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Abstract 

Adams, C.C., J.F. Brock, J. Bugbee, T.D. Comar, K.A. Faigin, A.M. Huston, A.M. Joseph and 

D. Pesikoff, Almost alternating links, Topology and its Applications 46 (1992) 151-165. 

We introduce the category of almost alternating links: nonalternating links which have a projection 

for which one crossing change yields an alternating projection. We extend this category to m-almost 

alternating links which require m crossing changes to yield an alternating projection. We show 

that all but five of the nonalternating knots up through eleven crossings and links up through ten 

crossings are almost alternating. We also prove that a prime almost alternating knot is either a 

hyperbolic knot or a torus knot. We then obtain a bound on the span of the bracket polynomial 

for m-almost alternating links and discuss applications. 
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1. Introduction 

A projection P of a link L in the 3-sphere is almost alternating if one crossing 

change makes the projection alternating. A link L is almost alternating if L has an 

almost alternating projection and L does not have an alternating projection. Note 

that an alternating link does in fact always have an almost alternating projection 

since we can take an alternating projection and make it almost alternating by a 

single Type II Reidemeister move. In fact, the unknot has an almost alternating 
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projection, as can be seen by changing one crossing in the standard projection of 

the trefoil knot, for instance. 

Further, we define a projection P of a link L to be m-almost alternating if m 

crossing changes produce an alternating projection. A link L is m-almost alternating 

if it has an m-almost alternating projection and no (m - 1)-almost alternating 

projection. Note that an m-almost alternating link has k-almost alternating projec- 

tions for all k 2 m, which can be easily obtained by repeated Type II Reidemeister 

moves. 

If a link L is m-almost alternating, we will say it has dealternating number m, 

where m = 0 corresponds to an alternating link. The dealternating number partitions 

all knots and links of n crossings into classes depending on how far they are from 

being alternating. Note that 0~ m s n/2. 

The dealternating number m of a knot can be thought of in analogy to the 

unknotting number. The unknotting number can be defined to be the minimum over 

all projections of the knot of the number of crossing changes necessary in order to 

turn the projection into a projection of the unknot. Similarly, we can define the 

dealternating number m to be the minimum over all projections of the knot of the 

number of crossing changes necessary to turn the projection into an alternating 

projection. 

There have been numerous generalizations of the concept of alternating links, 

including among others, homogeneous links, pseudo-alternating links, adequate 

links, augmented alternating links and alternative links. Each of these generalizations 

was motivated by the desire to extend a particular property known for alternating 

links to a more general class of links. The category of almost alternating links is 

distinct from all of these other generalizations. 

In Section 2, we prove that a prime almost alternating knot is either a torus knot 

or a hyperbolic knot (Theorem 2.3 and Corollary 2.6). This generalizes Menasco’s 

proof of the same fact for alternating links [lo]. We also demonstrate that the result 

does not extend to almost alternating links or to 2-almost alternating knots or links. 

In Section 3 we show the surprising fact that all but three of the nonalternating 

knots up through eleven crossings and all but two of the nonalternating links up 

through ten crossings are almost alternating. We show this by illustrating a direct 

way which will often determine from Conway’s notation for knots and links [2] 

whether a knot or link has an almost alternating projection. The Conway notation 

is particularly well adapted to telling directly whether a knot or link is alternating 

or almost alternating. 

In Section 4 we generalize a result which has been proven independently by 

Kaufmann, Murasugi, and Thistlethwaite [6-8, 12, 141 concerning the span of the 

bracket polynomial of an alternating link. They prove that for an alternating link 

L in an n-crossing reduced connected alternating projection the bracket polynomial 

(L) has span equal to 4n. The major theorem proven in this section is a generalization 

of this result to the case of links with an m-almost alternating projection. We will 

define two new conditions for links: dealternator reduced and dealternator connected. 
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These are extensions of the necessary conditions for the alternating case. The theorem 

states that if a link K has an m-almost alternating projection with n crossings which 

is dealternator connected and dealternator reduced, then span(( K)) s 4( n - m - 2). 

We are able to infer from this corollaries which are particularly useful in the almost 

alternating case, when m = 1. 

In Section 5 we discuss characteristics of alternating links which do not generalize 

to almost alternating links and give conjectures and possible avenues for further 

research. 

This work was begun as an undergraduate thesis at Williams College by David 

Pesikoff under the direction of Colin Adams. Work was continued by the Knot 

Theory group of the SMALL Undergraduate Research Project at Williams College 

under the direction of Colin Adams and consisting of the remaining six authors. 

Jeff Brock is responsible for much of the results in Section 4. We would like to 

thank all of the agencies and foundations which provided support for this research. 

2. Hyperbolicity 

In this section, we generalize results of Menasco from alternating links to almost 

alternating knots, proving among other results, that a prime almost alternating knot 

is either a torus knot or a hyperbolic knot. We will assume the notation, definitions 

and results of [lo]. In particular, a properly embedded surface F in S3 - L is called 

pairwise incompressible if for each disk D G S’ meeting L transversely in one point, 

with D n F = dD, there is a disk D’s F u L meeting L transversely in one point 

with aD=aD’. 

Let L be an almost alternating link in an almost alternating projection r. The 

one crossing which makes the projection nonalternating is called the dealternator. 

Let F I S3 - L be a closed pairwise incompressible and incompressible surface. In 

addition, we assume that S3- L is irreducible and L is prime. 

As in [lo], we place bubbles at each of the crossings. The bubble at the dealternator 

is denoted by B. All other bubbles at crossings are denoted A. 

Following the arguments in [lo], we can isotope F to a surface F’ such that F’ 

is in standard position with respect to the projection. This means that: 

(1) If F’ intersects a given bubble, it does so in a set of saddles. 

(2) No word w,(C) associated to F’ is empty. 

(3) No loop of F’n S: meets a bubble in more than one arc. 

Lemma 2.1. All words w,(C) have the form BA’ with j a positive odd integer. 

Proof. The argument that Menasco utilizes in [IO, Lemma 21 is unaffected by the 

presence of a B bubble and demonstrates that there are no words of the form A’. 
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Thus all words contain a B and they can contain at most one B. The number of 

letters in a word must always be even. 0 

Lemma 2.2. Let K be a knot such that S’- K contains an incompressible pairwise 

incompressible surface F. Then every bubble must contain an even number of saddles. 

Proof. The set of all intersection curves in F n S’, decomposes S: into distinct 

regions. These regions can each be colored either black or white so that every pair 

of adjacent regions are coloured distinctly. 

Each particular bubble is crossed by an even number of intersection curves in 

F n S:, the number of which is exactly twice the number of saddles in this bubble. 

Thus if a strand goes under a bubble, it will cross under an even number of curves 

and will thus come up on the other side of the bubble into a region with the same 

color as the region which the strand started from. 

Hence we can consistently color the entire knot either black or white. Thus, all 

strands must have received the same color, say black. However, if any bubble had 

an odd number of crossings, the understrand at that bubble would receive a different 

color from the overstrand, contradicting the fact this is a knot of one color. 0 

Theorem 2.3. Zf L is an almost alternating knot, and if F in S3- L is a closed 

incompressible surface, then F contains a circle which is isotopic in S3 - L to a meridian 

of L. 

Proof. Let L be an almost alternating link containing an incompressible pairwise 

incompressible surface F. In the course of the proof, we will show that in fact the 

number of components of the link is greater than one, demonstrating that such a 

surface could not live in the complement of a knot of this type. 

By the work of Menasco, we can isotope F to be in standard position. All of the 

intersection curves pass exactly once through the B bubble, and hence the intersec- 

tion curves are all concentric on the projection sphere, with exactly two of them 

bounding disks containing no other intersection curves. 

By Lemma 2.2, the number of saddles per bubble is even. Let t be the largest 

integer such that 2’ divides the number of saddles in each bubble that contains 

saddles. We will color the concentric regions between the intersection curves by 

coloring 2’ concentric regions in a row all black, followed by 2’ concentric regions 

in a row all white. Then we will repeat the process until all regions have been 

colored. It does not matter what color we start and end with on the two regions 

which are disks. 

Since a strand which passes under a bubble will pass under 2’+‘j curves, the 

strand will have the same color when it exits as when it went under the bubble. 

Thus each component of the link is consistently colored a single color. Any bubble 

with exactly 2’k saddles, where 2 does not divide k, will have its overstrand colored 

differently from its understrand. Hence, this link has at least two components, as 

we wished to show. 0 
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Corollary 2.4. If K is a prime almost alternating knot which is not a torus knot, then 

S’ - K has a complete hyperbolic structure offinite volume. 

Proof. If a prime knot K is not a torus knot, then it is either hyperbolic or S’- K 

contains an incompressible pairwise incompressible torus by the work of Thurston. 

By Theorem 2.3, the second possibility cannot occur. 0 

Corollary 2.5. An almost alternating knot which is hyperbolic cannot contain a closed 

embedded totally geodesic surface in its complement. 

Proof. In [ll], the authors point out that a closed totally geodesic surface in a 

hyperbolic manifold must have a fundamental group realized as a group of 

isometries, none of which are parabolic. Hence, the surface cannot contain a simple 

closed curve isotopic to a meridian of the knot. Thus the surface will be both 

incompressible and pairwise incompressible, a possibility which is ruled out by 

Theorem 2.3. 0 

Corollary 2.6. Allprime knots of eleven orfewer crossings are torus knots or hyperbolic 

knots. 

Proof. In the next section, we will show that all but three of the prime knots of 

eleven or fewer crossings are alternating or almost alternating, and hence either 

torus knots or hyperbolic knots by [lo] and Theorem 2.3. The three exceptions can 

be seen to be hyperbolic by applying Jeff Week’s Hyperbolic Structures Computer 

Program (see [I] for a description). 0 

It is tempting to try to extend Theorem 2.3 and Corollary 2.4 to show that prime 

2-almost alternating knots are either torus knots or hyperbolic knots. In fact, this 

is not the case. In Fig. 1, we show the usual projection of a Whitehead double of 

the trefoil knot and a 2-almost alternating projection of the same knot. This is a 

satellite knot and hence is neither a torus knot nor a hyperbolic knot. 

This last example also demonstrates that the existence of an m-almost alternating 

projection of a knot which has minimal crossing number among all projections of 

the knot does not necessarily imply that the knot is m-almost alternating. 

Theorem 2.3 also does not extend to almost alternating links. If we form a 

3-component link by adding one parallel component to one of the two components 

in the Whitehead link, we obtain a prime nonsplittable link which is easily seen to 

be almost alternating, but which is neither a torus link nor a hyperbolic link. 

3. Conway notation 

In this section we show that all but at most five of the 393 nonalternating knots 

of eleven or fewer crossings and links of ten or fewer crossings in [2] are almost 

alternating. We will assume the notation, definitions and results of [2]. 
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‘) ----I /- diiik // 
--II \ \ 

Fig. 1. The Whitehead double of the trefoil is 2-almost alternating. 

One can check that any link whose Conway notation contains no negative signs 

is an alternating link. The presence of negative signs in the notation indicates the 

existence of almost alternating projections in some cases. 

Theorem 3.1. A link has an almost alternating projection provided either: 

(i) its Conway notation includes only one negative; 

(ii) its Conway notation includes two negative signs within parentheses and between 

periods. 

Proof. First we treat case (i). Using Conway’s rules we can move a negative sign 

through the notation to the end of a parenthetical or to a period. If the last integer 

in the string after this process is a, changing the a- to a+ will change exactly one 

crossing in the projection [3, p. 3311. The notation for the changed projection has 

no negative signs and is thus alternating. Therefore, the link has an almost alternating 

projection. 

In the case where the negative sign lies outside and between parentheses, the 

notation a-b stands for a& This reflection of b in the plane is simply a mirror 

image of b. As a tangle, 6 will remain alternating. The existing strands of 6 will 

have double over-crossings and double under-crossings. By pulling one strand as 

in Fig. 2 the resulting projection can be made almost alternating. 

Now we deal with case (ii). Within the parentheses the notation can be made to 

have the form: a,, . . , a,-- where a,, . . . , aj are positive integers. By using Con- 

way’s rules we can show that this is equivalent to: a,. . . , (a,) -(2)0 (using the 
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Fig. 2. Double over-crossings are indicated by “o 0” and likewise for double under-crossings. Pulling 

one of the strands yields an almost alternating projection. 

convention a - bc = [a - b]c). By case (i), we have that the tangle within parentheses 

has an almost alternating projection. Thus the link has an almost alternating 

projection. 0 

This theorem verifies that 368 of the nonalternating links up through ten crossings 

and the nonalternating knots up through eleven crossings have an almost alternating 

projection and are thus almost alternating. 

We are left with the following knots and links to check. 

nine crossing knots: -20: - 20: - 20 (919); 

nine crossing links: 2: -20: -20 (9f,); 

ten crossing knots: 3: - 20: - 20 (lo,,,), -30: - 20: -20 ( 10,,3); 

ten crossing 2-component links: -210: - 20: - 20, 2. - 2. - 20.20, 2. - 20. -2.20, 

8* - 20: - 20; 

ten crossing links with three or more components: (2,2-),2,(2,2-),20.-2.-20.20, 

(2,2,2-) (2,2-); 
Nonalternating eleven crossing knots: -22:-20:-20, 221-201-20, -211:-20: 

-20, -4O:-20:-20, -310:-20:-20, -2110:-20:-20, -3O:-21:-20, -210:-30: 

-20, -210:-210:-20, 2.-3.-20.20, 2.-21.-20.20, 20.-3.-20.2, 20.-21.-20.2, 

9*.-2:.-2. 

We have found almost alternating projections for all of the above nonalternating 

knots and links except those in boldface. This proves that all but at most five of 

the nonalternating ten crossing links and eleven crossing knots are almost alternating. 

There are 2-almost alternating projections of those in boldface. 

4. The bracket polynomial 

In this section we discuss the bracket polynomial of a link with an m-almost 

alternating projection. We extend the result that the span of the bracket polynomial 

for an alternating link with n crossings in a reduced, connected alternating projection 

equals four times the number of crossings. 

We will assume the notation and results for the bracket polynomial given in the 

appendix of [6]. We will refer to the recursive process of taking A- and B-channel 
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Fig. 3. Polynomial decomposition at a crossing yields two new projections. 

splits at a crossing to develop the bracket polynomial of a link as polynomial 

decomposition at that crossing (Fig. 3). 

Let KP be a reduced, connected m-almost alternating projection of a link K. Let 

D be the set of all 2”’ alternating projections obtained by polynomial decomposition 

at the dealternators of K,. Let L, = {L E D 1 L has i dealternators with A-channel 

splits}. In general lLil = (7) and D = iJi Li, 0 s is m. Let the A-channel state of a 

link L be written S;’ and the B-channel state SF [6-81. 

Definition 4.1. K, is said to be dealternator reduced if for all LE D, the projection 

L is reduced. 

If a closed path T can be drawn through any subset of the dealternators and one 

other crossing of KP such that it intersects KP at no other point, call rr a dealternutor 

reducibility path. K, is dealternator reduced if and only if it has no dealternator 

reducibility path (Fig. 4). 

Definition 4.2. KP is said to be deulternutor connected if for each LE D, L is 

connected. 

If a closed path T can be drawn through any subset of the dealternators of K, 

such that T intersects KP at dealternators and nowhere else, call this path a 

deulternutor severing path. KP is dealternator connected if and only if KP has no 

dealternator severing path (Fig. 5). 
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Fig. 4. (a) K, has a dealternator reducibility path. (b) There exists LE D such that L is not reduced. 

(a) (b) 

Fig. 5. (a) K has a dealternator severing path. (b) There exists Lt D such that L is disconnected. 

Note that if an m-almost alternating projection is not connected and reduced, it 

cannot be dealternator connected and reduced. We are assuming, however, that K, 

is reduced and connected. 

The following lemma gives us the remaining tools needed to prove the theorem. 

Lemma 4.3. If KP is dealternator connected and dealternator reduced, then for links 

L, M E Li and L’ in Li+, , the following hold: 

(i) maxdeg( L) = maxdeg( M) and mindeg( L) = mindeg( M). 

(ii) maxdeg( L’) = maxdeg( L) - 2 and mindeg( L’) = mindeg( L) - 2. 

Proof. We prove this using the A- and B-channel states of projections LE D. We 

will begin by showing that for elements L and M of a given L,, the A-channel states 

S: and S”, and the B-channel states SF and S: are such that IS;‘1 = IS”,1 and 

[Sf[ = ISLl. We must also show that for L’E Li+, , IS?,1 = IS;‘1 - 1. These facts depend 

explicitly on whether KP is dealternator connected and reduced. We argue by 

induction on i, the number of A-channel splits at the dealternators in a polynomial 

decomposition at the dealternators of Kp. 

The case i = 0 refers to a set with one element Lo and is trivially true. 

Assume that for L, ME L,, Osj < m, Is;‘1 = Is”,~. Now consider L’E L,,, . L’ has 

one more A-channel split at the dealternators than elements of L,. Each L’ can be 

obtained from an element L in L, by changing the split at one dealternator from a 

B-channel to an A-channel split. 
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The change in the split will either join two distinct components in S;‘, resulting 

in IS$ = IS;‘1 - 1 or it will join a component to itself, creating a new component 

and resulting in ISt.l= IS;1 + 1. We will show that the second possibility never occurs. 

Note that the A-channel state of L, reflects the state of KP with the greatest 

number of components. This follows from the fact that the A-channel state of Lo 

is identical to the A-channel state of the alternating link obtained by changing all 

of the dealternators of K,,. 

We obtain L’ from L, by a sequence of dealternator switches. Originally, we can 

think of Sf,, as a set of white A-islands in a shaded B-sea. Switching dealternators 

forms white bridges from island to island. A shaded lake is formed when a bridge 

joins a white region back to itself. This could occur only when there is a dealternator 

severing path 7~,, as in Fig. 6. Since there are no such paths, each dealternator switch 

must join two distinct components and therefore, it must be the case that IS;‘,1 = 

Is;‘1 - 1. 

(a) (b) 

Fig. 6. (a) Dealternator switches form bridges between islands. (b) Shaded lakes occur when there is a 

dealternating severing path. 

The induction is thus complete, yielding the fact that for any 0 s is m, and for 

all L, ME Lj, ISfl= IS”,l. Furthermore, any L’E L,,, can be obtained from LE L, 

for some L so ISt.l= IS:1 - 1. 

We know that the maximum degree of L, a connected reduced alternating projec- 

tion, is given by the term [7] 

Avd’l.Pl’ 

where S is the A-channel state of L, V is the number of crossings in L and 

d = -A2 - Ae2. Hence, 

maxdeg( L) = maxdeg( M). 

Furthermore, 

maxdeg( L’) = maxdeg( L) - 2, 

where L E L, and L’ E L,, , . 

The arguments that mindeg( L) = mindeg(M) and that mindeg( L’) = mindeg( L) - 2 

use exactly similar induction arguments concerning the changes from B-channel 

splits to A-channel splits at dealternators of K,. 



Because the number of components in the A-channel states of all links in Li are 

the same, the coefficients of the maximum degree terms of the elements of L, are 

equal for a given i and are either +1 or -1. Furthermore elements of L,,, will have 

the opposite sign for the coefficients of their maximum degree terms since ISt.l= 

Is+1. 0 

Theorem 4.4. Zf a link K has n crossings in a dealternator reduced and dealternator 

connected m-almost alternating projection Kp, then span(( K)) s 4( n - m - 2). 

Proof. We begin by giving an explicit expression for the bracket polynomial of K,, 

using polynomial decomposition at the dealternators of K,,. 

Let 

H, = C (L). (1) 
LFL., 

We can then rewrite the bracket polynomial of K as 

(K) = ; A2’-“‘Hi. 
,=o 

This sum represents the mth stage in the construction of the bracket polynomial 

of K by splitting at m crossings. 

We know that for all L, ME L,, maxdeg(L) = maxdeg(M) and mindeg(L) = 

mindeg( M) so 

maxdeg( H,) = maxdeg( L), 

mindeg( H,) = mindeg( L), 

because H, is simply a sum over the elements of L,. 

Furthermore since for L E Li and L’ E L, + , , maxdeg( L’) = maxdeg( L) - 2 and 

mindeg( L’) = mindeg( L) - 2 we know: 

maxdeg( H, + ,) = maxdeg( H,) - 2, 

mindeg( H,,,) = mindeg( H,) -2. 

By expanding (2) we see 

Thus, 

maxdeg(A”H,,,) = m +maxdeg( H,,,), 

maxdeg(A”‘-’ H,_,)=m-2+maxdeg(H,,, ,)=m+maxdeg(H,,,), 

maxdeg(A “‘Ho) = -m + maxdeg( H,,) = m + maxdeg( H,,,). 

So in general, 

maxdeg( A”-“’ H,)=maxdeg(A”-“‘H,) for O<i,j~=,m. 

(3) 
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By an exactly similar argument, 

mindeg(A2’-” Hi) = mindeg(A”-“H,) for 0~ i,j 6 m. 

By dealternator reducibility and dealternator connectedness, for all i, LE Li 

implies L is a reduced, connected alternating projection. Hence, span((L)) = 4( n - m) 

by [6-8,12,14]. This yields span( Hi) = span((L)), LE Li, and span((K)) s span( Hi). 

Therefore, span ((K)) C 4( n - m). 

We have seen that coefficients of the maximum and minimum degree terms of Li 

alternate sign with i and are all equal to *l. 

As before (Lil = (7). We make note of the formula: 

(4) 

Because ILil=(y), we know the coefficient of the maximum degree term of Hi is 

k(T). From (4), we may conclude that the maximum degree terms of KP sum to 0 

and by a similar argument, the minimum degree terms of KP sum to 0. 

Therefore, span((K)) G 4( n - m - 2). 0 

Corollary 4.5. If an almost alternating link L has n crossings in an almost alternating 

projection LP, then span(( L)) s 4( n - 3). 

Proof. If the projection LP is not reduced, we can replace it with a reduced almost 

alternating projection of fewer crossings. Since LP is almost alternating, it must in 

fact be dealternator connected. If it were not dealternator connected, the dealternator 

would be the only connection between two alternating tangles. Flipping one of the 

tangles will untwist the dealternator and yield an alternating projection, contradicting 

that part of the definition of almost alternating which excludes alternating links. 

Suppose now that LP is not dealternator reduced. It must have a dealternator 

reducibility path. If this path passes through the A-channel of the dealternator, it 

must pass through the B-channel of the other crossing and vice versa. Hence, it 

must take the form of Fig. 7. By untwisting the dealternator we can see that L must 

be an alternating link, again contradicting the assumption that L is almost alternating. 

(b) 

Fig. 7. (a) L, has a dealternator reducibility path. (b) Untwisting the dealternator shows L is alternating. 
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Thus LP must be dealternator connected and dealternator reduced. Applying the 

theorem gives span(( L)) s 4( n - 3). 0 

Corollary 4.6. If L is an alternating link in an almost alternating projection of n 

crossings and if span(( L)) = 4( n - 3), then the following hold: 

(i) n is the least number of crossings in any almost alternating projection of the link. 

(ii) The crossing number of L is either n, n - 1 or n -2. 

Proof. Suppose there is an almost alternating projection with fewer than n crossings. 

Corollary 4.5 would then imply that span((L)) <4(n -3), contradicting our 

hypothesis. 

To see (ii), we use the fact (due to Murasugi and Thistlethwaite, see [7]) that a 

link in a nonalternating projection of k crossings has span((L)) < 4k. Thus it must 

be the case 4( n - 3) < 4k where k can be taken to be the minimal crossing number 

of this nonalternating link. Thus kc n <k +3, yielding the result. 0 

In fact, span(( K)) does equal 4( n - 3) for all but three of the almost alternating 

knots of nine or fewer crossings. 

Remark. We conjecture that if an m-almost alternating projection does have some 

number of dealternator reducibility paths, then span((K)) s 4( n - m - 1). This bound 

is higher but still useful in some cases. It has also been realized by certain projections 

with dealternator reducibility paths. 

5. Conclusions 

Not all results about alternating knots and links can be generalized to the class 

of almost alternating knots. The result of Crowell [4] (see also Gabai [5]) that 

Seifert’s algorithm applied to an alternating link always yields a Seifert surface of 

minimal genus cannot be extended to almost alternating links. For any particular 

almost alternating link, one can find projections for which Seifert’s algorithm will 

yield Seifert surfaces of arbitrarily high genus. Starting with a given almost alternating 

projection, the under-strand at the dealternator can be isotoped as in Fig. 8, resulting 

(a) (b) 

Fig. 8. (a) The dealternator crossing of the projection L. (b) L’ is a new almost alternative projection. 
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in a projection which is still almost alternating, but for which the corresponding 

surface obtained by Seifert’s algorithm has genus one greater than the genus of the 

surface obtained from the original projection. Iterating this process will generate 

surfaces of arbitrarily high genus. 

There have been a few other generalizations of alternating links. In particular, 

there is a hierarchy among the classes of alternate, homogeneous, and pseudo- 

alternating, where each class contains the former. It is important to note that the 

class of almost alternating links does not fit into this hierarchy and is indeed a class 

of independent importance. The appendix to [3] shows that not all of the nonalternat- 

ing knots of ten or fewer crossings are homogeneous, while we have shown these 

knots to be almost alternating. Also, Cromwell states that all torus links are 

homogeneous, while (2, q) torus knots are not almost alternating. 

There are many relevant open questions relating to almost alternating knots and 

links. 

(1) When is an almost alternating link splittable or prime? As in the case of 

alternating links, we would like to be able to determine from the almost alternating 

projection whether a link is splittable or prime. 

(2) What torus knots are almost alternating? We conjecture that the (3,4) and 

(3,5) torus knots are the only ones. In general, what is the almost alternating number 

m of a (p, q) torus knot? 

(3) What almost alternating projections are projections of the unknot? 

(4) How can it be shown that a knot other than a satellite knot is at least 2-almost 

alternating? We do not know if the three eleven crossing knots which have not been 

seen to be almost alternating are in fact not almost alternating. These three knots 

do have 2-almost alternating projections. 

(5) What percentage of knots of n crossings are m-almost alternating for each 

integer m from 0 to n/2? Does some m depending on n predominate as n goes to 

Oo? 

(6) Show that there exist m-almost alternating projections which realize the 

minimal crossing number of that link. Intuitively, dealternators which are spread 

far apart in a large alternating grid should leave the crossing number the same as 

for the corresponding alternating link. 
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