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Let W be a self-orthogonal class of left R-modules. We introduce
and study W -Gorenstein modules as a common generalization
of some known modules such as Gorenstein projective (injective)
modules (Enochs and Jenda, 1995 [7]) and V -Gorenstein projective
(injective) modules (Enochs et al., 2005 [12]). Special attention is
paid to W P -Gorenstein and W I -Gorenstein modules, where W P =
{C ⊗R P | P is a projective left R-module} and W I = {HomS (C, E) |
E is an injective left S-module} with S C R a faithfully semidualizing
bimodule.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

Auslander and Bridger [2] introduced the G-dimension for finitely generated modules. Enochs and
Jenda [7] defined Gorenstein projective modules whether the modules are finitely generated or not.
Also, they defined the Gorenstein projective dimension for arbitrary (non-finitely generated) modules.
It is well known that for finitely generated modules over a commutative Noetherian ring, the Goren-
stein projective dimension agrees with the G-dimension. Along the same lines, Gorenstein injective
modules were introduced in [7]. Since then, various generalizations of these modules are given over
specific rings (see, e.g., [9,10,12,22]).

In Section 2 of this paper, we define and study W -Gorenstein modules for a self-orthogonal class
W of left R-modules. A left R-module M is said to be W -Gorenstein if there exists an exact sequence
W• = · · · → W1 → W0 → W 0 → W 1 → ·· · of modules in W such that M = ker(W 0 → W 1) and
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W• is both HomR(W ,−) and HomR(−, W ) exact. For different choices of W , the class G w of W -
Gorenstein modules encompasses all of the aforementioned modules, and some results existing in
the literature for the modules above can be obtained as particular instances of the results on W -
Gorenstein modules.

Section 3 is devoted to investigating W P -Gorenstein and W I -Gorenstein modules for a faithfully
semidualizing bimodule S C R over associative rings R and S , where W P = {C ⊗R P | P is a projective
left R-module} and W I = {HomS(C, E) | E is an injective left S-module}, and we simply call them C-
Gorenstein projective and C-Gorenstein injective modules respectively. We prove that W P = Add S C
and W I = Prod C+ , where C+ = HomS(C, Q ) with S Q an injective cogenerator. We also prove that the
subcategories of C-Gorenstein injective left R-modules (Gorenstein projective left R-modules in the
Auslander class AC (R)) and Gorenstein injective left S-modules in the Bass class BC (S) (C-Gorenstein
projective left S-modules) are equivalent under Foxby equivalence. For a commutative Noetherian
ring R and a semidualizing R-module C , it is shown that a finitely generated R-module M is add C-
Gorenstein if and only if it is Add C-Gorenstein. This result generalizes [5, Theorem 4.2.6].

Next we shall recall some notions and definitions which we need in the later sections.
Let C be a class of left R-modules. We define

⊥C =
∞⋂

i=1

⊥i C, where ⊥i C = {
X

∣∣ Exti(X, C) = 0 for all C ∈ C
}
, i � 1,

C⊥ =
∞⋂

i=1

C⊥i , where C⊥i = {
X

∣∣ Exti(C, X) = 0 for all C ∈ C
}
, i � 1.

A C resolution of a left R-module M is an exact sequence C• = · · · → C1 → C0 → M → 0 with
Ci ∈ C for all i � 0; moreover, if the sequence Hom(C, C•) is exact for every C ∈ C , then we say that C•
is proper. The C resolution dimension resdimC (M) of M is the minimal nonnegative integer n such that
M has a C resolution of length n. Dually we have the definitions of a (coproper) C coresolution and
the C coresolution dimension coresdimC (M) of M . We say that resdimC (M) < ∞ (coresdimC (M) < ∞)
if resdimC (M) = n (coresdimC (M) = n) for some nonnegative integer n.

Let R and S be rings. Following [16], an (S, R)-bimodule C = S C R is semidualizing if:

(1) S C admits a degreewise finite S-projective resolution.
(2) C R admits a degreewise finite R-projective resolution.

(3) The homothety map S S S
Sγ→ HomR(C, C) is an isomorphism.

(4) The homothety map R R R
γR→ HomS(C, C) is an isomorphism.

(5) Ext�1
S (C, C) = 0.

(6) Ext�1
R (C, C) = 0.

A semidualizing bimodule C = S C R is faithfully semidualizing if it satisfies the following conditions
for all modules S N and MR .

(1) If HomS(C, N) = 0, then N = 0.
(2) If HomR(C, M) = 0, then M = 0.

Let C = S C R be a semidualizing bimodule. The Auslander class AC (R) with respect to C consists of
all left R-modules M satisfying

(1) TorR
�1(C, M) = 0 = Ext�1

S (C, C ⊗R M) = 0, and
(2) the natural evaluation homomorphism μM : M → HomS (C, C ⊗R M) is an isomorphism.

The Bass class BC (S) with respect to C consists of all left S-modules N satisfying
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(1) Ext�1
S (C, N) = 0 = TorR

�1(C,HomS(C, N)) = 0, and
(2) the natural evaluation homomorphism νN : C ⊗R HomS(C, N) → N is an isomorphism.

The class AC (R) contains the flat left R-modules and the class BC (S) contains the injective left
S-modules [16, Lemma 4.1].

Throughout this paper, all rings are associative with identities and all modules are unitary.
R M (MR ) denotes a left (right) R-module. M I (M(I)) is the direct product (sum) of copies of a mod-
ule M indexed by a set I . As usual, pd(M) (id(M)) denotes the projective (injective) dimension of an
R-module M , and AddR M (addR M) stands for the category consisting of all modules isomorphic to
direct summands of (finite) direct sums of copies of M and ProdR M the category consisting of all
modules isomorphic to direct summands of direct products of copies of M .

2. W-Gorenstein modules

We start with the following

Definition 2.1. Let W be a class of left R-modules. W is called self-orthogonal if it satisfies the
following condition:

Exti(W , W ′) = 0 for all W , W ′ ∈ W and all i � 1.

In what follows, W always denotes a self-orthogonal class of left R-modules which is closed under
finite direct sums and direct summands.

Definition 2.2. A left R-module M is said to be W -Gorenstein if there exists an exact sequence

W• = · · · → W1 → W0 → W 0 → W 1 → ·· ·

of modules in W such that M = ker(W 0 → W 1) and W• is HomR(W ,−) and HomR(−, W ) exact.

In the following, we denote by G w the class of W -Gorenstein left R-modules.

Remark 2.3. (1) It is clear that each module in W is W -Gorenstein. If W• = · · · → W1 → W0 →
W 0 → W 1 → ·· · is a HomR(W ,−) and HomR(−, W ) exact exact sequence of modules in W , then
by symmetry, all the images, the kernels and the cokernels of W• are W -Gorenstein.

(2) If R is commutative and Noetherian and W = addR R , then W -Gorenstein modules are ex-
actly modules with G-dimension zero [2] which coincide with finitely generated Gorenstein projective
modules. If W = AddR R (ProdR E with E an injective cogenerator), then W -Gorenstein modules are
exactly Gorenstein projective (injective) modules [7].

(3) If W = add(S C) for a semidualizing bimodule S C R , then W -Gorenstein modules are just ω-
Gorenstein modules (ω = C ) [22] by noting that faithfully balanced self-orthogonal modules in [22]
are precisely semidualizing modules in [16].

(4) Let S C R be a semidualizing bimodule, and let W P = {C ⊗R P | P is a projective left R-module}
and W I = {HomS (C, E) | E is an injective left S-module}. Then W P and W I are self-orthogonal and
closed under finite direct sums and direct summands by Corollary 3.2 and Theorem 3.1 below. If R
and S are right and left Noetherian rings respectively and S C R is a dualizing bimodule, then W P -
Gorenstein (W I -Gorenstein) modules are just V -Gorenstein projectives (injectives) (V = C ) [12,13];
if R = S is a local Cohen–Macaulay ring admitting a dualizing module C , then W P -Gorenstein (W I -
Gorenstein) modules coincide with Ω-Gorenstein projective (injective) modules (Ω = C ) [10,11].

(5) We note that the class G w of W -Gorenstein left R-modules is just the class G(W ) in [19]
when the abelian category A is taken to be the category of left R-modules. So G w = G(G w) by [19,
Corollary 4.10].
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The following proposition is immediate by definition.

Proposition 2.4. A left R-module M is W -Gorenstein if and only if M ∈ ⊥W ∩ W ⊥ and M has a proper W
resolution and a coproper W coresolution.

Remark 2.5. If M is a left R-module with resdimW M < ∞, then M ∈ G⊥
w . In fact, let resdimW M =

n < ∞, then there is an exact sequence 0 → Wn → ·· · → W1 → W0 → M → 0 with W i ∈ W for
0 � i � n. So Ext j

R(G, M) ∼= Ext j+n
R (G, Wn) = 0 for all j � 1 and all G ∈ G w by Proposition 2.4. Du-

ally, if M is a left R-module with coresdimW M < ∞, then M ∈ ⊥G w . Similarly, if resdimG w N < ∞
(coresdimG w N < ∞), then N ∈ W ⊥ (N ∈ ⊥W ).

Corollary 2.6. Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of left R-modules with M ∈ G w .

(1) If M ′ ∈ G w and M ′′ ∈ ⊥1 W , then M ′′ ∈ G w .
(2) If M ′′ ∈ G w and M ′ ∈ W ⊥1 , then M ′ ∈ G w .

Proof. (1) Since M ′ ∈ G w , there is an exact sequence 0 → M ′ → W 0 → L → 0 with W 0 ∈ W and
L ∈ G w . Consider the following pushout diagram

0 0

0 M ′ M M ′′ 0

0 W 0 D M ′′ 0

L L

0 0.

From the middle column, we get that D is W -Gorenstein by Remark 2.3(5) and [19, Corollary 4.5].
Note that the middle row splits since Ext1

R(M ′′, W 0) = 0 by hypothesis. So M ′′ is W -Gorenstein by
Remark 2.3(5) and [19, Corollary 4.11].

(2) The proof is dual to that of (1). �
Recall that a class of modules is called resolving (coresolving) if it is closed under extensions and

kernels of surjections (cokernels of injections), and it contains all projective (injective) modules. By
Corollary 2.6, we get that the class of Gorenstein projective (injective) modules is resolving (coresolv-
ing).

Proposition 2.7. Let W• = · · · → W1 → W0 → W 0 → W 1 → ·· · be an exact sequence of modules in W
such that M = ker(W 0 → W 1) is W -Gorenstein. Then W• is HomR(W ,−) and HomR(−, W ) exact if and
only if every kernel and cokernel is W -Gorenstein.

Proof. Let Ki = coker(W i+1 → W i) and Li = ker(W i → W i+1) for i � 1. Then the left half · · · →
W1 → W0 → M → 0 is HomR(−, W ) exact since M ∈ W ⊥ by Proposition 2.4, and it is HomR(W ,−)

exact if and only if Ext1
R(W , Ki) = 0 for all i � 1 if and only if each Ki is W -Gorenstein by Corol-

lary 2.6. Similarly, the right half 0 → M → W 0 → W 1 → ·· · is HomR(W ,−) and HomR(−, W ) exact
if and only if each Li is W -Gorenstein for i � 1. This completes the proof. �
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Proposition 2.8. Let G be a W -Gorenstein left R-module.

(1) If pd(G) < ∞ or id(G) < ∞, then G ∈ W .
(2) If resdimW G < ∞ or coresdimW G < ∞, then G ∈ W .

Proof. (1) Since G is W -Gorenstein, there exists an exact sequence · · · → W1 → W0 → W 0 →
W 1 → ·· · in W such that G = ker(W 0 → W 1). Suppose that pd(G) = n < ∞ or id(G) = n < ∞. Let
Ki = coker(W i+1 → W i) and Li = ker(W i → W i+1) for i � 1, then Ext1

R(G, K1) ∼= Extn+1
R (G, Kn+1) = 0

or Ext1
R(L1, G) ∼= Extn+1

R (Ln+1, G) = 0 since G ∈ ⊥W ∩ W ⊥ by Proposition 2.4. It follows that the se-
quence 0 → K1 → W0 → G → 0 or 0 → G → W 0 → L1 → 0 splits. So G ∈ W .

(2) If resdimW G < ∞, then there is an exact sequence 0 → K → W → G → 0 with W ∈ W and
resdimW K < ∞. So this sequence splits by Remark 2.5, as desired.

A dual argument gives the result for coresdimW G < ∞. �
Corollary 2.9. Every Gorenstein projective (injective) R-module with finite projective dimension or finite in-
jective dimension is projective (injective).

Proposition 2.10. Let M be a left R-module. Then M has a W resolution if and only if M has a G w resolution.

Proof. It is enough to show the “if” part. Let 0 → N → G0 → M → 0 be an exact sequence with
G0 ∈ G w and N having a G w resolution. Then we have the following pullback diagram

0 0

G ′ G ′

0 H W0 M 0

0 N G0 M 0

0 0

with W0 ∈ W and G ′ ∈ G w . Consider the following pullback diagram

0 0

K K

0 G ′ L G1 0

0 G ′ H N 0

0 0,
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where K has a G w resolution and G1 ∈ G w . So L ∈ G w by Remark 2.3(5) and [19, Corollary 4.5], and
then H has a G w resolution. Note that 0 → H → W0 → M → 0 is exact. By repeating the preceding
process, we have that M has a W resolution. �
Remark 2.11. Let M be a left R-module with resdimG w M = n � 1, and let 0 → N → G0 → M → 0 be
an exact sequence with G0 ∈ G w and resdimG w N = n − 1. By the proof of the proposition above, we
have an exact sequence 0 → H → W0 → M → 0 such that W0 ∈ W and resdimG w H = resdimG w N .

Proposition 2.12. Let M be a left R-module with a finite G w resolution and n a nonnegative integer. Then the
following are equivalent:

(1) resdimG w M � n.
(2) There is an exact sequence 0 → G → Wn−1 → ·· · → W1 → W0 → M → 0 with W i ∈ W for 0 � i �

n − 1 and G ∈ G w .
(3) M has a proper G w -resolution of length n.
(4) There is an exact sequence 0 → Wn → Wn−1 → ·· · → W1 → G → M → 0 with W i ∈ W for 1 � i � n

and G ∈ G w .
(5) There is an exact sequence 0 → Wn → ·· · → W i+1 → G → W i−1 · · · → W0 → M → 0 with W j ∈ W

for 1 � j � n, j �= i, 0 � i � n and G ∈ G w .

(6) Extn+ j
R (M, W ) = 0 for all j � 1 and all W ∈ W .

(7) Extn+ j
R (M, N) = 0 for all j � 1 and all left R-modules N with finite W resolutions.

(8) Extn+1
R (M, N) = 0 for all left R-modules N with finite W resolutions.

Furthermore, we have that

resdimG w M = sup
{
n ∈ N

∣∣ Extn
R(M, W ) �= 0 for some W ∈ W

}

= sup
{
n ∈ N

∣∣ Extn
R(M, N) �= 0 for some N with resdimW N < ∞}

.

Proof. We first prove the equivalences of (1) through (5). The case n = 0 is trivial. We may assume
n � 1.

(1) ⇒ (2): By (1), there exists an exact sequence 0 → N → G0 → M → 0 with G0 ∈ G w and
resdimG w N � n − 1. By Remark 2.11, we have an exact sequence 0 → H → W0 → M → 0 such that
resdimG w H = resdimG w N . By repeating this process, we have an exact sequence 0 → Gn → Wn−1 →
·· · → W1 → W0 → M → 0 with W i ∈ W for all 0 � i � n − 1 and Gn ∈ G w .

(2) ⇒ (3): Suppose M satisfies (2). Since G is W -Gorenstein by (2), there is a HomR(−, W ) exact
exact sequence 0 → G → W 0 → ·· · → W n−1 → G ′ → 0 with each W i ∈ W and G ′ ∈ G w . So the
diagram

0 G W 0 · · · W n−1 G ′ 0

0 G Wn−1 · · · W0 M 0

can be completed to a commutative diagram. Then we have a mapping cone 0 → G → G ⊕ W 0 →
Wn−1 ⊕ W 1 → ·· · → W1 ⊕ W n−1 → W0 ⊕ G ′ → M → 0 which gives an exact sequence W• = 0 →
W 0 → Wn−1 ⊕ W 1 → ·· · → W1 ⊕ W n−1 → W0 ⊕ G ′ → M → 0. Note that each cokernel of W• except
M has a finite W -resolution. So W• is HomR(G w ,−) exact by Remark 2.5. It follows that W• is just
a proper G w resolution of M of length n.

(2) ⇒ (4): Note that W• in the proof of (2) ⇒ (3) is just the desired exact sequence.
(3) ⇒ (1), (4) ⇒ (1) and (5) ⇒ (1) are obvious.
(1) ⇒ (5) is immediate by Remark 2.11 and the equivalence of (1) and (4).
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Next we show the equivalences of (1), (6), (7) and (8).
(1) ⇒ (6): By assumption, there exists an exact sequence 0 → Gn → ·· · → G1 → G0 → M → 0

with Gi ∈ G w for 0 � i � n. So Extn+ j
R (M, W ) ∼= Ext j

R(Gn, W ) = 0 for all j � 1 and all W ∈ W by
Proposition 2.4.

(6) ⇒ (7) follows from the usual dimension shifting argument.
(7) ⇒ (8) is clear.
(8) ⇒ (1): By hypothesis, let resdimG w M = s < ∞. If s � n, there is nothing to prove. So we assume

s > n. Then there is an exact sequence 0 → W s → ·· · → W1 → G → M → 0 with W i ∈ W for 1 �
i � s and G ∈ G w by the equivalence of (1) and (4). Let Ki = coker(W i+1 → W i) for 1 � i � s − 1.

If n = 0, then Extn+1
R (M, K1) = 0 by (8) since resdimW K1 < ∞. Thus the exact sequence 0 → K1 →

G → M → 0 is split, and so M ∈ G w , as desired.
Let n � 1. Since resdimW Kn+1 < ∞, we have that Ext1

R(Kn, Kn+1) ∼= Extn+1
R (M, Kn+1) = 0 by Re-

mark 2.5 and (8). So the exact sequence 0 → Kn+1 → Wn → Kn → 0 splits. Thus Kn ∈ W , and so (1)
follows.

The last claim is an immediate consequence of the equivalences of (1), (6) and (7). �
Remark 2.13. By an argument similar to the proof of the equivalence of (1) and (6) in Proposition 2.12,
we have that if resdimW M < ∞ then

resdimW M = sup
{
n ∈ N

∣∣ Extn
R(M, W ) �= 0 for some W ∈ W

}
.

So let M be a left R-module, if resdimW M < ∞, then resdimG w M = resdimW M .

Remark 2.14. We note that all the foregoing results on resolutions and resolution dimensions (from
Proposition 2.10 to Remark 2.13) have the dual versions on coresolutions and coresolution dimensions.

Let C be a class of R-modules and M an R-module. Following [6], we say that a homomor-
phism φ : X → M is a C -precover of M if X ∈ C and the abelian group homomorphism Hom(X ′, φ) :
Hom(X ′, X) → Hom(X ′, M) is surjective for every X ′ ∈ C .

Let C = S C R be a semidualizing bimodule over associative rings R and S , and let (−)∗ =
HomR(−, C) (or HomS(−, C)). A finitely generated right R-module M is said to have generalized Goren-
stein dimension zero (with respect to S C R ) [3] if the following conditions are satisfied: (1) M ∼= M∗∗;
(2) Exti

R(M, C) = 0 = Exti
S (M∗, C) for all i � 1.

We conclude this section with the following theorem.

Theorem 2.15. Let R be a commutative Noetherian ring and C a semidualizing R-module, and let W = add C.
Then the following are equivalent for a finitely generated R-module M:

(1) M ∈ G w .
(2) M has generalized Gorenstein dimension zero with respect to C and M ∈ BC (R).
(3) There exists an exact sequence W• = · · · → Cl1 → Cl0 → Cn0 → Cn1 → ·· · such that M = ker(Cn0 →

Cn1 ) and W• is HomR(C,−) and HomR(−, C) exact, where li and n j are positive integers for all i, j � 0.

Proof. (1) ⇒ (2) is immediate by Proposition 2.4, Remark 2.3(3) and [22, Proposition 2.2].
(3) ⇒ (1) is clear.
(2) ⇒ (3): Since M has generalized Gorenstein dimension zero with respect to C by (2), there

exists an exact sequence

0 → M → Cn0 → Cn1 → ·· · (�)

which is HomR(−, C) exact by [17, Theorem 1] and HomR(C,−) exact since Exti
R(C, M) = 0 for all

i � 1, where n j ( j � 0) are positive integers.
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Next, we prove that there exists an exact sequence

· · · → Cl1 → Cl0 → M → 0 (��)

which is HomR(C,−) exact, where l j ( j � 0) are positive integers.
Let f1, . . . , fl0 be a system of generators of the R-module HomR(C, M). Taking the direct

sum of f1, . . . , fl0 , we construct a homomorphism f : Cl0 → M . It is easily seen that f is
an add C-precover of M . Let K = ker f . Then we have the exact sequence 0 → HomR(C, K ) →
HomR(C, Cl0 ) → HomR(C, M) → 0. Since TorR

i (C,HomR(C, M)) = 0 for all i � 1 (for M ∈ BC (R)) and
TorR

i (C,HomR(C, Cl0 )) = 0 for all i � 1, TorR
i (C,HomR(C, K )) = 0 for all i � 1. Furthermore we have

the following commutative diagram with exact rows

0 C ⊗R HomR(C, K )

νK

C ⊗R HomR(C, Cl0)

∼=
C ⊗R HomR(C, N)

∼=
0

0 K Cl0
f

M.

Thus f is epic, and hence C ⊗R HomR(C, K ) ∼= K and Exti
R(C, K ) = 0 for i � 1. Therefore K is finitely

generated (for R is Noetherian) and K ∈ BC (R). Repeating the foregoing process, we have the desired
exact sequence.

Since Exti
R(M, C) = 0 for all i � 1, the sequence (��) is also HomR(−, C) exact. By pasting the

sequences (�) and (��) above we get the desired complex W• . �
Remark 2.16. We note that [5, Theorem 4.1.4] is a particular case of Theorem 2.15 where C = R .

3. WP -Gorenstein and WI -Gorenstein modules

Let C = S C R be a semidualizing bimodule, W P = {C ⊗R P | P is a projective left R-module} and
W I = {HomS (C, E) | E is an injective left S-module}. In this section, we shall particularly investi-
gate W P -Gorenstein and W I -Gorenstein modules which will be called C-Gorenstein projective and
C-Gorenstein injective modules respectively. Accordingly, the W P -Gorenstein (Gorenstein projective)
resolution dimension is called C-Gorenstein projective (Gorenstein projective) dimension and the W I -
Gorenstein (Gorenstein injective) coresolution dimension is called C-Gorenstein injective (Gorenstein
injective) dimension simply.

We start with the following descriptions of the classes W P and W I which may be of independent
interest.

Theorem 3.1. Let S C R be a semidualizing bimodule. Then:

(1) W P = Add S C .
(2) W I = Prod C+ , where C+ = HomS (C, Q ) with S Q an injective cogenerator.

Proof. (1) It is clear that W P ⊆ Add S C . Conversely, for any left S-module X , the evaluation homo-
morphism νX : C ⊗R HomS(C, X) → X is defined by νX (c ⊗ f ) = f (c) for c ∈ C and f ∈ HomS (C, X).
We claim that νC (K ) is an isomorphism for any index set K .

Since S C is finitely generated, there is an isomorphism HomS (C, C (K )) → HomS (C, C)(K ) defined
by f �→ (πk f ), where πk : C (K ) → C is the kth projection for k ∈ K . Thus we have an isomorphism

α1 : C ⊗R HomS
(
C, C (K )

) → C ⊗R HomS(C, C)(K )

given by c ⊗ f �→ c ⊗ (πk f ) for f ∈ HomS (C, C (K )).
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Note that C ⊗R − commutes with direct sums, so there is an isomorphism

α2 : C ⊗R HomS(C, C)(K ) → (
C ⊗R HomS(C, C)

)(K )

given by c ⊗ (gk) �→ (c ⊗ gk) for c ∈ C and (gk) ∈ HomS (C, C)(K ) .
Since S C R is semidualizing, the homothety map γR : R → HomS (C, C) is an isomorphism. Hence

there is an isomorphism

α3 : (C ⊗R HomS(C, C)
)(K ) → (C ⊗R R)(K )

defined by (ck ⊗ gk) �→ (ck ⊗ γ −1
R (gk)), where ck ∈ C and gk ∈ HomS (C, C) for k ∈ K .

Finally, the natural isomorphism C ⊗R R → C induces an isomorphism

α4 : (C ⊗R R)(K ) → C (K )

given by (ck ⊗ rk) �→ (ckrk), where ck ∈ C and rk ∈ R for k ∈ K .
Let c ∈ C and f ∈ HomS(C, C (K )). Then α2α1(c ⊗ f ) = α2(c ⊗ (πk f )) = (c ⊗ πk f ). By [1, Propo-

sition 4.10], the homothety map γR : R → HomS (C, C) is defined by γR(r)(c) = cr for r ∈ R and
c ∈ C . Let rk = γ −1

R (πk f ), then πk f = γR(rk), and so πk f (c) = γR(rk)(c) = crk for c ∈ C and k ∈ K .
Thus α4α3α2α1(c ⊗ f ) = α4α3((c ⊗πk f )) = α4((c ⊗ rk)) = (crk) = (πk f (c)) = f (c) = νC (K ) (c ⊗ f ). This
shows that νC (K ) = α4α3α2α1 is an isomorphism.

Suppose S M ∈ Add S C and M ⊕ N = C (K ) for some left S-module N and some index set K . Then

there is a split exact sequence 0 → M
λ→ C (K ) p→ N → 0 which induces the following commutative

diagram with exact rows

0 C ⊗R HomR(C, M)
1⊗λ∗

νM

C ⊗R HomR(C, C (K ))
1⊗p∗

νC(K )

C ⊗R HomR(C, N)

νN

0

0 M
λ

C (K )
p

N 0.

The Five Lemma shows that νM is monic. Thus νN is also monic, and so νM is an isomorphism by
the Five Lemma again.

Note that HomS (C, M) is a projective left R-module since HomS(C, M) ⊕ HomS (C, N) ∼= HomS(C,

C (K )) ∼= R(K ) . So S M ∼= C ⊗R HomS(C, M) ∈ W P .
(2) It is clear that W I ⊆ Prod C+ . Conversely, for any left R-module X , the evaluation homomor-

phism μX : X → HomS(C, C ⊗R X) is defined by μX (x)(c) = c ⊗ x for x ∈ X and c ∈ C . We claim that
μ(C+) J : (C+) J → HomS(C, C ⊗R (C+) J ) is an isomorphism for any index set J .

Since C R is finitely presented, there is an isomorphism α : C ⊗R (C+) J → (C ⊗R C+) J defined by
c ⊗ ( f j) �→ (c ⊗ f j) for c ∈ C and ( f j) ∈ (C+) J . Thus we have an isomorphism

β1 = α∗ : HomS
(
C, C ⊗R

(
C+) J ) → HomS

(
C,

(
C ⊗R C+) J )

.

Note that HomS (C,−) commutes with direct products, so there is an isomorphism

β2 : HomS
(
C,

(
C ⊗R C+) J ) → (

HomS
(
C, C ⊗R C+)) J

given by f �→ (p j f ), where p j : (C ⊗R C+) J → C ⊗R C+ is the jth projection for j ∈ J .
Since S C R is semidualizing, the homothety map Sγ : S → HomR(C, C) is an isomorphism and Sγ is

defined by Sγ (s)(c) = sc for s ∈ S and c ∈ C by [1, Proposition 4.10]. Note that C R is finitely presented
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and S Q is injective, and so, by [18, Lemma 3.60], the evaluation map νQ : C ⊗R C+ → Q given by
νQ (c ⊗ f ) = f (c) for c ∈ C and f ∈ C+ is an isomorphism. Hence we have an isomorphism

β3 = (
(νQ )∗

) J : (Hom
(
C, C ⊗R C+)) J → (

C+) J
.

It is easy to verify that β3β2β1μ(C+)K = id(C+) J , and so μ(C+) J is an isomorphism.
Suppose R M ∈ Prod C+ and M ⊕ N = (C+) J for some left R-module N and some index set J . Then

there is a split exact sequence 0 → M
λ→ (C+) J p→ N → 0 which induces the following commutative

diagram with exact rows

0 M
λ

μM

(C+) J
p

μ
(C+) J

N

μN

0

0 HomS(C, C ⊗R M)
(1⊗λ)∗

HomS(C, C ⊗R (C+) J )
(1⊗p)∗

HomS(C, C ⊗R N) 0.

By the corresponding proof in (1), μM is an isomorphism. Note that C ⊗R M is an injective left
S-module since C ⊗R M ⊕ C ⊗R N = C ⊗R (C+) J ∼= (C ⊗R C+) J ∼= Q J . So R M ∼= HomS (C, C ⊗R M) ∈

W I . �
Corollary 3.2. Let S C R be a semidualizing bimodule. Then:

(1) AC (R) ⊆ ⊥W I .
(2) BC (S) ⊆ W ⊥

P .
(3) W I ⊆ AC (R) ∩ (AC (R))⊥ .
(4) W P ⊆ BC (S) ∩ ⊥(BC (S)).

Proof. (1) For any A ∈ AC (R) and any index set J , by [18, Theorem 7.14] and [8, Theorem 3.2.1], we
have

Ext�1
R

(
A,

(
C+) J ) ∼= (

Ext�1
R

(
A, C+)) J ∼= ((

TorR
�1(C, A)

)+) J = 0.

So AC (R) ⊆ ⊥W I by Theorem 3.1(2).
(2) For any B ∈ BC (S) and any index set K , by [18, Theorem 7.13], we have

Ext�1
S

(
C (K ), B

) ∼= (
Ext�1

S (C, B)
)K = 0.

So BC (S) ⊆ W ⊥
P by Theorem 3.1(1).

(3) and (4) follow from (1), (2) and [16, Lemma 4.1 and Proposition 4.1]. �
In what follows, we assume that C = S C R is a faithfully semidualizing bimodule. Note that all

semidualizing modules are faithfully semidualizing over a commutative ring [16, Proposition 3.1].
The following lemma is needed frequently in the sequel.

Lemma 3.3. (See [16, Corollary 6.3].) The classes AC (R) and BC (S) have the property that if two of three
modules in a short exact sequence are in the class then so is the third.

Proposition 3.4. Let W• = · · · → W1 → W0 → W 0 → W 1 → ·· · be an exact sequence of modules in W I

and M = ker(W 0 → W 1). Then the sequence W• is HomR(−, W I ) exact if and only if M ∈ AC (R).
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Proof. Suppose M ∈ AC (R). By Corollary 3.2(3) and Lemma 3.3, every kernel and cokernel of W• is
in AC (R), and so W• is HomR(−, W I ) exact by Corollary 3.2(1).

Conversely, if W• is HomR(−, W I ) exact then C ⊗R W• is still exact by the adjoint isomorphism.
Since TorR

i (C, W ) = 0 for all W ∈ W I and all i � 1, TorR
i (C, M) = 0 for all i � 1. So using a projec-

tive resolution of M we have an exact sequence X• = · · · → P1 → P0 → W 0 → W 1 → ·· · of left
R-modules with Pi projective for i � 1 such that C ⊗R X• is exact. Hence M ∈ AC (R) by [16, Theo-
rem 2]. �

A dual argument of the proof of Proposition 3.4 gives the following proposition.

Proposition 3.5. Let U• = · · · → U1 → U0 → U 0 → U 1 → ·· · be an exact sequence of modules in W P and
N = ker(U 0 → U 1). Then the sequence U• is HomR(W P ,−) exact if and only if N ∈ BC (S).

The next proposition shows that C-Gorenstein projectives and C-Gorenstein injectives defined here
are different from those defined in [23] ([15]) when S = R is a commutative (Noetherian) ring.

Proposition 3.6. An R-module M is C-Gorenstein projective (C-Gorenstein injective) defined here if and only
if M is C-Gorenstein projective (C-Gorenstein injective) defined in [23] ([15]) and in BC (R) (AC (R)) when
S = R is a commutative (Noetherian) ring.

Proof. We only prove the case for C-Gorenstein projectives.
“⇒” Let M be C-Gorenstein projective defined here. Then M is C-Gorenstein projective given in

[23] ([15]) and M ∈ BC (R) by Propositions 2.4 and 3.5.
“⇐” Let M be a C-Gorenstein projective modules given in [23] ([15]) and M ∈ BC (R). Then M ∈

⊥W P and M has a coproper W P coresolution by [23, Proposition 2.2] (or [15, Definition 2.7]), and
M ∈ W ⊥

P by Corollary 3.2. On the other hand, there exists an exact sequence

U• = · · · → U1 → U0 → M → 0

with each Ui ∈ W P such that U• is HomR(C,−) exact by [16, Theorem 6.1]. Thus U• is HomR(W P ,−)

exact by Theorem 3.1(1), and so M has a proper W P resolution. Therefore M is C-Gorenstein projec-
tive defined here by Proposition 2.4. �

Let M be a module over a commutative ring R admitting a semidualizing module C . The W P -
projective dimension and W I -injective dimension of M , denoted by W P -pd(M) and W I -id(M), are de-
fined in [21]. By [21, Corollary 2.10], W P -pd(M) < ∞ (W I -id(M) < ∞) if and only if resdimW P M < ∞
(resdimW I M < ∞). So the following corollary generalizes [21, Corollary 2.9] to noncommutative rings.

Corollary 3.7. Let M be a left R-module.

(1) If M has finite C-Gorenstein injective dimension, then M ∈ AC (R).
(2) If M has finite C-Gorenstein projective dimension, then M ∈ BC (S).

Proof. By Propositions 3.4 and 3.5 respectively, all C-Gorenstein injective modules are in AC (R) and
all C-Gorenstein projective modules are in BC (S). So the results are immediate by Lemma 3.3. �
Remark 3.8. If a left R-module M has a finite C-Gorenstein injective resolution, then M is C-
Gorenstein injective. In fact, let 0 → Gn → Gn−1 → ·· · → G0 → M → 0 be an exact sequence with Gi
C-Gorenstein injective for 0 � i � n, and let Li = coker(Gi+1 → Gi) for 0 � i � n − 1, where L0 = M .
Then each Li ∈ AC (R) by Proposition 3.4 and Lemma 3.3. So each Li is C-Gorenstein injective by
Corollaries 3.2(1) and 2.6(1) for 0 � i � n − 1. Thus M is C-Gorenstein injective. Similarly, if a left
S-module N has a finite C-Gorenstein projective coresolution, then N is C-Gorenstein projective.
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The following lemma is stated in [21] for a commutative ring, but the proof there also works in
the present context.

Lemma 3.9. (See [21, Theorem 2.8].)

(1) Let M be a left R-module, then M ∈ AC (R) if and only if C ⊗R M ∈ BC (S).
(2) Let N be a left S-module, then N ∈ BC (S) if and only if HomS(C, N) ∈ AC (R).

Remark 3.10. (1) In what follows, we denote by GC -Proj (GC -Inj) the class of C-Gorenstein projective
left S-modules (C-Gorenstein injective left R-modules). G-Proj (G-Inj) stands for the class of Goren-
stein projective left R-modules (Gorenstein injective left S-modules).

(2) Let R and S be right and left Noetherian rings respectively admitting a dualizing bimodule (see
[13, Definition 3.1]). Then all Gorenstein projective left R-modules are in A(R) [13, Proposition 3.9]
and all Gorenstein injective left S-modules are in B(S) [13, Proposition 3.8]. Furthermore, if each flat
left R-module has finite projective dimension, then a left S-module N ∈ B(S) only if N has finite
Gorenstein injective dimension by the proof of [13, Lemma 3.15], and hence N ∈ B(S) if and only if
N has finite Gorenstein injective dimension by [13, Proposition 3.13]; dually, we have that a left R-
module M ∈ A(R) if and only if M has finite Gorenstein projective dimension. The following theorem
is the counterpart of [13, Theorem 4.5] in the present context.

Theorem 3.11. There are equivalences of categories:

GC − Inj
C⊗R−

G − Inj ∩ BC (S),
HomS (C,−)

G − Proj ∩ AC (R)
C⊗R−

GC − Proj.
HomS (C,−)

Proof. It suffices to prove the first assertion. The second has a dual argument. We first show that the
functor C ⊗R − maps GC -Inj to G-Inj ∩ BC (S). Let M ∈ GC -Inj, then there exists an exact sequence

W• = · · · → HomS(C, E1) → HomS(C, E0) → HomS
(
C, E0) → HomS

(
C, E1) → ·· ·

with Ei , E j injective for i, j � 0 and M = ker(HomS (C, E0) → HomS(C, E1)) such that W• is
HomR(W I ,−) and HomR(−, W I ) exact. So M ∈ AC (R) by Proposition 3.4, and hence every kernel
and cokernel of W• is in AC (R) by Lemma 3.3. Thus C ⊗R W• is exact, moreover, C ⊗R M ∈ BC (S) by
Lemma 3.9. On the other hand, we have

C ⊗R W• ∼= · · · → E1 → E0 → E0 → E1 → ·· ·
with C ⊗R M = ker(E0 → E1). For each injective left S-module E , we have

HomS(E, C ⊗R W•) ∼= HomR
(
HomS(C, E),HomS(C, C ⊗R W•)

) (
by [16, Theorem 6.4]

)

∼= HomR
(
HomS(C, E), W•

)
.

So HomS (E, C ⊗R W•) is exact. Therefore C ⊗R M is Gorenstein injective.
The proof that HomS (C,−) maps G-Inj ∩ BC (S) to GC -Inj is similar. Finally, we note that if M ∈

GC -Inj and N ∈ G-Inj ∩ BC (S), then there exist natural isomorphisms M
�→ HomS (C, C ⊗R M) and

C ⊗R HomS (C, N)
�→ N . Now the desired equivalences of categories follow. �
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Let n be a nonnegative integer. In the following, we denote by G-Proj�n (G-Inj�n , GC -Proj�n , GC -
Inj�n) the class of modules with Gorenstein projective (Gorenstein injective, C-Gorenstein projective,
C-Gorenstein injective) dimension at most n.

Corollary 3.12. There are equivalences of categories:

GC − Inj�n

C⊗R−
G − Inj�n ∩ BC (S),

HomS (C,−)

G − Proj�n ∩ AC (R)
C⊗R−

GC − Proj�n.
HomS (C,−)

Proof. We only prove the first part and the second is dual. Let M ∈ GC -Inj�n . Then there exists an
exact sequence 0 → M → G0 → ·· · → Gn−1 → Gn → 0 with Gi ∈ GC -Inj for 0 � i � n, and so every
kernel is in AC (R) by Corollary 3.7. So we have the exact sequence 0 → C ⊗R M → C ⊗R G0 →
·· · → C ⊗R Gn−1 → C ⊗R Gn → 0 with each C ⊗R Gi (0 � i � n) Gorenstein injective and in BC (S) by
Theorem 3.11. Hence C ⊗R M ∈ G-Inj�n ∩ BC (S).

Conversely, let M ∈ G-Inj�n ∩ BC (S). If n = 0 then HomS(C, M) ∈ GC -Inj by Theorem 3.11. Next
we assume n � 1, then by the dual of Proposition 2.12, there is an exact sequence 0 → M →
G → E1 → ·· · → En → 0 such that G is Gorenstein injective and E j is injective for 1 � j � n. Let
L = coker(M → G), then id(S L) � n − 1, and so L ∈ BC (S) by [16, Corollary 6.2]. Thus every ker-
nel of the sequence above is in BC (S). Therefore the sequence 0 → HomS (C, M) → HomS(C, G) →
HomS (C, E1) → ·· · → HomS(C, En) → 0 is exact. Note that in the exact sequence 0 → M → G →
L → 0, we have M, L ∈ BC (S). So G ∈ BC (S) by Lemma 3.3, and hence HomS (C, G) ∈ GC -Inj by Theo-
rem 3.11. Thus HomS(C, M) ∈ GC -Inj�n by the dual of Proposition 2.12 again. The rest of the proof is
similar to that of Theorem 3.11. �
Remark 3.13 (Foxby equivalence). Let R Proj (S Inj) be the class of projective left R-modules (injective
left S-modules). By [16, Theorem 1], Theorem 3.11 and Corollaries 3.7 and 3.12, there are equivalences
of categories

R Proj
C⊗R−

W P
HomS (C,−)

G − Proj ∩ AC (R)
C⊗R−

GC − Proj
HomS (C,−)

G − Proj�n ∩ AC (R)
C⊗R−

GC − Proj�n
HomS (C,−)

AC (R)
C⊗R−

BC (S)
HomS (C,−)

GC − Inj�n

C⊗R−
G − Inj�n ∩ BC (S)

HomS (C,−)

GC − Inj
C⊗R−

G − Inj ∩ BC (S)
HomS (C,−)

WI

C⊗R−
S Inj.

HomS (C,−)
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Theorem 3.14. Let R be a commutative Noetherian ring. A finitely generated R-module M is C-Gorenstein
projective if and only if there exists an exact sequence

W• = · · · → C ⊗R F1 → C ⊗R F0 → C ⊗R F 0 → C ⊗R F 1 → ·· ·

with Fi , F j finitely generated free for all i, j � 0 and M = ker(C ⊗R F 0 → C ⊗R F 1) such that W• is
HomR(C,−) and HomR(−, C) exact.

Proof. “⇒” Let M be a finitely generated C-Gorenstein projective R-module. Then M ∈ BC (R) by
Proposition 3.5 and HomR(C, M) ∈ AC (R) is (finitely generated) Gorenstein projective by Theo-
rem 3.11. So there is a finitely generated free resolution

F• = · · · → F1 → F0 → HomR(C, M) → 0

of HomR(C, M) such that every kernel is in AC (R) by Lemma 3.3. Thus

C ⊗R F• ∼= · · · → C ⊗R F1 → C ⊗R F0 → M → 0 (†)

is exact and every kernel is in BC (R). Note that BC (R) ⊆ W ⊥
P by Corollary 3.2(2), so every kernel of

the sequence (†) is C-Gorenstein projective by Corollary 2.6(2).
On the other hand, since HomR(C, M) is finitely generated Gorenstein projective, by an argument

similar to the proof of [5, Theorem 4.2.6], there exists a short exact sequence 0 → HomR(C, M) →
F 0 → L → 0 with F 0 finitely generated free and L finitely generated Gorenstein projective, moreover,
L ∈ AC (R) by Lemma 3.3 again. So we have that the sequence 0 → C ⊗R HomR(C, M) → C ⊗R F 0 →
C ⊗R L → 0, i.e., 0 → M → C ⊗R F 0 → C ⊗R L → 0 is exact, and C ⊗R L is finitely generated C-
Gorenstein projective by Theorem 3.11. Repeating the foregoing process, we obtain an exact sequence

0 → M → C ⊗R F 0 → C ⊗R F 1 → ·· · (‡)

with F j finitely generated free for all j � 0 such that every cokernel is C-Gorenstein projective. By
pasting (†) and (‡), we get the desired complex W• which is HomR(W P ,−) and HomR(−, W P ) exact
by Proposition 2.7. In particular, W• is HomR(C,−) and HomR(−, C) exact.

“⇐” Because W P = Add C by Theorem 3.1(1), W• is HomR(W P ,−) exact if and only if it is
HomR(C,−) exact, and W• is HomR(−, W P ) exact if and only if it is HomR(−, C) exact since W•
is a complex of finitely generated modules. This completes the proof. �

By Theorems 2.15 and 3.14 we immediately obtain the following corollary which generalizes
[5, Theorem 4.2.6].

Corollary 3.15. Let R be a commutative Noetherian ring and C a semidualizing R-module. A finitely generated
R-module M is add C-Gorenstein if and only if it is Add C-Gorenstein.

Let R be a commutative Noetherian ring and C a semidualizing R-module. The add C-Gorenstein
resolution (add C resolution) dimension of an R-module M is denoted by GC -dim M (C-dim M). By
[14, Fact 8] and [4, Corollary 3.2(a)] and Remark 2.13, we immediately obtain the following

Corollary 3.16. Let R be a commutative Noetherian local ring and M a nonzero finitely generated R-module.
Then:

(1) If GC -dim M < ∞, then GC -dim M + depth M = depth C.
(2) If C-dim M < ∞, then C-dim M + depth M = depth C.
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Remark 3.17. (1) Let R be a commutative Noetherian local ring and M �= 0 a finitely generated R-
module with finite G-dimension. Auslander and Bridger [2] proved that M satisfies an analogue of
the Auslander–Buchsbaum formula: G-dim M + depth M = depth R . Note that depth C = depth R by
[4, Corollary 3.2(a)], so Corollary 3.16(1) bears strong analogy with the Auslander–Buchsbaum for-
mula.

(2) Corollary 3.16(2) was obtained by J.R. Strooker in [20].
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