¢, ¢, u)eIx Bx [0, i ]
and linear on ¢. In case that det C(z, 0) #0 for ¢ e I, the degenerate system
corresponding to (3) (for u=0) can be written in the more convenient
form

#)=[LM—AC 'L, x,, 0) (4)
We)=[-C "L](1, x,, 0) (5)
with initial condition x, = ¢.

We shall say that conditions (H) are satisfied if the following conditions
hold:

(H1) The components of LY¢, o, u), v=1,2, Az, n), C(t, u) are
continuous for (z, ¢, p)eIx Bx [0, uy,], C(t,0)e C'(I), and there exists a
function ge #[t,, + o) and a constant M, such that for (¢, @, p)e Ix Bx
[0, uo] the following inequalities hold

|A([,ﬂ)|<M2, |C(taﬂ)|<M29 |D+C([,ﬂ)|<M2
IL"t, 0, )| <M;  sup  o(s)l, v=1,2

gl)—1<s<0

(H2) There exist functions ge #[¢,, +o0) and p = p(u), the latter
defined for pe [0, uo], such that p(u) — 0 as u — 0 and the inequalities

|A(2, uy— A(2, 0)] < p(u), |C(t, p)— C(1, 0) < p(u)
1LY, @, 1) = L1, 0,0) <p(p)  sup  |o(s), v=1,2
gl)—1<s<0
hold for any (¢, ¢, u)e Ix Bx [0, pg].

(H3) There exists a function ge #[#,, + c0) and a positive constant
M, such that for any function x: R' - R” such that x,e B for 1>1t, the
estimate

DLt x,, w) M5y sup (|x(s)| +{2x(s)])

g{<s<t

holds for (1, u)e Ix [0, ug].

(H4) There exists a positive constant f§ such that all eigenvalues
A1), i=1,2, ., n of the matrix C(¢, 0) satisfy the condition

Re 4;()< -8 for tel
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(H5) The zero solution of the degenerate system (4) is uniformly
asymptotically stable in B.

Since for g, g,€ #[to, +0) and g(fr)=min{g(¢), g,(¢)} we have
ge Flty, + o), we may assume that the function g in (H1), (H2), and
(H3) is the same. From condition (H4}) it follows that |det C(¢, 0)| = " >0
and setting in (3) x4 =0 we obtain the degenerate system (4), (5). Under the
conditions (H4) and (H1) the right-hand sides of the linear systems (3) and
(4) are continuous for (4, ¢)eIx B. Then the initial value problems (3),
X,=¢, Y(6)=y, and (4), x,=¢ have unique solutions respectively
(X, () =(X, Y)(o, 0, yo, u)(t) and x(t)=x(o, ¢)(t), defined and
continuous for ¢ > 0.

The main result in the work is the following theorem.

THEOREM 1. Let conditions (H) hold.
Then the following assertions are valid:

(1) There exists a positive number pi, < po such that for pe (0, u,) the
zero solution of (3) is equiasymptotically stable in Bx R". In the case of
bounded delay; i.e., when the function t — g(t) is bounded, the zero solution
of (3) is uniformly asympiotically stable.

(ii) For any locally Lipschitz initial function ¢ € B and as y— 0 the
solution (X, Y)(ty, @, yo, u)(t) of (3) tends to the solution (x, y)(ty, ¢)(t) of
(4), (5) uniformly with respect to (t, yo)€ [to+9, +0)x {zeR": |z] <Q},
where 6 and Q are arbitrary positive constants.

The proof of Theorem 1 is given in Section IV.

In order to illustrate the role of condition (H) in Theorem 1, we shall
consider several examples. If the estimate in condition (H4) is valid for
each re I but it is not uniform with respect to 1€ 1, i.e., B depends on ¢, then
assertions (i) and (ii) are not valid which is seen from [6, Example E4].
The importance of condition (H2) is illustrated by [6, Examples E1, E2].

ExampLe 1. The condition g(¢) > +o0 as t - +oo0 in (H1) cannot be
omitted. Consider the system
X(1)= —X(1)+ X(g(1))— Y(1), X,=¢eC,
pY(6)=X(g(1)) - Y(2), Y(6)=yse R,

where g(1)< A = const for 1> t,. Choose a number ¢ > max {4, t,} and set
¢(s) = yo for s <0. Then Y(7) = y, for ¢ > o, hence the trivial solution of (6)
is not asymptotically stable.

(6)

ExampLE 2. In the case of bounded delay, i.e., when the function g(¢)
in conditions (H) satisfies the inequality g(¢f)>t—h, h=const>0,
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Theorem 1 shows that the zero solution of (3) is uniformly asymptotically
stable for re I and sufficiently small values of u (see also [16]).

Consider system (6) for g(r)=1/2, 1,>0. It satisfies all conditions of
Theorem 1, hence its zero solution is equiasymptotically stable for ¢ =1,
and sufficiently small values of u. We shall prove that it is not uniformly
asymptotically stable. Fix the number x> 0 and suppose that the last asser-
tion is not true, i.e., that there exists a number § > 0 such that for any ¢ >0
one can find a number N(g) >0 such that

‘X(O', (P, ,V(]v #)(IH < &, | Y(O', (P’ yﬁﬂ .u)(t)‘ <e

for t=o+ N(g), @l +1yol <93, o=21t,. Set e=9/8, a=t,+ N(e), o(s)=
yo=06/4. Hence

|Y(U’ @5 Vo> “)(2U)| < 5/8

But on the other hand for 7€ [0, 26] the system is of the form
X()= —-X(1)+6/4—Y(1), X(o)=05/4
uY(1)=06/4—Y(1), Y(o)=0/4

which implies that Y(¢)=4/4 for te [0, 20].
This example shows that the condition of boundedness of the delay in
[16, Theorem 1] is essential.

ExaMPLE 3. The convergence in assertion (ii) of Theorem 1 depends on
the choice of the initial function ¢; ie., the rate of convergence changes
under small changes of the initial function. Consider the system

X(1)= —X(1), Xo=0eC[-1,0] ;
u¥(t)= —Y()+ X(1—1),  Y(0)=0. @

Let ¢ >0 be fixed and let n be a positive integer. Set

0, se[ -1, —¢/n]

¢(S)=¢"(s):{ns+8, se[—e¢/n, 0].

Integrate system (7) in the interval [0, 1]. For its solutions X(¢,,, #)(¢) and
Y(¢,, p)(2) we have

X((pna )u)(t)zx((Pn)(t) =¢ge~’

and for t=1 the equality Y(¢,, u)(1)— y(@,)(1)=un(e %" —1) holds
where x(¢,)(t) and y(p,)(t) are solutions of the respective degenerate
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system x(t)= —x(t), y(t}=x(t—1), xo=¢,. To complete the proof it suf-
fices to note that ||| <& for every n and pn(e™“*" — 1) - 0 nonuniformly
with respect to n as u — 0.

IV. PROOF OF THEOREM !
1. Proof of Some Auxiliary Assertions

LEMMA 1. Let veC[zy, 1), 1< +00, 2,220, let 6 and q be constants.
Moreover, let v'(t) < q for these values of te [z, t) which satisfy the condi-
tions v(t) =0 and v(t) Z v(s) for s€ [z, t].

Then for te [z, 1) the following inequality holds

v(1)<max{d, sup uv(s)}+(r—z;)max{0,q}. (8)
se[z0,21]

Proof. (a) The case 6=0. Set 9(t)=max{0, v(¢)} for te [z, t). The
function ¥ is continuous and nonnegative in the interval [zy, 7). It is easy
to check that ¢'(f) <max{0, g} if 1€ [z, t) and o(r) > i(s) for s€ [z, ).
Then from [3, Lemma 1] it follows that for te [z, 1)

v(t)<max{0, sup uv(s)}+(t—z;)max{0,q}.

sefzo,21]

(b) The general case. Set w(t)=v(t)— 9 for te [z4, 7). The function
w satisfies the conditions of Lemma 1 in the particular case in which the
lemma was proved above. Hence for e [z, 7) the inequality

v(t)— 6 <max{0, sup wv(s)—d}+(1—z,)max{0,q}

se[z0.21]

holds which is equivalent to (8). Lemma 1 is proved.

LEMMA 2. Assume that ve C[z,, 1) where 1< +o0. Let ¢>0 and 6 be
constants such that for all values of te|[z,,1) satisfying the condition
v(t) = 0 the estimate v'(t) < —q holds. Moreover, let z,+ T <1, where

T=q ' max{0, v(z,)—}.
Then v(t) <6 for te[z,+ T, 7).

Proof. 1If T=0, then the assertion of Lemma 2 follows from the
definition of the number 7 and Lemma 1. Let 7> 0. If v(s) < for some
s€[z,,z,+ T], from Lemma 1 (for zo=2z, =s) it follows that v(z) <é for
te[s, t)> [z, + T, 7). Suppose that this is not true, i.e., that v(¢) > ¢ for all
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tel[z;,z,+ 7). Then for the function w(r)=uv(r)+ ¢(t—z,) we have
w(z,)=v(z,) and w'(1)<0 for te[z,,z,+ T]. From Lemma 1 it follows
that w(z, + T) < w(z,), hence we obtain

O+ qT <v(zy+ T)+qT=w(z, + T)Y < w(z,) =v(z,)

which contradicts the definition of 7. Lemma 2 is proved.

LEMMA 3. Letre #lzo, +0), feC[0, + o) and f(t)>t for t >0. Let
¢y >0 be a constant and let P be some subset of Clz,, +o0) such that for
ve P and t 2z the estimate v(t) < ¢ holds. Moreover, let for 6 >0 the func-
tions t(0)=1(9, ¢y, z¢) = zo and K(8) = K(9, ¢y, z,) > 0 be defined so that for
any function v € P and any value of t = t(9) satisfying the conditions v(t) =9,
r(1) = zg and f(v(t)) = v(s) for se [r(t), 1] the estimate v'(t) < —K(5) holds.

Then there exists a function I'(8) =110, ¢y, z,) defined for >0 such that
for ve P and t = I'(0) the estimate v(t) < holds.

Proof. Let § be an arbitrary number from the interval (0, ¢,). By means
of the numbers K= K(9, ¢,, zo) and 7= 1(9, ¢, zo) we shall define /(). In
virtue of the properties of the function f there exists a number a = a(é, ¢,)
such that f(s)—s>a for se[9d, ¢q]. Let N=N(4, c,) be a positive integer
such that 6 + Na = ¢,. From the properties of the function r it follows that
a finite monotone increasing sequence of numbers ¢, =1,(J, ¢y, zy) (=0,
1,2,.., N) can be chosen so that to=1 and r(2)=1t,_, for t=1,—a/K,
n=12,.,N.

Set I'(8)=ty=1x5(0, co, zo). We shall show that v(t)<é for =1, and
ve P. For this purpose it suffices to prove that for n=0,1,2,.., N, ve P,
and ¢ > t, the inequality

() <o+ (N—n)a

holds. We shall prove the above assertion by induction on n. For n=0 the
assertion follows from the definition of N and the inequality v(¢) < ¢, for
veP.

Assume that the assertion holds for some n< N, 1.e, v(s)<d+ (N—n)a
fors=t,,veP. LetveP, t>t,,,—a/K, and v(z) =26+ (N—n—1)a. Then
the inequalities =2r(z)=t,21, v(t)=2d, and fl(v(8))>v(t)+a=
0+ (N—n)az=v(s) hold for se [r(¢), t], hence v'(1) < —K. From Lemma 2
it follows that v(¢2)<d+a(N—n—1)for t=t,,, —a/K+ T,, where

T,=K 'max{0,0v(t,,,—a/K)—6—(N—n—1)a}.

The inequalities ¢,,,—a/K=r(t,.,—a/K)=t, and v(t,,,—a/K)<d+
(N—n)ashow that T, <a/K. Hence v(t) <o(N—n—1)afort>1t,,,,veP.
This completes the proof of Lemma 3.
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Remark 1. If r(t)=t—h and the numbers 1(d, ¢y, z9)—z, and
K(4, cq, zo) in the conditions of Lemma 3 do not depend on z,, then the
number 774, ¢y, zy) — 2z, does not depend on z, too because in this case
t,=t, +h+a/K n=1,273,..,Nand I'(9, ¢cg, z4) — zg = N(h + a/K).

We shall note that the proofs of Lemmas 2 and 3 have been inspired by

[3, 9] with regard to certain ideas.
Next lemmas follow from the properties of lim sup and lim inf.

LEmMMA 4. For the scalar functions f and g we have:

(a) lim sup( f(z) + g(¢)) < lim sup f(¢) + lim sup g(¢),

t—st 1 st t—st

lim sup | f(2) - g(1)| <lim sup | f(2)| - lim sup |g(£)].

(b) If2*f(s)< +oo, then f(t)—> f(s) as t > s™.
(c) limsup | f(s+h)— f(s)l/h=2"f(s).

h—0+

(d) If 2 f(s)< +o0 and @ *g(s)< 400, then

DT (RIS f(s) 27 8(s) + |g(s)] 2 f(s).

If 2%f(s)< 4o, f(s)=0 and g(t)—> g(s) as t—»s™, then 2" (fg)s)<
|g(s)| 27 f(s).

Proof. The assertions (a) and (b) are trivial. Assertion (c) follows from
the equality lim sup | f(¢)| = max{|lim sup f(7)|, [lim inf f(¢)|} and asser-
tion (d) follows from (a), (b), (c), and the triangle inequality.

LemMma 5. Let f, g,, and g, be continuous scalar functions such that
£(1) < D7f(1) < gy(1) for te(a, b).

Then D, f(1), D™f(1), D_ f(1)e [£.(2), gx(1)] for 1€ (a, b).

Proof. There exists a smooth function G, defined for ¢ € (a, b) such that
G,(1)= g,(1). The function F,=f— G, satisfies the estimate D*F,(r)>
D*f(t)— g,(t) 20 for te(a, b). From [14, Appendix 1, Corollary 2.4] it
follows that the derivatives D F,(¢), D~ F,(t), and D _ F\(¢) are also non-
negative. Hence D, f(#) = g,(¢) since

0<D,F()<D, f(t)+ D (=G ))=D, f(1)— g:(1).

The inequalities D f(¢) = g.(2), D™f(1) 2 g:(1), D, f(1) < g2(1), D™ f() <
g-(1), and D_ f(1)< g,(¢t) are proved in the same way.

COROLLARY 1. Let the functions f and g be continuous for te(a,b),
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g(t)e R, f(t)e R". Then the estimate |D* f(1)| < g(t) for all 1€ (a, b) implies
|21 (1)] < g(1) /n.

LEMMA 6. Let the numbers u, ¢, d, r be positive and let a, b be non-
negative numbers such that a+b=>r.
Then, if p satisfies the condition

2 1 (r/d)*
3¢’ 6c¢’ 8¢+ 4c(r/d)}
the inequality a® + b*u~"' = bc(a+ b+ d) holds.

If r>3d, then u,=min{2/3¢% 1/6¢}.

Proof. For p<2/(3c?) the inequalities a*/2 +b*/(3pu) > a*/2+b*c*/2>
abc and for p<1/(6¢) the inequality b/(6u) > b’c is fulfilled. In order to
complete the proof of Lemma 6, it suffices to show that for u< (r/d)?/
(8¢% + 4c(r/d)) the estimate a*/2 + b*/(2u) = bed holds. For a®>2bcd the
above inequality is obvious. On the other hand, for a® < 2bcd the inequality
a+ b>=r implies the estimates

212 < 4b% + 4a* < 4b* + 8bcd = (2b + 2cd)? — 4c*d*.
In such a case the inequalities
_b_> —2cd+~/4(:2d2-+-2r2> (r/d)?
2cd ded 8¢c? +4dc(r/d)

are fulfilled which imply 5% > 2bcdy for u < (r/d)*/(8¢c* + 4c(r/d)).
This completes the proof of Lemma 6.

u<#o=min{

2. Construction of a Functional of Lyapunov—Krasovskii Type

From conditions (H1) and (H4) it follows that the functional
[LY—AC~'L@®](t, ¢, 0) is continuous for (¢, p)eIx B and linear on ¢.
Hence, from [15, condition ES, Theorem 3.27 it follows that the solution
x(o, @)(¢) of the initial value problem (4), x, = ¢ satisfies estimate (2) for
some M, >0 and o>0. By [15, Theorem 3.3] there exists a continuous

_functional
V(t, @) =sup l|x,, (1, @)] e

520

defined for (¢, ¢)eIx B such that for V(t, )= [V(t, ¢)]* the following
estimates are valid

loll* < ¥(t, @) < by ll@l?
V(t, 01) = V(t, @)l <b (@]l + l@2ll) o1 — @, 9)

1 2
Violt, p) < —ay llo]”,
where a, and b, are positive constants.
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From conditions (H1), (H5), and [10, Lemma 2.4] it follows that
|esC(t,0)! <R0€_ﬁs/2, |es"C(l,0)l SROefﬁs/Z’ (10)

where R, is a positive constant depending only on f and M, and the
matrix ‘C is transposed to C.

Consider the linear autonomous system Z(s)= C(t,0) Z(s) and denote
its solution through (0, ) by Z(s, ¢, n). It is known that Z(s, ¢, n) = 9%
and

a C(1,0)s : —C(t,0)t d C(r,0)t
atZ(s, Ln)=e -Joe ZI;C(I’ O)e dt-n.

Set W(t, n) =j8° |Z(s, t, n)|* ds. By means of (10) in a standard way it is
proved that W(z, n): Ix R" —> R is continuous, has partial derivatives with
respect to all its arguments, and satisfies the conditions

a, |n> < W(t,n) < b, |n|?
W1, DI < b, Inl, | W, (t, )| < b, [n] (11)

(Wry(t9 '1)’ C(t’ 0)”) = |nlza

where a, and b, are positive constants depending only on § and M,. For
(t, o, ¥)eIx Bx R" we set U(t, o, y)=V(¢, @)+ W(t, ). The functional U
is continuous and satisfies the estimates

aj(lloll + 1) < U, @, ) <bi(loll + ¥1)* (12)

3. Proof of Assertion (i) of Theorem 1

From conditions (H1), (H2), (H4), and Lemma 5 it follows that there
exists a constant b, such that for (7, u)elIx[0, uo,] the following
inequalities hold

IC™H e, w)I<bs,  127CTHL )l < b (13)

Set L=max{l, M, My, M5, M5, b, b,, bs,b,}, m=min{l, M,,a,,
a,, as}. There exists a number oy > ¢, such that g(t)>1¢, for 1> g,. For
t=aqset G(t) =infy,) <, <, g(s5). Since Ge #[6,, + ), then foreach 0> 1,
there exists a number 2 = 2(o) such that G(¢) > o for > 2.

Let ue (0, uy) and o > ty. The solution (X, Y)(a, @, yo, #) of the initial
value problem (3), X, = ¢, Y(g)= y, we shall estimate in two steps.

For te[a, 2], integrating system (3) over the interval [o, t], in view of
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conditions (B,)-(Bs) and (H1) we obtain the following estimates of X
and Y

XL <M, ol + LG+ 1) [ (1) + V() d

YOIyl + L (Cot 1) [ X1+ 1Y) i

va

where Cy>sup,.,.-1 M*(g(s) —s).
Then from condition (B,) it follows that for 1e[o, 27]

1X,| <My 'K(t—o)+ M(t—a)] el
+K(t—0) L(Cy+ 1)£ (X + 1 Y(A)) dA.
Since the functions || X ||, | Y(¢)|, K(¢ — o), and M(z — o) are continuous for
te [o, 2], using Gronwall’s inequality we obtain
1X. I+ 1Y (DI < Colloll + [ yol) (14)

for t€ [, £], where C, = C(y, 6) = (Mg 'K + M + 1)exp[L(Co + 1)
(H71 + K)(Z_O-)]’ szaxse[OA).'fa] K(S)’ M= max, . [0, —0] M(S)

Remark 2. Note that in the case of bounded delay, ie., g(t)=t—h,
where 4> 0 is a constant, the numbers C, and C, do not depend on ¢ since
X=0+2h and Cy=M*(—h) because the function M* is monotone
decreasing.

In order to estimate || X,| and | Y(¢)| for ¢ > X, we shall use the functional

U(t, . ).
Set £t 1) = X(1, 1) — x(1)

(15)
n(t, W)= Y(t, i)+ C (1, ) L2, X, p),

where x(t)=x(o, @)(¢) is the solution of the initial value problem (4),
x, = ¢. From equalities (15) and inequalities (Bs), (2) and (14) we deduce

that
€M+ In(O)] < Cyllloll + | yol) (16)

for te [o, 2], where C, depends on L, Cy, and C,.
On the other hand, equalities (3), (4), and (15) show that the functions
¢ and n satisfy the conditions

E(r, ) =[LY —AC LD, &, p) + A, p) (2, 1)
+[LY—AC ' LDY(t, x,, p) — [LV — AC~'LD](3, x,, 0),
D (e, p)=C(t, win(t, W) p~ '+ DTLCT e, 1) L2, X, )], (17)
Don(t, p)=Clt, wyn(t, ) p= '+ D [C7Ht, p) L1, X, )]
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for t > 6. Consider the functions

vi(t) =v4(0, @, yo, u)(t) = V{1, ¢,),
V(1) = 05(0, @, yo, u)(t) = W(t, n(1)), (18)
(1) =v,(t) + vy(2).
We shall estimate their right derivatives. Let 7 > 6. Denote by Z(s) the solu-

tion of the initial value problem (4), Z,=¢£,. By (9) and (B,) and Lemma 4
we obtain that for 1> ¢

vi() <limsup{ V(1 +h, &)=Vt +h Z,, ) ]/h

h—-0t

+limsup[V(t+h Z,, ,)—V(,Z,)]/h

h—0*t

S2L I N im sup (I, 5 — Z, 1 4ll/h+ Via(t, Z))

h—0*
S2LK(0) 1€, 1€, p) = Z(1)| —m || €)1

since lim supy, _, g+ SUpP,¢ 0,47 | f(s)] =lim sup,, o+ | f(h)| for any vector-
valued function f defined for 4 >0. Then from (4), (17), (13), and condi-
tions (H1), (H2) it follows that

vi(1) < —m IE,]17 + 2LK(0) € I{L In(1)|
+(1+3L%) p(u)( sup  [E(s)I+ sup [x(s)N)}.  (19)

se[gle)e] se[g(e)e]

Let t>0 be a number such that sup,. ... 2X(g, @, yo, u)(s)| < 0.
Then from inequalities (13), condition (H3), and Lemmas 4 and 5 it
follows that

12+ [C 1t 1) LD, X, ]I <2/n L2 sup (IX(s)| +12X(s)])  (20)
se[g(n)r]

and, by (17), |2 *n(¢)| < +o. Hence
va() S W (1, n(2)) + lim sup[ W (e, n(z+ h)) — W(t, n(1))1/h

h—-0+

< W (t, n(1)) + lim sup([n(z + h) —n(1)]/h,

h—0t

W (t, n(e) + 0(h)[n(t+h)—n(1)]))
= W (t, n(t))+ lim sup([n(t + h) —n()1/h, W (1, n(1)))  (21)

h—-o0t

and for =1 set {(A) =n(a, @, yo, u)(A)— AC(t, ) n(o, @, yo, u)(1) "

409/155/2-2
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Then from (17) we obtain that
)= [C o) L2 X, )],

By Lemma 4 and inequality (20) we have
lim sup([n(t+h) —n()1/h— Cl, p) ne) ', W1, (1))

h—-0*1

= lim sup([{(e + h) = {(0)I/h, W (1, 1(1)))

h— 0%t
<2 UL W (1, n(1))]
<2ynL’ )] sup (IX(s)| + |2 X(s))). (22)

selg(t).]

From relations (11), in view of condition (H2), we deduce the inequality

(C, () p=", Wit n()) < —(m—Lp(w) In()> =" (23)

Combining estimates (21), (22), and (23) we see that for all values of t > ¢
such that sup, ..« . |2X(s)| < oo the following inequality holds

v5(1) < —(m—Lp(u)) u =" In()>+ L |n(1)]?
+2ﬁL3 [n(z)]  sup (1 X(s)|+|2X(s)|). (24)

se[gle),t]

Now let 1= 2. Then 6 < G(r) < g(t) and from equalities (3), (15), condition
(H1), and Lemma 5 it follows that

sup ([ X(s)| + (2 X(s)[)< M, sup  ([E(s)| + [x(s)] + [n(s)]),

se[g(t),t] se[G(1),1]

where the number M, depends only on L.
Hence from estimates (19), (24), and (2) we obtain that for 1> 2 the
following inequality holds

V()< —m [N = (m—Lp(u)) u " In(1))?
+ M |IE ) p(p) sup  {E N+ MsIn() {11,

se[G(1).1]

+ sup ([0 + () + lloll exp(—a(G(1)—0)) ), (25)

se[G(1),¢]

where the constant M depends only on L, K(0), p, and n. We shall note
that there exists a positive number u, € (0, ug) such that Lp(u)<m/2 and
m~ LM, \/Ep(,u)Sm/Z for pe(0, u;). With every positive number § we
associate the set P(d) consisting of all functions v defined by (18) such that
lell + |yol <d. Let 6 and a be positive numbers and pe (0, u,). For any
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t = 2 and v e P(d) satisfying the condition 2v(¢) = v(s) for se [G(¢), t], from
(25) and (12) there follows the estimate

v' () < —m [ E022—mu" n(1)%2
+ M (OIS + ()] + | oll exp[ —a(G(t) — )]}, (26)

where the number M, depends only on M, L, and m.
Let, moreover, the condition v(¢) = a be fulfilled. Then from inequalities
(12) and (26) it follows, by Lemma 6, that for

) m*  m
0<pu<p,=min 1,#1,W,W
5 6

and dexp[ —a(G(t)—0)] < \/E/(3L) the following inequalities hold

a
8L%"

V()< —ZIEI =T (1)< 27)

Now fix the number pe€ (0, u,). We shall prove that the zero solution
of (3) is equiasymptotically stable. First we shall show that it is stable.
Let el and £>0. Set ¢ =¢,(e)=3me/(4L*+7) and d=6(s, 0)=
min{e,/(3L), ¢,/(LC,), ¢/C, }, where the numbers C, and C, are the same
as in (14) and (16). Let | o] + | yo| <. We shall verify that for any t>¢
the inequality || X,|| + | Y(¢)| <& holds. For te[¢, Z] from (12) and (16) it
follows that v(r) < L*C38?<e?. Combining this estimate and inequalities
(27) for a=¢&?, pue(0,u,), 6<e,/(3L), we obtain, by Lemma !, the
inequality

m (&N + () <v(r)<ef  for 120

which, together with (15) and (2), yields
IX < UE M+ llx )l <& /m+ Lé<4e,/(3m)  for (20
and

YOI <In()l+L* sup |1 X, <e/m+4de, L7/(3m)

se[g(n) 1]

for t=2. Hence |X,|+|Y(t) <(4L*+7)e,/(3m)=¢ for t=2%, which,
together with (14), yields || X, || + | Y(¢){ < & for ¢ > g, hence the zero solution
of (3) is stable. In the case of bounded delay, i.e., when g(t)=t—h,
h=const, the stability is uniform on o€, because in this case, by
Remark 2, the numbers C, and C, do not depend on .

To complete the proof of assertion (i) we shall apply Lemma 3. Let
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621, Set do=min{1/(3L), 1/(LC,)}. For ve P(d,) and 1= we have
v(t)< 1. Since G(1) » +oc as 1 — +o0, for any @ >0 there exists a number
Ma)=Aila,0)= 2 such that G(1)20+a 'In(3Ld./\/a) for 1= i(a). Then
from estimate (27) it follows that Lemma 3 can be applied to the set
P="P(5,) for zo=0, r(t)=G(1), f(1)=2t, ¢c,=1, t(a)=4i(a) and K(a)=
ma/(8L?). By Lemma 3 there exists a function I'(¢)= I(a, 1, o) defined for
a> 0 such that for ve P(d,) and ¢ = I'(a) the inequality v(¢) < a holds.

Let ¢ be an arbitrary positive number. Set &, =¢/(2L*+2), 0, =
Q.(e,0)=I(m%% 1,0) and Q,=0+a 'In(Ldy/e,). For t>Q, and
lell + | yol <0 from (12) and (18) it follows that ||, + [n(t)l <é&,. On
the other hand, inequality (2) shows that for 1> (Q, and || <J, the
estimate ||x,| <L o] e *" ) <e, holds. Moreover, there exists a number
Q3=0s(¢,0) such that > g(r)=>max{Q,, Q,} for 1>Q;. Hence for
loll + |yol <8y and = Q5(e, o) the following inequalities are satisfied

LX< IXN < NE] + x| < 28,
YOI In()l+L* sup  [X(s) 2L+ 1) e,

se[g()t]

which imply the inequality | X,|| + | Y(7)| <¢; i.e., the zero solution of (3) is
equiasymptotically stable. In the case of bounded delay when g(z)>1— A,
h=const, we have 2 — g =2h,

Ma)—o=2h+a " In(3L3/\/a),

where d, does not depend on 6. By Remark | the numbers I'(a, 1,0)—¢
and Q,(¢, 0)— 0o do not depend on 6. In such a case the zero solution
of (3) is uniformly asymptotically stable since Qi(¢,6)—c=h+
max{Q, — o, Q,— 0o} does not depend on o.

This completes the proof of assertion (i).

4. Proof of Assertion (i1) of Theorem 1

There exists a number 1, such that g(¢) > ¢, for ¢t > t,. Choose the num-
ber b in such a way that 7,— b < g(¢) for te[t,, t4]. Then for g(1) <1, <t
we obtain g(f)—t,e [ —b,0]. Since the function ¢ satisfies the Lipschitz
condition in the interval [ —b, 0], there exists a number L, = L,(¢) such
that

L*el<L, and  |pG6)<Li, |Zo(s) <L, (28)

for se [ —b,0]. By means of equalities (15) we again introduce the func-
tions &(t) = &(yo, #)(t) and n(t)=n(yo, u)(t), where the number pe (0, u,)
and the vector y, € R” are parameters. Note that in (15) the dependence on
Yo and ¢ is omitted. Let Q, 4, and ¢ be arbitrary positive numbers. We
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shall prove that there exists a number u,=u;(o, Q, hy, £)€ (0, uy) such
that for |yo| < Q, ue(0, i;) the following inequalities are valid

E(yo, u)t)<e  for 12>,
M(ye, p)(1)| <&  for t>t,+ ho.

(29)

Then assertion (ii) of Theorem 1 follows immediately from (29) in view of
equalities (15), (5), condition (H2) and estimates (2) and (13).

First note that &(s)=0 for s<t, and Lp(u)<m/2 for pe(0, u,). Then
from inequalities (19) and (24), in view of equalities (3) and (15), condition
(H1), Lemma 5, and estimates (2) and (28), we obtain that for ue (0, u,)
and ¢ > ¢, the following inequalities are valid

va(1) < —Empln(t)I2+M7|n(l)|{1+ sup (I1(s)l + In(s))} (30)

se€ [1p,1]

VOIS = IG5 100+ My 1 {1+ sup (6] + Ints))},

sefr,t]

(31)

where M, and M, are positive constants depending only on L and L,.
Since £,,=0, from estimates (9), (12), and (28) it follows that

v( o, 1)(16) = va(po, u)(1) S L? In(1x)1* < L*(1yol + L’L,)* < ¢° (32)

for | yo| < Q, where g=L(Q + L°L)).

On the other hand, for any ¢>¢, satisfying the conditions
v(yo, w)(1)=q> and  v(yo, p)(1) = v(yo, u)s) for se[to, 1], from
inequalities (31) and (12) it follows that

LM,
m

V(0 WS =5 1807 =30 OP + = 2 T+ 1 + (0]}

and by Lemma 6 there exists y, =y,(¢g) <y, such that for u<vy, we have
V' (yg, #u)(2)<0. Then from Lemmal it follows that for t>1¢,, u<y,,
| ol <Q we have v(y,, p)() < ¢* and

1€(yo, )]+ [1(yo, p)(1)] < Lg/m. (33)

Since &(yq, u)(s)=0 for s<¢,, from equality (17), estimates (2), (13),
(33), and condition (H1), by Lemma5 we obtain that |(d/dr)
(1E(yo, u)(2))*)| < F, for t>t,, where the constant F, depends only on L,
L,, m, and Q.
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Set h,=min{h,, m’e’/(4F,L*). From the finite increment theorem it
follows that for 1€ [t, to+h, ], £ <y, | yol < Q we have

[S(yo, u)()] <me/(2L). (34)
On the other hand, inequalities {30) and (33) show that
vy(1) < —m |n(0)1?/(2u) + F, (35)

for t=21t,, u<y,, |yol < Q, where the numbers y, and F, depend only on
L, m, and Q.

Set N,=max{0,4L%q* —m*}/(4L*h,) and 7,=m’c*/[8L* (N, + F,)].
For p<min{y,,y,} and |y,| < Q from inequalities (35) and the definition
of y, it follows that for each r>1t, which satisfies the condition v,(r)>

“¢?/(4L?) the estimate v5(t)< —N, holds. Then, by Lemma 2 and the
definition of the number N,, we obtain v,(t, + h,) < m*e?/(4L?), whence it
follows that

1n(yo, u)to+hy)| <me/(2L) (36)

for y<min{y,, y,} and |y,| < Q. From (34), (36), and (12) we deduce the
inequality

o yo, u)to + hy) S<m’e’. (37)

For any t>t,+h, such that v(y,, u)(t)=m??* from inequalities (12),
(31), and (33) it follows that v'(y,, u)(t) <0 for u <vy,, where by Lemma 6
the number y;>0 depends only on m, L, L,, Q, and ¢ Then from
Lemmal and inequality (37) for (=2t,+h,, |yol<Q, u<u;=
min{y,, 7, 75} it follows that v(y,, u)(z) <m’> and in view of (12) and
(36) we obtain the inequality (29) since #, Sho. Theorem 1 is proved.
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