Note
A Theorem on Permutations

RIMHAK Ree

Department of Mathematics, University of British Columbia, Vancouver, Canada
Communicated by N. S. Mendelsohn
Received April 23, 1970

Out of the classical theory of Riemann surfaces, we extract the following combinatorial theorem: If \(\pi_1, \ldots, \pi_m \) are permutations of \(1, 2, \ldots, n \), such that \(\pi_1 \cdots \pi_m = 1 \), then \(v(\pi_1) + \cdots + v(\pi_m) \geq 2(n - t) \), where \(v(\pi) = n - r \), \(r \) being the number of orbits of the cyclic group generated by the permutation \(\pi \) acting on the set \(\{1, \ldots, n\} \), and where \(t \) is the number of orbits of the group generated by \(\pi_1, \ldots, \pi_m \).

The direct proof of this theorem seems to be difficult.

Let \(\Omega \) be the finite set of \(n \) letters \(1, 2, \ldots, n \). Any permutation \(\pi \) of \(\Omega \) can be written as a product of some disjoint cycles. If \(l_1, \ldots, l_r \) denote the length of these cycles, then \(l_1 + \cdots + l_r = n \). Define \(v(\pi) \) by

\[
v(\pi) = (l_1 - 1) + \cdots + (l_r - 1) = n - r.
\]

Thus \(v(\pi) = 1 \) if \(\pi \) is a transposition, and \(v(\pi) = n - 1 \) if \(\pi \) is a cycle of length \(n \).

Theorem. If \(\pi_1, \ldots, \pi_m \) are permutations of \(\Omega \) such that \(\pi_1 \cdots \pi_m = 1 \), the identity permutation, then

\[
v(\pi_1) + \cdots + v(\pi_m) \geq 2(n - t),
\]

where \(t \) is the number of transitivity components of \(\Omega \) under the group generated by \(\pi_1, \ldots, \pi_m \).

Corollary 1. If the permutations \(\pi_1, \ldots, \pi_m \) of \(\Omega \) generate a transitive permutation group of \(\Omega \), then

\[
v(\pi_1) + \cdots + v(\pi_m) \geq n - 1.
\]
Corollary 2. If the permutations π_1, \ldots, π_m generate a transitive permutation group of Ω and

$$v(\pi_1) + \cdots + v(\pi_m) = n - 1,$$

then $\pi_1 \cdots \pi_m$ is a cycle of length n. (Notice that the ordering of π_1, \ldots, π_m is arbitrary.)

The proof of the above theorem we give below is indirect, though essentially combinatorial. I have been unable to give a direct proof to the theorem, or even to Corollary 2 when all the π_i are cycles of length 3.

Proof of Theorem. It can be seen easily that the special case $t = 1$ implies the general cases. Hence we shall assume that $t = 1$, i.e., that the group generated by π_1, \ldots, π_m is transitive on Ω.

Take $m + 1$ distinct points $z_1, z_2, \ldots, z_m, z^*$ on the Riemann sphere, assign the permutations π_1, \ldots, π_m to z_1, z_2, \ldots, z_m, respectively, and construct a n-sheeted branched covering surface R of the Riemann sphere as in [1, pp. 104-105]. Then the transitivity of the group generated by π_1, \ldots, π_m implies that R is a connected oriented closed surface. Now compute the genus g of R by Hurwitz' method [1, p. 125]. Then

$$v(\pi_1) + \cdots + v(\pi_m) - (2n - 2) = 2g \geq 0.$$

Remark. The above proof shows that $v(\pi_1) + \cdots + v(\pi_m)$ is even. This fact, however, follows directly from the fact that $v(\pi)$ is even if and only if n is even.

Reference