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A new inversion free iteration for solving the equation
X + A�X−1A=Q
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Abstract

In this paper, we introduce a new inversion free variant of the basic fixed point iteration method for obtaining
a maximal positive definite solution of the nonlinear matrix equationX + A�X−1A = Q. It is more accurate than
Zhan’s algorithm (J. Sci. Comput. 17 (1996) 1167) and has less number of operations than the algorithm of Guo
and Lancaster (Math. Comput. 68 (1999) 1589). We derive convergence conditions of the iteration and existence
conditions of a solution to the problem. Finally, we give some numerical results to illustrate the behavior of the
considered algorithm.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

We consider the nonlinear matrix equation

X + A�X−1A = Q, (1.1)

whereA, Q ∈ Cn×n with Q positive definite matrix. It is easy to see that the matrix equation (1.1) can
be reduced to

X + A�X−1A = I, (1.2)
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whereI is the identity matrix, see[8,12]. This type of nonlinear matrix equations often arises in the
analysis of ladder networks, dynamic programming, control theory, stochastic filtering, statistics and
many applications, see[1,6] and the references therein. The equation can be viewed as a natural extension
for the scalar equationx + a2/x = 1. This scalar problem is equivalent to equation�(x) = a2, where
�(x) = x(1− x). This equation has a positive solutionx so that 0< x < 1 if a2� max�(x) = �

(1
2

)
. The

equation can also be viewed as a special case of a discrete-time algebraic Riccati equation

0 = Q + F�XF − X − (F �XB + A�)(R + B�XB)−1(B�XF + A),

whereQ is a positive definite matrix, see[6]. The discrete-time algebraic Riccati equation can be reduced
to (1.2), by settingF = 0, B = I andR = 0.

Eq. (1.2) has been studied recently by several authors[1–5,7–13]. Anderson et al.[1] discussed the
existence of the positive solution to the matrix equation (1.2) with right-hand side an arbitrary matrix,
while Engwerda et al.[2] established and proved theorems for the necessary and sufficient conditions
of existence of a positive definite solution of same matrix equation as in[1]. They discussed both the
real and complex case and established recursive algorithms to compute the largest and smallest solution
of the equation. Engwerda[3] proved the existence of the positive definite solution of the real matrix
equation (1.2) and also found an algorithm to calculate the solution. El-Sayed et al.[8,10–13]obtained
necessary and sufficient conditions for existence of a positive definite solution of matrix equations with
several forms instant ofX−1 in (1.2). Zhan and Xie[13] were proposed several numerical algorithms
for finding solutions for (1.2). In[12], Zhan was proposed an algorithm that avoids matrix inversion for
every iteration called inversion free variant of the basic fixed point iteration.

Take X0 = Y0 = I,

Xn+1 = I − A�YnA,

Yn+1 = Yn(2I − XnYn), n = 0, 1, 2, . . . . (1.3)

Guo and Lancaster[4] modified Zhan’s algorithm (1.3) to find the maximal positive definite solutions of
Eq. (1.2) as the following:

Take X0 = Y0 = I,

Yn+1 = Yn(2I − XnYn),

Xn+1 = I − A�Yn+1A, n = 0, 1, 2, . . . . (1.4)

He were gave more deep discussion of the convergence of the inversion free variant of the basic fixed
point iteration method for Eq. (1.2) than the algorithm in[12].

The our goal of this paper is to discuss the matrix equation (1.2) with a new inversion free variant of
the basic fixed point iteration method.

Take X0 = Y0 = I,

Yn+1 = (I − Xn)Yn + I,

Xn+1 = I − A�Yn+1A, n = 0, 1, 2, . . . . (1.5)

The suggested algorithm also avoid matrix inversion. Furthermore the algorithm requires only three
matrix multiplications per step, whereas Zhan’s algorithm (1.3) and Guo et al. algorithm (1.4) requires
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four matrix multiplications per step. We use the algorithm to obtain numerically the maximal solution of
Eq. (1.2) under some additional conditions. We obtain the rate of convergence for the sequence generated
by our suggested algorithm. Some numerical examples are given to show the behavior of the considered
algorithm.

The paper is organized as follows. In Section 2, under some conditions on matrixA we obtain the rate
of convergence of the iterative sequence of approximate solutions. Section 3 illustrates the performance
of the method with some numerical examples. Conclusion drawn from the results obtained in this paper
are in Section 4.

The following notations are used throughout the rest of the paper. The notationA�0 (A > 0) means
thatA is positive semidefinite (positive definite),A� denotes the complex conjugate transpose ofA, andI

is the identity matrix. Moreover,A�B (A > B) is used as a different notation forA−B�0 (A−B > 0).
We denote by� the largest eigenvalue ofA�A. The norm used in this paper is the spectral norm of the
matrixA, i.e.,‖A‖ =√

�(AA�) unless otherwise noted.

2. Conditions for existence of the solutions

In this section, we introduce an inversion free variant of the basic fixed point iteration method to avoid
the computation of the matrix’s inverse for every iteration. We will discuss some properties of Eq. (1.2)
and obtain the conditions for existence of the solutions of Eq. (1.2).

We will prove that the sequence{Xn} is monotone decreasing and converges to the maximal solution
X+.

Theorem 2.1. If Eq. (1.2) has a positive definite solution and the two sequences{Xn} and {Yn} are
determined by the Algorithm(1.5), then {Xn} is monotone decreasing and converges to the maximal
solutionX+ . If matrix A is nonsingular andXn > 0 for every n, then(1.2)has a positive definite solution.

Proof. First, we will prove thatI =X0�X1�X2� · · · �Xn�X+ andI =Y0�Y1�Y2� · · · �Yn�X−1+ .
SinceX+ is solution of (1.2), i.e.,

X+ = I − A�X−1+ A,

thenX0 = I �X+. Also

X1 = I − A�A�I − A�X−1+ A = X+,

i.e.,X0�X1�X+. For

X2 = I − A�Y2A = I − A�A − A�2A2 = X1 − A�2A2,

this implies toX2�X1, i.e.,X0�X1�X2.
For the sequence{Yn} we haveY0 = Y1 = I and sinceX−1+ �I , thenY0 = Y1�X−1+

Y0 = Y1 = I �Y2 = (I − X1)Y1 + I = A�A + I,

i.e.,Y0 = Y1�Y2.
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We also have

Y2 = (I − X1)Y1 + I �(I − X+)X−1+ + I = X−1+ ,

i.e.,Y1�Y2�X−1+ . Concerning{X2}, we get

X2 = I − A�Y2A�I − A�X−1+ A = X+,

i.e.,X0�X1�X2�X+.
That means that the inequalities are true forn = 0, 1, 2. So, assume that the above inequalities are true

for n = k, i.e.,

I = X0�X1�X2� · · · �Xk �X+
and

I = Y0�Y1�Y2� · · · �Yk �X−1+ .

Now we will prove inequalities atn = k + 1, then

Yk+1 = (I − Xk)Yk + I �(I − Xk−1)Yk−1 + I = Yk.

We also have

Yk+1 = (I − Xk)Yk + I �(I − X+)X−1+ + I = X−1+ ,

i.e.,Yk �Yk+1�X−1+ . Concerning the sequence{Xn}, we have

Xk − Xk+1 = A�(Yk+1 − Yk)A,

sinceYk+1�Yk, henceXk �Xk+1. Therefore,

Xk+1 = I − A�Yk+1A�I − A�X−1+ A = X+,

i.e.,Xk �Xk+1�X+.
This completes the induction forn = k + 1. Therefore,I = X0�X1�X2� · · · �Xn�X+ andI =

Y0�Y1�Y2� · · · �Yn�X−1+ are true for alln, and limn→∞ Xn and limn→∞ Yn exist. Taking limit in
the Algorithm (1.5) leads toY = X−1 andX = I − A�X−1A. Moreover, as eachXn�X+ thenX = X+.

If matrix A is nonsingular andXn > 0 for everyn. Hence the above proof of the monotonicity of{Yn}
remains valid (monotone increasing). It follows that sequence{Xn} is monotone decreasing and bounded
from below by the zero matrix. So, limn→∞ Xn = X exists. SinceA is nonsingularYn+1 = A−�(I −
Xn+1)A

−1. Thus limn→∞ Yn = Y exist. AsY0 = I and{Yn} is monotone increasing,Y �I . Taking limit
in the Algorithm (1.5) implies

Y = (I − X)Y + I,

X = I − A�YA. (2.1)

SinceY �I, X = Y−1 > 0, and henceX = I − A�X−1A. So Eq. (1.2) has a positive definite solution.
�

Lemma 2.1. Assume that Eq.(1.2)has a positive definite solution and‖A‖ < 1
2, then the sequence{Yn}

satisfies‖YnA‖ < 1 for everyn = 0, 1, . . . .
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Proof. SinceY0 = Y1 = I , it is clear that‖Y0A‖ = ‖Y1A‖ < 1
2 < 1. ForY2 we haveY2 = (I − X1)Y1 +

I = A�A + I , thus‖Y2A‖ = ‖A�A2 + A‖�‖A�A2‖ + ‖A‖ < 5
8 < 1. That is means that the inequality

holds forn = 0, 1, 2. So, assume that the inequality satisfiesn = k, i.e.,‖YkA‖ < 1. Now we will prove
inequality whenn = k + 1.

Yk+1A = [(I − Xk)Yk + I ]A
= [(I − (I − A�YkA))Yk + I ]A
= A�YkAY kA + A. (2.2)

Then we get

‖Yk+1A‖�‖A�YkAY kA‖ + ‖A‖
�‖A�‖‖YkA‖2 + ‖A‖
�‖A�‖ + ‖A‖ < 1. (2.3)

This completes the induction forn = k + 1 and the lemma. �

We now establish the following result to obtain the rate of convergence for the Algorithm (1.5).

Theorem 2.2. If Eq. (1.2)has a positive definite solution and‖A‖ < 1
2, then the sequence{Xn} satisfies

‖Yn+1 − X−1+ ‖�‖AX−1+ ‖‖Yn − X−1+ ‖, (2.4)

and

‖Xn+1 − X+‖�‖A‖2‖Yn − X−1+ ‖, (2.5)

for all n large enough. If the matrix A is nonsingular, we also have

‖Xn+1 − X+‖�‖X−1+ A‖‖Xn − X+‖. (2.6)

Proof.

Yn+1 = (I − Xn)Yn + I

= A�YnAYn + I

= A�(Yn + X−1+ − X−1+ )AYn + I

= A�(Yn − X−1+ )AYn + A�X−1+ AYn + Yn − Yn + I

= A�(Yn − X−1+ )AYn − (I − A�X−1+ A)Yn + Yn + I

= A�(Yn − X−1+ )AYn − X+Yn + Yn + I. (2.7)

Then we get

X−1+ − Yn+1 = X−1+ + A�(X−1+ − Yn)AYn + X+Yn − Yn − I

= (I − X+)(X−1+ − Yn) + A�(Yn − X−1+ )AYn

= A�X−1+ A(X−1+ − Yn) + A�(Yn − X−1+ )AYn, (2.8)
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i.e., we have

‖X−1+ − Yn+1‖�‖A�X−1+ A‖‖X−1+ − Yn‖ + ‖A�‖‖AYn‖‖X−1+ − Yn‖
�(‖X−1+ A‖ + ‖AYn‖)‖A�‖‖X−1+ − Yn‖. (2.9)

Since lim→∞ Yn = X−1+ , then

‖Yn+1 − X−1+ ‖�2‖A�‖‖AX−1+ ‖‖Yn − X−1+ ‖
�‖AX−1+ ‖‖Yn − X−1+ ‖. (2.10)

Then the inequality (2.4) is true. The second inequality (2.5) holds directly from the following equality.

Xn+1 − X+ = A�(X−1+ − Yn+1)A.

To prove the last inequality (2.6), we have from Eq. (2.8) the following:

X−1+ − Yn+1 = A�X−1+ A(X−1+ − Yn) + A�(Yk − X−1+ )AYn

= A�X−1+ AA−�(A�X−1+ A − A�YnA)A−1 + (A�YkA − A�X−1+ A)Yn

= A�X−1+ AA−�(Xn − X+)A−1 + (Xn − X+)Yn. (2.11)

Therefore,

Xn+1 − X+ = A�(X−1+ − Yn+1)A

= (A�)2X−1+ AA−�(Xn − X+) + A�(Xn − X+)YnA. (2.12)

Taking norm for the above equation, we get

‖Xn+1 − X+‖�‖A�‖2‖X−1+ A‖‖A−�‖‖Xn − X+‖ + ‖A�‖‖YnA‖‖Xn − X+‖
�(‖X−1+ A‖ + ‖YnA‖)‖A�‖‖Xn − X+‖. (2.13)

Since lim→∞ Yn = X−1+ , then

‖Xn+1 − X+‖�2‖A�‖‖X−1+ A‖‖Xn − X+‖
�‖X−1+ A‖‖Xn − X−1+ ‖. (2.14)

Then the inequality (2.6) is fulfilled. �

We note that from the Algorithm (1.5)I − XnYn = Yn+1 − Yn → 0, asn → ∞. Then one stopping
criterion may be‖I − XnYn‖ < �, for small� > 0. The effect of the stopping criterion can be seen from
the following Theorem.

Theorem 2.3. If the Eq.(1.2)has a solution and after n iterative steps of the Algorithm(1.5),we have
‖I − XnYn‖ < �, thus

‖Xn + A�X−1
n A − I‖��‖A‖2‖X−1+ ‖.
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Proof. Since,

Xn + A�X−1
n A − I = Xn − Xn+1 + A�(X−1

n − Yn+1)A

= A�(Yn+1 − Yn)A + A�(X−1
n − Yn+1)A

= A�(Yn+1 − X−1
n + X−1

n − Yn)A + A�(X−1
n − Yn+1)A

= A�X−1
n (I − XnYn)A. (2.15)

Take norm in both sides,

‖Xn + A�X−1
n A − I‖�‖A‖2‖X−1+ ‖‖I − XnYn‖

��‖A‖2‖X−1+ ‖. (2.16)

3. Numerical experiments

In this section the numerical experiments are given to display the flexibility of the new inversion
free variant of the basic fixed point iteration methods. The maximal solution are computed for some
different matricesA with different orders. We will compare the suggestedAlgorithm (1.5) withAlgorithm
(1.3) and Algorithm (1.4). The numerical experiments were carried out on an IBM-PC Pentium IV
2000 MHz computer. Double precision is used in the following calculations. The machine precision
approximately 1.11022 · 10−16. For the following examples, we use the practical stopping criterion
‖X + AT X−1A − I‖ < 10−16.

Example 3.1. Consider Eq. (1.2) with normal matrix

A = 1

32




0.2 −0.1 −0.5 0.1
−0.1 0.6 −0.5 0.7
−0.5 −0.5 0.1 0.8
0.1 0.7 0.8 0.5


 .

For this matrix the spectral norm is‖A‖=0.0412375. The exact maximal solution can be found according
to the formula

X+ = 1
2 [I + (I − 4A�A)1/2],

which is valid for any normal matrixA with ‖A‖� 1
2 (see[13]). Therefore the exact maximal solution is

X+ =



0.999697 −0.234558· 10−3 0.195301· 10−4 0.391194· 10−3

−0.234558· 10−3 0.998915 −0.254492· 10−3 −0.352352· 10−3

0.195301· 10−4 −0.254492· 10−3 0.998876 −0.784171· 10−4

0.391194· 10−3 −0.352352· 10−3 −0.784171· 10−4 0.99864


 .

Algorithm (1.3) needs 9 iterations to find the above maximal solution, Algorithm (1.4) needs 5 iterations
and the suggested algorithm needs 5 iterations as Algorithm (1.4) but the number of operations is less
than Algorithm (1.4).
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Example 3.2.We consider Eq. (1.2) with nonnormal matrix

A = 1

100

(0.2 −0.1 0.4
0.7 0.6 −0.5
0.4 0.8 0.6

)
.

For this matrix the spectral norm is‖A‖ = 0.00796591. We will obtain the maximal solutionX+ (with
first fifteen digits) by any iterative algorithm. Therefore the maximal solution is

X+ =
( 0.999931 −0.72008· 10−4 0.299962· 10−5

−0.72008· 10−4 0.999899 −0.140023· 10−4

0.299962· 10−5 −0.140023· 10−4 0.999923

)
.

Algorithm (1.3) needs 5 iterations to find the maximal solution, Algorithm (1.4) needs 3 iterations and
the suggested algorithm needs 3 iterations as Algorithm (1.4) but the number of operations is less than
Algorithm (1.4).

4. Conclusions and remarks

In this paper we considered the nonlinear matrix equations than (1.2). We suggested a new inversion
free variant of the basic fixed point iteration method. We achieved the conditions for the existence of
a positive definite solution. We discussed an iterative algorithm from which a solution can always be
calculated numerically whenever the equation is solvable. Moreover, two numerical examples are given
to show the algorithm suggested is more accurate than Algorithm (1.3). We observe that our suggested
algorithm also avoid matrix inversion and involves only matrix–matrix multiplication. Furthermore the
algorithm requires only three matrix multiplications per step, whereas Algorithm (1.3) and Algorithm
(1.4) requires four matrix multiplications per step.
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