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Abstract

We consider the notion of dimension in four categories: the category of (unbounded) separable metric spaces and (metrically
proper) Lipschitz maps, and the category of (unbounded) separable metric spaces and (metrically proper) uniform maps. A unified
treatment is given to the large scale dimension and the small scale dimension. We show that in all categories a space has dimension
zero if and only if it is equivalent to an ultrametric space. Also, 0-dimensional spaces are characterized by means of retractions to
subspaces. There is a universal zero-dimensional space in all categories. In the Lipschitz Category spaces of dimension zero are
characterized by means of extensions of maps to the unit 0-sphere. Any countable group of asymptotic dimension zero is coarsely
equivalent to a direct sum of cyclic groups. We construct uncountably many examples of coarsely inequivalent ultrametric spaces.
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1. Introduction

Asymptotic dimension is one of the most important asymptotic invariants of metric spaces introduced by Gro-
mov [12]. There are several notions of large scale dimension introduced later [4,9,10]. The asymptotic dimension of
Gromov is known to be the largest and in case it is finite all dimensions coincide. These dimensions also coincide
when one of them is zero, but it is still unknown if an example of space exists with one of these dimensions finite but
the asymptotic dimension of Gromov infinite. The notion of asymptotic dimension can be introduced for any set with
coarse structure [21] (or a ballean [1,20]) but in this paper we consider separable metric spaces only.

Our attempts to find the small scale analogs of large scale dimensions brought us to an idea of macroscopic and
microscopic functors on a category of metric spaces: given a metric space (X,d) and ε > 0 we consider the (ε-discrete)
metric min(d, ε) on X and (ε-bounded) metric max(d, ε) [5]. Therefore we can define and work with all-scales notions
and then obtain the large scale (or small scale) results as corollaries after applying the macroscopic (or microscopic)
functor.
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In this paper we consider five categories of separable metric spaces: Lipschitz, Uniform, the corresponding Metri-
cally Proper subcategories (see the definitions at the end of Introduction), and the Coarse category defined by Roe [21].

The concept of dimension appropriate for the Lipschitz category is the Assouad–Nagata dimension [15]. For dis-
crete metric spaces the notion of Assouad–Nagata dimension is equivalent to the notion of asymptotic dimension
of linear type considered by Gromov [12] and Roe [21] (Dranishnikov and Zarichnyi call it “asymptotic dimension
with Higson property” [11]). For bounded metric spaces the notion of Assouad–Nagata dimension is equivalent to the
notion of capacity dimension introduced recently by Buyalo [6,7].

In Section 4 we introduce the concept of dimension appropriate for the uniform category. For discrete metric spaces
the notion of uniform dimension is equivalent to the notion of asymptotic dimension introduced by Gromov. For a
bounded metric space X the uniform dimension dimu(X) coincides with the large dimension ΔdX from the book [14].

Ultrametric spaces play the central role in this paper. We show that in (Proper) Lipschitz and (Proper) Uniform
categories a metric space (X,d) has dimension 0 if and only if there is an ultrametric ρ on X such that the identity
map (X,d) → (X,ρ) is an equivalence (for separable metric spaces and continuous maps this result was proved by
de Groot [13] and Nagata [18]; for metric spaces and Lipschitz maps it is proved in [8, Chapter 15]; for discrete spaces
and coarse maps this result belongs to M. Zarichnyi [24]). We also exhibit an ultrametric space which is universal (in
all categories) for all 0-dimensional spaces. Notice that there is an ultrametric space containing isometric copy of any
ultrametric space [3,16,17].

In (Proper) Lipschitz and (Proper) Uniform categories we characterize 0-dimensional spaces by means of retrac-
tions to subspaces. In the Lipschitz category we prove that the following conditions are equivalent:

(1) X has dimension 0;
(2) the unit 0-sphere S0 is an absolute extensor for X;
(3) every metric space is an absolute extensor for X.

We failed to find the analogous characterization in the Uniform category.
In Sections 5 and 6 we consider discrete metric spaces in the Coarse category. It is easy to see that a finitely

generated group of asymptotic dimension 0 is finite and therefore all such groups are coarsely equivalent. To define
asymptotic dimension for an infinitely generated countable group one should consider a left invariant proper metric
on it. We describe a natural way to introduce such a metric and prove that any group of asymptotic dimension 0
is coarsely equivalent to an abelian group. It is known that a countable group has asymptotic dimension 0 if and
only if it is locally finite [22] but we are not aware of any characterization of locally finite countable groups up to
coarse equivalence. In Section 6 we construct uncountably many examples of coarsely inequivalent metric spaces of
asymptotic dimension 0. The idea of the construction does not work for groups.

Definition 1.1. A map f :X → Y of metric spaces is called Lipschitz if there is a constant λ > 0 such that the
inequality dY (f (x), f (x′)) � λ · dX(x, x′) holds for all points x, x′ ∈ X. f is called λ-Lipschitz if we need to specify
the constant λ. f is called λ-bi-Lipschitz if both f and f −1 are λ-Lipschitz.

For any Lipschitz map f we denote

Lip(f ) = inf{λ | f is λ-Lipschitz}
Notice that a Lipschitz map f is Lip(f )-Lipschitz.

Definition 1.2. A metric space X is called a Lipschitz extensor for a metric space Y if there exists a constant m > 0
such that for any closed subspace A ⊂ Y any Lipschitz map f :A → X extends to a Lipschitz map F :Y → X with
Lip(F ) = m × Lip(f ). We call the space X an m×-Lipschitz extensor for Y if we need to specify the constant m.

A map f :X → Y is called metrically proper if for any bounded subset A of the space Y its preimage f −1(A) is
bounded.

Definition 1.3. The Lipschitz category consists of separable metric spaces with morphisms being Lipschitz maps. Its
subcategory of unbounded spaces and metrically proper maps is called the Proper Lipschitz category.
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We call a map f :X → Y uniform if there is a function δf : R+ → R+ with limt→0 δf (t) = 0 such that
dY (f (x), f (x′)) � δf (dX(x, x′)) for all points x, x′ ∈ X. To specify the function δf we sometimes say that the map
f is δf -uniform. A map f is called bi-uniform if both f and f −1 are uniform.

Definition 1.4. The Uniform category consists of separable metric spaces with morphisms being uniform maps. Its
subcategory of unbounded spaces and metrically proper maps is called the Proper Uniform category.

We call a metric space X discrete if there is ε > 0 such that X is ε-discrete.
We call a map f :X → Y large scale uniform if there is a function δf : R+ → R+ such that dY (f (x), f (x′)) �

δf (dX(x, x′)) for all points x, x′ ∈ X. A map is called coarse if it is large scale uniform and metrically proper. Metric
spaces X and Y are coarsely equivalent if there exist a constant C > 0 and two coarse maps f :X → Y and g :Y → X

such that the maps g ◦ f and f ◦ g are C-close to the identity.

2. Ultrametric spaces

Definition 2.1. A metric space (X,d) is called ultrametric if for all x, y, z ∈ X we have d(x, z) � max{d(x, y),

d(y, z)}.

An ultrametric space X can be characterized by the following very useful property:

Ultrametric property of a triangle

If a triangle in a space X has sides (distances between vertices) a � b � c, then b = c.
The following properties of ultrametric space are easy to check. A ball of radius D in an ultrametric space has

diameter D. Two balls of radius D in an ultrametric space are either D-disjoint or identical.

Proposition 2.2. Let (X,d) be a metric space. The metric d is an ultrametric if and only if f (d) is a metric for every
nondecreasing function f : R+ → R+.

Proof. If d is ultrametric and a � b = c are sides of a triangle in (X,d) then f (a) � f (b) = f (c) are sides of the
corresponding triangle in (X,f (d)) and therefore f (d) is an ultrametric.

If d is not an ultrametric then there is a triangle in (X,d) with sides a � b < c. Consider the function

f (t)

{
t, if t � b,

2b
c−b

t + bc−3b2

c−b
, if t � b.

The sides of the corresponding triangle in (X,f (d)) are f (a) � f (b) = b < 3b = f (c) which contradicts the triangle
inequality. �
Definition 2.3. A metric is said to be 3n-valued if the only values assumed by the metric are 3n, n ∈ Z.

The triangle inequality for a metric d implies the following:

Lemma 2.4. Any 3n-valued metric is an ultrametric.

Lemma 2.5. Any ultrametric space is 3-bi-Lipschitz equivalent to a 3n-valued ultrametric space.

Proof. Given an ultrametric space (X,d) we define a new metric ρ on X as follows:

ρ(x, y) = 3n if 3n−1 < d(x, y) � 3n.

Clearly, the identity map id : (X,d) → (X,ρ) is expanding and 3-Lipschitz. �
Let us describe an ultrametric space (Lω,μ) which is universal for all separable ultrametric spaces with 3n-valued

metrics. This space appeared naturally in different areas of mathematics (see, for example, [16] and references therein).
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Let us fix a countable set S with a distinguished element s0 ∈ S. The set Lω is a subset of the set of infinite sequences
x̄ = {xn}n∈Z with all elements xn from the set S. A sequence x̄ belongs to Lω if there exists an index k ∈ Z such that
xn = s0 for all n < k. The metric μ is defined as μ(x̄, ȳ) = 3−m where m ∈ Z is the minimal index such that xm �= ym.
Clearly, the space Lω is a complete separable ultrametric (by Lemma 2.4) space.

To prove that any separable ultrametric space with 3n-valued metric embeds isometrically into (Lω,μ) we follow
the idea of P.S. Urysohn [23] and show that the space Lω is finitely injective:

Lemma 2.6. Let (X,d) be a finite metric space with 3n-valued metric d . For any subspace A ⊂ X, any isometric map
f :A → Lω admits an isometric extension f̃ :X → Lω.

Proof. It is sufficient to prove lemma in case X \ A consists of one point x. In such case we have to find a point
z̄ ∈ Lω such that μ(z̄, f (a)) = d(x, a) for every point a ∈ A. Let Ax = {a ∈ A | d(x, a) = d(x,A)} be the set of all
points in A closest to x and let d(x,A) = 3−n. Fix a point b ∈ Ax and define z̄ = {zn}n∈Z as follows: zm = f (b)m if
m < n; zm = s0 if m > n; zn is any element of the set S other than f (c)n for any point c ∈ Ax .

Clearly, μ(z̄, f (c)) = 3−n = d(x, c) for any point c ∈ Ax . For any point a ∈ A \ Ax we have d(a, x) = d(a, b) =
3−m > 3−n which means that f (a)m �= f (b)m = zm and therefore μ(z̄, f (a)) = 3−m = d(x, a). �
Theorem 2.7. Any separable metric space (X,d) equipped with 3n-valued metric d embeds isometrically into the
space (Lω,μ).

Proof. Since X is separable, it is sufficient to embed isometrically a countable dense subspace A of X. One can
embed such a subspace by induction using Lemma 2.6. �
Corollary 2.8. Any separable ultrametric space admits 3-bi-Lipschitz embedding into the space (Lω,μ).

Proof. Combine Lemma 2.5 and Theorem 2.7. �
Theorem 2.9. Every closed subset A of an ultrametric space X is a λ-Lipschitz retract of X for any λ > 1. If the
subset A is unbounded, the retraction can be chosen to be metrically proper.

Proof. Suppose that X is an ultrametric space and A ⊂ X is a closed subspace. If λ > 1 is given, choose a number
δ > 1 such that δ2 < λ.

Let us fix a base point x0 ∈ X. Take an arbitrary well-order <k on each non empty Annulus Ak = {x | k �
d(x, x0) < k + 1} of X for every k ∈ N ∪ {0}. Now we say z ≺ z′ for any two points z, z′ ∈ X if z ∈ Ak , z′ ∈ Ak′
and k > k′ or if z, z′ ∈ Ak and z <k z′. Notice that ≺ is an order in X such that for every non empty bounded subset C

of X the restricted order ≺ |C is a well-order.
We define a retraction r :X → A as follows. For a point x ∈ X we look at the nonempty bounded set

Ax = {
a ∈ A | d(x, a) � δ · dist(x,A)

}
and put r(x) to be the minimal point in the set Ax with respect to the order ≺.

Let us show that the retraction r is λ-Lipschitz. Assume that for some points x, y ∈ X we have d(r(x), r(y)) >

λ · d(x, y). Without loss of generality we may assume that r(x) ≺ r(y).
If d(y, r(x)) ≤ d(y, r(y)), then r(x) ∈ Ay and r(x) ≺ r(y) contradicts the choice of r(y) to be the minimal point

in the set Ay .
In case d(y, r(x)) > d(y, r(y)) we denote by D the distance between r(x) and r(y) and notice that d(y, r(x)) =

d(r(x), r(y)) = D in the isosceles triangle {y, r(x), r(y)}. Since D > d(x, y), we have d(x, r(x)) = d(y, r(x)) = D

in the isosceles triangle {x, y, r(x)}.

d
(
x, r(y)

)
� dist(x,A) � 1 · d(

x, r(x)
) = D

>
D

> d(x, y).

δ δ λ
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Therefore d(x, r(y)) = d(y, r(y)) in the isosceles triangle {x, y, r(y)}. The point r(x) does not belong to Ay since
r(x) ≺ r(y), thus d(y, r(x)) = D > δ · dist(y,A). Then there exists a point z ∈ A with d(y, z) < D

δ
.

d(y, z) � dist(y,A) � d(y, r(y))

δ
= d(x, r(y))

δ
� D

δ2
>

D

λ
> d(x, y).

Therefore d(x, z) = d(y, z) in the isosceles triangle {x, y, z}. Since d(x, z) < d(x, r(x)), we have z ∈ Ax , but
d(x, z) < D

δ
= d(x,r(x))

δ
contradicts the definition of Ax (two points a, a′ ∈ Ax cannot satisfy d(x, a) <

d(x,a′)
δ

).
If the subset A is unbounded, we prove that the retraction r is metrically proper. Let B be any bounded subset

of A. Choose a point a ∈ A which is in an annulus greater than any annulus that has non-empty intersection with B

(therefore, a ≺ B). Given any point x ∈ r−1(B) we have a /∈ Ax , therefore d(x, r(x)) � δ · d(x,A) < d(x, a). The
ultrametric property of the triangle {x, a, r(x)} implies d(r(x), a) = d(x, a) therefore:

d(x,B) � d(x, r(x)) < d(r(x), a) � diam(B) + d(a,B) �
Example 2.10. Let X = {xn}∞n=1 be a sequence of points. Define d(x1, xn) = 1+ 1

n
and d(xm,xn) = max{1+ 1

m
,1+ 1

n
}

for any m,n > 1. Then d is an ultrametric on X and there is no 1-Lipschitz retraction of X onto A = {xn}∞n=2.

3. Assouad–Nagata dimension

Definition 3.1. Let X be a metric space, A be a subspace of X, and S be a positive number.
A is S-bounded if for any points x, x′ ∈ A we have dX(x, x′) � S.
An S-chain in A is a sequence of points x1, . . . , xk in A such that for every i < k the set {xi, xi+1} is S-bounded.
A is S-connected if for any points x, x′ ∈ A can be connected in A by an S-chain.

Notice that any subset A of X is a union of its S-components (the maximal S-connected subsets of A). If B and
B ′ are two S-components of the set A then B and B ′ are S-disjoint. Intuitively, a metric space X has dimension 0 at
scale S > 0 if all S-components of X are uniformly bounded.

Definition 3.2. A metric space X has Assouad–Nagata dimension zero (notation dimAN(X) � 0) if there exists a
constant m � 1, such that for any S > 0 all S-components of X are mS-bounded.

It is easy to see that bi-Lipschitz maps preserve Assouad–Nagata dimension.
Ultrametric spaces are the best examples of metric spaces of Assouad–Nagata dimension zero. Indeed, for any pos-

itive number D any D-component of an ultrametric space is a D-ball and therefore is D-bounded. Let us characterize
spaces of Assouad–Nagata dimension 0 using ultrametrics.

The following theorem is proved in [8, Proposition 15.7]. We provide a proof for completeness.

Theorem 3.3. If a metric space (X,d) has Assouad–Nagata dimension dimAN(X) � 0, then there is an ultrametric ρ

on X such that the identity map id : (X,d) → (X,ρ) is bi-Lipschitz.

Proof. Suppose that for a number m > 1, all S-components of X are mS-bounded. Consider two points x, z ∈ X and
put

S = d(x, z)

2m
.

Then the points x and z belong to different S-components of X. Thus for any chain x = x0, x1, . . . , xk−1, xk = z we
have

d(x, z) � 2m · max
0�i<k

{
d(xi, xi+1)

}
.

Now define ρ(x, z) to be the infimum of max0�i<k{d(xi, xi+1)} over all finite chains x0, x1, . . . , xk−1, xk with
x = x0 and xk = z. Clearly

1 · d(x, z) � ρ(x, z) � d(x, z).

2m
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To see that ρ is an ultrametric, take three points x, y, z in X and let s be the infimum of all positive numbers S such
that all three points belong to one S-component of X. If all three points belong to one s-component or all three belong
to different s-components, then ρ(x, y) = ρ(x, z) = ρ(y, z) = s. If the points x and y belong to one s-component
which does not contain z, then ρ(x, y) � s = ρ(x, z) = ρ(y, z). �
Theorem 3.4. Any separable metric space of Assouad–Nagata dimension 0 admits a bi-Lipschitz embedding into the
space (Lω,μ).

Proof. Apply Theorems 3.3 and 2.8. �
Theorem 3.5. In the Lipschitz category the following conditions are equivalent:

(1) dimAN(X) � 0;
(2) there exists a number λ such that every closed subset of X is a λ-Lipschitz retract of X;
(3) there exists a number λ such that every metric space is a λ×-Lipschitz extensor for X;
(4) the unit 0-sphere S0 is an extensor for X.

Conditions (1), (2), and (3) are equivalent in the Proper Lipschitz category.

Proof. (1) ⇒ (2) in both Lipschitz and Proper Lipschitz categories. Theorem 3.3 allows us to find an ultrametric ρ

on X which is bi-Lipschitz equivalent to d . Application of Theorem 2.9 completes the proof.
(2) ⇒ (3) in both Lipschitz and Proper Lipschitz categories. Given a closed subspace A ⊂ X and a Lipschitz map

f :A → Y to some metric space Y we fix a λ-Lipschitz retraction r :X → A. Then the composition f ◦ r :X → K

has the Lipschitz constant bounded by λ · Lip(f ).
(3) ⇒ (4) Obvious.
(4) ⇒ (1) Let m � 1 be a number such that any λ-Lipschitz map from any closed subspace A ⊂ X to S0 can be

extended to mλ-Lipschitz map of X. If an S-component of X is not mS-bounded, there are points z0 and z1 with
d(z0, z1) > mS and an S-chain of points z0 = x0, x1, . . . , xk = z1. Notice that the map f : {z0} ∪ {z1} → S0 defined
as f (z0) = 0 and f (z1) = 1 is 1

d(z0,z1)
-Lipschitz but any extension of this map to the chain is at least 1

S
-Lipschitz and

cannot be m
d(z0,z1)

-Lipschitz (since 1
S

> m
d(z0,z1)

).

(3) ⇒ (1) in the Proper Lipschitz category. If an S-component of X is not λS-bounded, there are points z0 and z1
with d(z0, z1) > λS and an S-chain of points z0 = x0, x1, . . . , xk = z1. Let A be any unbounded λS-discrete subspace
of X containing the points z0 and z1. Notice that the identity map idA is 1-Lipschitz but any extension of this map to
the chain is not λS-Lipschitz. �
Problem 3.6. Is there an analog of condition (4) from Theorem 3.5 in the Proper Lipschitz category?

4. Uniform dimension

Definition 4.1. A metric space X has uniform dimension zero (notation dimu(X) � 0) if there exists a continuous
increasing function D : R+ → R+ with D(0) = 0 and limt→∞ D(t) = ∞, such that for any positive number S every
S-component of X is D(S)-bounded.

To specify the function D we sometimes say that the space X has uniform dimension zero of type D.

If the function D does not exceed some linear function D(t) � k · t for all t � 0, then the space X has Assouad–
Nagata dimension 0. We want the dimension control function to be increasing and continuous to guarantee the
existence of the inverse function D(−1).

It is easy to check that the uniform dimension is preserved under the bi-uniform maps:

Lemma 4.2. Let f :X → Y be a bi-uniform map. Then dimu(X) = dimu(f (X)).
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Theorem 4.3. If a metric space (X,d) has uniform dimension dimu(X) � 0, then there is an ultrametric ρ on X such
that the identity map id : (X,d) → (X,ρ) is bi-uniform.

Proof. Suppose that the space X has uniform dimension zero of type D. Consider two points x, z ∈ X and put

S = 1

2
D−1(d(x, z)

)
.

Then the points x and z belong to different S-components of X. Thus for any chain x = x0, x1, . . . , xk−1, xk = z we
have

D−1(d(x, z)
)
� 2 · max

0�i<k

{
d(xi, xi+1)

}
.

Now define ρ(x, z) to be the infimum of max0�i<k{d(xi, xi+1)} over all finite chains x0, x1, . . . , xk−1, xk with
x = x0 and xk = z. Clearly

1

2
·D−1(d(x, z)

)
� ρ(x, z) � d(x, z).

To see that ρ is an ultrametric, take three points x, y, z in X and let s be the infimum of all positive numbers S such
that all three points belong to one S-component of X. If all three points belong to one s-component or all three belong
to different s-components, then ρ(x, y) = ρ(x, z) = ρ(y, z) = s. If the points x and y belong to one s-component
which does not contain z, then ρ(x, y) � s = ρ(x, z) = ρ(y, z). �
Corollary 4.4. A separable metric space X has uniform dimension zero if and only if it admits a bi-uniform embedding
into Lω.

Proof. If dimu(X) � 0 we can change the metric on X bi-uniformly to get an ultrametric space and then embed it in
a bi-Lipschitz way into Lω using Theorem 2.8.

If X embeds bi-uniformly into Lω, its image has uniform dimension zero as a subspace of Lω. Then X has uniform
dimension zero by Lemma 4.2. �
Theorem 4.5. In both Uniform and Proper Uniform categories the following conditions are equivalent:

(1) dimuX � 0;
(2) there exists a continuous increasing function μ : R+ → R+ with μ(0) = 0 and limt→∞ μ(t) = ∞, such that every

closed subspace of X is μ-uniform retract of X.

Proof. (1) ⇒ (2) Theorem 4.3 allows us to find an ultrametric ρ on X which is bi-uniformly equivalent to d . Appli-
cation of Theorem 2.9 completes the proof.

(2) ⇒ (1) If an S-component of X is not μ(S)-bounded, there are points z0 and z1 with d(z0, z1) > μ(S) and an
S-chain of points z0 = x0, x1, . . . , xk = z1.

In the Uniform category let A = {z0} ∪ {z1}. In the Proper Uniform category we consider any unbounded closed
subspace A of X containing the points z0 and z1 and such that the distance from {z0} ∪ {z1} to the rest of A is greater
than d(z0, z1).

Notice that any retraction of X onto A restricted to the chain takes some S-closed points to two points of distance
greater than d(z0, z1) > μ(S). Thus such a retraction cannot be μ-uniform. �
Problem 4.6. Are there analogs of conditions (3) and (4) from Theorem 3.5 in the Proper Uniform category?

5. Locally finite countable groups

It is proved in [22] that a countable group G (equipped with any proper metric) has asymptotic dimension zero
if and only if G is locally finite (i.e. every finitely generated subgroup of G is finite). The purpose of this section is
to show that such a group is bi-uniformly equivalent to a locally finite abelian group. Also we classify locally finite
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countable groups up to bi-uniform equivalence. The problem of classification of locally finite countable groups up
to coarse equivalence remains open. Notice that for discrete metric spaces the notions of bi-uniform equivalence and
bijective coarse equivalence coincide.

A left invariant metric d on a countable group G is proper if and only if every bounded subset of (G,d) is finite.
Thus a left invariant proper metric d on G is bounded from below and therefore the asymptotic dimension of (G,d)

is equal to its uniform dimension. There is only one way (up to bi-uniform equivalence) to introduce a proper left-
invariant metric on G [22, Proposition 1]. Thus the asymptotic dimension of a countable group does not depend on
the choice of a proper left-invariant metric.

Let G be a locally finite countable group. Let us describe a particularly simple way to define a proper left-invariant
metric on G. Consider a filtration L of G by finite subgroups L = {1 ⊂ G1 ⊂ G2 ⊂ G3 · · ·} and define the metric dL
associated to this filtration as:

dL(x, y) = min
{
i | x−1y ∈ Gi

}
.

Clearly, dL is an ultrametric (therefore, the asymptotic dimension of (G,dL) is zero).

Lemma 5.1. Suppose two groups G and H have filtrations by finite subgroups: L= {1 ⊂ G1 ⊂ G2 ⊂ G3 · · ·} of G and
K = {1 ⊂ H1 ⊂ H2 ⊂ H3 · · ·} of H . If the index [Gi : Gi−1] is less than or equal to the index [Hi : Hi−1] for all i, then
(G,dL) admits an isometric embedding into (H,dH). Moreover, if [Gi : Gi−1] = [Hi : Hi−1] for all i (equivalently,
the cardinality of Gi equals cardinality of Hi for all i), then the groups (G,dL) and (H,dH) are isometric.

Proof. Put ai = [Gi : Gi−1] and bi = [Hi : Hi−1]. Fix an injection f1 :G1 → H1 and assume injections fk :Gk → Hk

are known for k � n such that the following two properties hold:

(1) fi(x) = fj (x) for i < j and x ∈ Gi ,
(2) the injection fk :Gk → Hk is isometric.

Pick an injection of the set of cosets {x · Gn} of Gn in Gn+1 into the set of cosets {y · Hn} of Hn in Hn+1. That
amounts to picking representatives 1, x1, . . . , xm (m = an+1 − 1) of cosets of Gn in Gn+1 and picking representa-
tives 1, y1, . . . , yl (l = bn+1 − 1) of cosets of Hn in Hn+1. Make sure the injection takes {1 · Gn} to {1 · Hn}. Now we
extend fn to fn+1 :Gn+1 → Hn+1 as follows: if x ∈ Gn+1 \ Gn, we represent x as xk · x′ for some unique k � m and
we define fn+1(x) as yk · fn(x

′).
If x and z belong to different cosets of Gn in Gn+1, then fn+1(x) and fn+1(z) belong to different cosets of Hn in

Hn+1 and dL(x, z) = n + 1 = dH(fn+1(x), fn+1(z)). If x and z belong to the same coset xk · Gn of Gn in Gn+1, then
x = xk · x′, z = xk · z′. Since fn+1(x) = yk · fn(x

′), fn+1(z) = yk · fn(z
′), and the map fn is isometry, then

dL(x, z) = dL(x′, z′)dH
(
fn(x

′), fn(z
′)
)
dH

(
fn+1(x), fn+1(z)

)
.

By pasting all fn we get an isometric injection f :G → H . Notice that in case [Gi : Gi−1] = [Hi : Hi−1] for all i,
the map f is bijective and establishes an isometry between (G,dL) and (H,dH). �
Lemma 5.2. Given two locally finite groups G and H the following conditions are equivalent:

(1) There are left-invariant proper metrics dG on G and dH on H such that (G,dG) is isometric to (H,dH ).
(2) There are filtrations by finite subgroups: L = {1 ⊂ G1 ⊂ G2 ⊂ G3 · · ·} of G and K = {1 ⊂ H1 ⊂ H2 ⊂ H3 · · ·} of

H such that the cardinality of Gi equals cardinality of Hi for all i.

Proof. In view of Lemma 5.1, it suffices to show (1) ⇒ (2). Obviously, we may pick an isometry f :G → H such that
f (1G) = 1H (replace any f by f (1G)−1 · f ). Notice f establishes bijectivity between m-component of G containing
1G and the m-component of H containing 1H . Also, those components are subgroups of G and H . Thus, define G1
as 1-component of G containing 1G and, inductively, Gi+1 as (diam(Gi) + i)-component of G containing 1G. �
Main example. If G is a direct sum of cyclic groups

⊕∞
i=1 Zai

we consider the metric on G associated to the filtration

L = {1 ⊂ Za ⊂ Za ⊕ Za ⊂ Za ⊕ Za ⊕ Za ⊂ · · ·}.
1 1 2 1 2 3
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If we write elements of the group
⊕∞

i=1 Zai
as p = p1p2 . . . pn where pj ∈ Zaj

and denote |p| = n then the
ultrametric dL can be defined explicitly as

dL(p, q) =
{

max{|p|, |q|}, if |p| �= |q|,
max{i | pi �= qi}, if |p| = |q|.

Theorem 5.3. A locally finite countable group G with a proper left invariant metric d is bi-uniformly equivalent to a
direct sum of cyclic groups.

Proof. Fix a filtration L of G by finite subgroups L = {1 ⊂ G1 ⊂ G2 ⊂ G3 · · ·}. Then (G,d) is bi-uniformly equiva-
lent to (G,dL) [22, Proposition 1]. By Lemma 5.1, (G,dL) is isometric to

⊕∞
i=1 Zai

where ai = [Gi : Gi−1]. �
Definition 5.4. Let G be a countable locally finite group and p be a prime number. We define a p-Sylow number of G

(finite or infinite) as follows:

|p-Syl|(G) = sup
{
pn | pn divides |F |,F a finite subgroup of G,n ∈ Z

}
.

Notice that if the p-Sylow number of G is finite, it is equal to the order of a p-Sylow subgroup of some finite
subgroup of G. For an abelian torsion group G the p-Sylow number of G is equal to the order of the p-torsion
subgroup of G.

We are going to use the following theorem of Protasov:

Theorem 5.5. (See [19, Theorem 5].) Two countable locally finite groups G and H with proper left invariant metrics
are bi-uniformly equivalent if and only if, for every finite subgroup F of G, there exists a finite subgroup E of H such
that |F | is a divisor of |E|, and, for every finite subgroup E of H , there exists a finite subgroup F of G such that |E|
is a divisor of |F |.

Corollary 5.6. Let G and H be countable direct sums of finite prime cyclic groups. Let dG and dH be proper left
invariant metrics on G and H . Then the metric spaces (G,dG) and (H,dH ) are bi-uniformly equivalent if and only if
the groups G and H are isomorphic.

Theorem 5.7. Let G and H be locally finite countable groups with proper left invariant metrics dG and dH . The
metric spaces (G,dG) and (H,dH ) are bi-uniformly equivalent if and only if for every prime p we have |p-Syl|(G) =
|p-Syl|(H).

Proof. Assume the metric spaces (G,dG) and (H,dH ) are bi-uniformly equivalent. Our goal is to show that if
|p-Syl|(G) � pn, then |p-Syl|(H) � pn. If there is a finite subgroup F of G such that pn divides |F |, then by Theo-
rem 5.5 there is a subgroup E of H such that pn divides |E|. Thus |p-Syl|(H) � pn.

Now suppose |p-Syl|(G) = |p-Syl|(H) for every prime p. By Theorem 5.5, it is enough to show that for every
finite subgroup F of G, there exists a finite subgroup E of H such that |F | is a divisor of |E|. If |F | = p

α1
1 · . . . · pαk

k

then p
αi

i � |pi-Syl|(H) for every i. For every i find a subgroup Ei of H such that p
αi

i divides |Ei |. Let E be a finite
subgroup of H containing all the groups Ei . Clearly, |F | divides |E|. �
Definition 5.8. A metric space is of bounded geometry if there is a number r > 0 and a function c : R+ → R+ such
that the r-capacity (the maximal cardinality of r-discrete subset) of every ε-ball does not exceed c(ε).

Notice that any countable group with proper left invariant metric has bounded geometry.
A large scale analog M0 of 0-dimensional Cantor set is introduced in [11]: it is the set of all positive integers with

ternary expression containing 0’s and 2’s only (with the metric from R+): M0 = {∑∞
i=0 ai3i | ai = 0,2}.

Proposition 5.9. (See [11, Theorem 3.11].) The space M0 is universal for proper metric spaces of bounded geometry
and of asymptotic dimension zero.
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Proposition 5.10. The space M0 is coarsely equivalent to
⊕∞

i=1 Z2.

Proof. To define a map f :
⊕∞

i=1 Z2 → M0 we consider an element p = p1p2 . . . pn of the group
⊕∞

i=1 Z2 where
pj ∈ {0,1} = Z2 and put

f (p) =
∞∑
i=1

2pi · 3i−1.

It is easy to check that the map f is a coarse equivalence: for any elements p,q ∈ ⊕∞
i=1 Z2 we have

3dL(p,q) � dM0

(
f (p),f (q)

)
� 3 · 3dL(p,q). �

Remark 5.11. (Cf. Proposition 2.2.) The proof above shows that the group
⊕∞

i=1 Z2 with the ultrametric 3dL is
bi-Lipschitz equivalent to the space M0.

Proposition 5.12. (Cf. [19, Theorem 4].) Let G and H be locally finite countable groups with proper left invariant
metrics. Then the metric space G can be coarsely embedded in the metric space H (this map is not a homomorphism).

Proof. By Propositions 5.9 and 5.10 the group G can be coarsely embedded in the group
⊕

Z2. By Lemma 5.1
the group (

⊕
Z2, dL) embeds isometrically into any group (

⊕∞
i=1 Zai

, dL). Finally, the group H is bi-uniformly
equivalent to a direct sum of cyclic groups by Theorem 5.3. �

Let G and H be countable locally finite groups. Using Theorem 5.3 one can show that if∑
p-prime

∣∣|p-Syl|(G) − |p-Syl|(H)
∣∣ < ∞

then the groups G and H are coarsely equivalent. Is the converse true?

Problem 5.13. Classify countable abelian torsion groups up to coarse equivalence.

Let us suggest a program to answer 5.13. Notice that any abelian torsion group is coarsely equivalent to a direct
sum of groups Zp with p being prime. Therefore the following groups are of importance: Z

∞
p (the infinite direct sum

of copies of Zp) and
⊕

p∈P Zpn(p) , where n(p) � 1 for each p ∈P , P being a subset of primes.

Problem 5.14. Suppose
⊕

p∈P Zpn(p) and
⊕

q∈Q Zqm(q) are coarsely equivalent. Is the symmetric difference of P and
Q finite? If so, does n(p) equal m(p) for all but finitely many p?

Problem 5.15. Suppose
⊕

p∈P Z
∞
p and

⊕
q∈Q Z

∞
q are coarsely equivalent. Is P equal Q?

Call two countable abelian torsion groups G and H virtually isometric if there are subgroups of finite index G′ of
G and H ′ of H such that G′ is isometric to H ′ for some choice of proper and invariant metrics on G′ and H ′. Notice
virtually isometric groups are coarsely equivalent.

Problem 5.16. Suppose two countable abelian torsion groups G and H are coarsely equivalent. Are G and H virtually
isometric?

6. Examples of coarsely inequivalent ultrametric spaces

In this section we construct uncountably many coarsely inequivalent ultrametric spaces. Notice that any ultrametric
space has asymptotic dimension zero.
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Definition 6.1. Let (X,x0) and (Y, y0) be pointed metric spaces. We define a metric wedge X ∨ Y as the topological
wedge of these spaces with the following metric:

d(z, z′)

⎧⎨
⎩

dX(z, z′), if z, z′ ∈ X,

dY (z, z′), if z, z′ ∈ Y,

max{dX(z, x0), dY (z′, y0)}, if z ∈ X \ {x0} and z′ ∈ Y \ {y0}.
Similarly, one can define metric wedge of an arbitrary family of pointed metric spaces (cf. [2, Example 2] or [3,

Theorem 2.2]).
The following lemma is easy to prove.

Lemma 6.2. The metric wedge of any family of pointed ultrametric spaces is a pointed ultrametric space.

If X is a bounded ultrametric space of diameter less than M , then the cone Cone(X,M) is obtained from X by
adding a vertex v and declaring d(v, x) = M for all x ∈ X. Cone(X,M) is a pointed ultrametric space with the
vertex v being its base point.

Our examples will be obtained by wedging cones over basic ultrametric spaces, scaled copies of 0-skeleta of
simplices.

Given a set λ of integers bigger than 1, we create a list Xi , i � 1, of spaces (called islands) satisfying the following
conditions:

(1) The cardinality ni of Xi belongs to λ.
(2) There is an integer mi � ni such that d(x, y) = mi for all x �= y ∈ Xi . Notice mi = diam(Xi).
(3) For each m � n and n ∈ λ the set of islands Xi such that m = diam(Xi) and n = |Xi | is infinite.

The wedge Xλ of all Cone(Xi, ki), where ki = ∑
j�i mj (put mj = 0 for j � 0), is the λ-archipelago. ki is the

separation of island Xi in the λ-archipelago.

Proposition 6.3. If λ1 �= λ2, then the λ1-archipelago is not coarsely equivalent to the λ2-archipelago.

Proof. Let X1 be a λ1-archipelago, X2 be a λ2-archipelago, and suppose that f :X1 → X2 and g :X2 → X1 are
coarse equivalences such that the maps g ◦ f and f ◦ g are C-close to the identity and do not move the base points.
Assume that the set λ1 \ λ2 is not empty and fix a number n in it.

There are three parameters associated to an island in any archipelago: the size, the diameter, and the separation.
For simplicity, an (n,N,S)-island contains n points, is of diameter N , and separation S. Notice n � N � S.

Let us explain the idea of the proof. Since the space X1 contains a lot of n-point islands, we are going to choose
an (n,N,S)-island P ⊂ X such that f (P ) is also an n-point island in X2. Since the archipelago X2 has no n-point
islands, we get a contradiction. First we choose the size N of the island P to be so large that the map f is injective
on P and the map g is injective on f (P ). Then we choose the separation S of the island P to be so large that f (P ) is
contained in some island Q in X2 and g(Q) is contained in some island in X1 (in fact, g(Q) ⊂ P ).

Let us introduce some notations that we use in the rest of the proof. Given a coarse equivalence h :Y → Z of
metric spaces we denote by ρh and δh two real functions such that ρh(dY (y, y′)) � dZ(h(y),h(y′)) � δh(dY (y, y′))
for any y, y′ ∈ Y . If one of the spaces Y , Z is unbounded then the other is also unbounded and limt→∞ ρh(t) = ∞ =
limt→∞ δh(t).

Fix an integer N > C such that ρf (N) > C. Notice that since N > C, any (n,N,S)-island P ⊂ X1 is C-discrete
and C-separated from the rest of X1. Therefore the map g ◦ f is identity on P and the map f is injective on P .

Clearly, the image f (P ) of any (n,N,S)-island P ⊂ X1 is δf (N)-bounded in X2 and therefore is contained in
one δf (N)-component Q of X2. If the island P is S-separated in X1, then its image f (P ) is at least ρf (S)-far from
the base point of X2. We choose S large enough to satisfy ρf (S) > δf (N) and thus to make sure that the δf (N)-
component Q containing f (P ) is an island. Assume Q is (k,m,S′)-island where m � δf (N) and k > n (recall that
f is injective on P ).

Since ρf (N) > C, the image f (P ) is C-discrete and therefore m > C. But then the map f ◦g is identity on Q and
the map g is injective on Q.
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The image g(Q) is δg(m)-bounded and contains P . By choosing S to be greater than δg(δf (N)) we guarantee that
the island P is more than δg(m)-separated from the rest of X1, therefore the set g(Q) is entirely in P . Since g is
injective on Q, we must have n � k. Contradiction. �
Corollary 6.4. There are uncountably many coarsely inequivalent asymptotically 0-dimensional subspaces of the
ray R+.

Proof. Due to Proposition 5.9 it is sufficient to check that every λ-archipelago X is proper and has bounded geometry.
Given R > 0, a ball B̄(x,R) either coincides with B̄(x0,R), where x0 is the center of the archipelago X, consists

of x only, or is the island containing x which has at most R points in that case. Thus the number of points in any
ball B(x,R) is bounded by some number depending on R only. This shows both X being proper and of bounded
geometry. �
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