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Abstract

The purpose of this paper is to give some generalizations, in the context of Banach manifolds, of Suss-
mann’s results about the orbits of families of vector fields (Sussmann, 1973 [16]). Essentially, we define
the notion of “/!-orbits” for any family of vector fields on a Banach manifold, and we prove, under appro-
priate assumptions, that such an orbit is a weak Banach submanifold.
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1. Introduction

Let X be a family of local vector fields on a finite dimensional manifold M. According to
the context of [16], the orbit of X through x € M is the set of points ¢t)k(" 0---0 ¢,)]( '(x) where
{X1,..., Xk} is any finite family of vector fields in X and qb,Xi is the flow of X;,i=1,...,k.
One most important result of H.-J. Sussmann in [16] is that each such an orbit is an immersed
submanifold of M. The proof of this result is founded on the two principal arguments:
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(i) Enlargement of X to the family X of vector fields of type (d),}; Po.ivo ¢,)f 14«(X), for appro-

priate finite sets {X1, ..., X, X} C X and each orbit of X is also an orbit of X

(ii) The distribution D generated by X is integrable and each maximal integral manifold of Dis
an orbit of X and so also is an orbit of X.

As the dimension of M is finite, the fundamental argument for the proof of this last property is
that D is finite dimensional.

For a generalization of such a result to Banach manifolds, we can enlarge any family & in
the same way as (i), but in (ii), the argument of finite dimension of the distribution D is, of
course, no more valid. Naturally, we can hope that there exist some conditions under which
analog arguments work for some “characteristic type” of families of (local) vector fields on
Banach manifolds. So, given a set X" of local vector fields on a Banach manifold M, after having
enlarged X to a family X of vector fields (in the same way as (i)), we can look for the orbits
of X. It is natural to consider the set of points of type

Y=, 0oy (1) or y=lim gt ooy (x) (1)

as an orbit through x for any finite or countable family {Xj, k € A} of vector fields in X. Note
that, if we restrict us to finite sets A, the binary relation defined by

yox ifandonlyif y=¢ " 0. 0 (x),

is an equivalence relation. Moreover, in this case, there exists a piecewise smooth curve which
joins x to y and whose each connected part is tangent to X; or —X; for somei =1,...,n.

Unfortunately, in the previous general case, the associated binary relation clearly associated
to (1) is not any more a relation of equivalence. The X -orbit of x will be the set of such
points y under some conditions so that the associated binary relation is an equivalence rela-
tion.

Given a family £ C X(M), a &-piecewise smooth curve is a piecewise smooth curve
y : [a, b] - M such that each smooth part is tangent to X or —X for some X € &. In the context
of (1), for such a point y, there exists a family yx : [0, Tx] = M of X'-piecewise smooth curves
such that the sequences of ends x; = yx(T) converge to y. When the sequence T} converges to
some 7 € R we have a continuous curve y : [0, T] — M such that y(0) =x and y(T) = y. For
such a curve y, there exists a countable partition # = (t5)qca Of [0, T] such that, the restriction
of y to Jty, ty+1[ is an integral curve of X or —X, for some X € &'. In particular the family
(Tq = ty+1 — ty)aca belongs to I1(N). Such a curve will be called an /!-curve of X. The pre-
cise definition of an orbit of X' (see Section 2.1) is based on this notion of /!-curve but for the
family X. Of course, we need some sufficient conditions under which I!-curves exist. It is easy
to see that condition of “local boundedness” is a natural necessary condition, but, for the local
existence, we need more: the local boundedness of the s-jets of vector fields of X, for sufficiently
large s > O (see Section 2.2). Under such assumptions, we can prove the existence of /!-curves
which are the integral curves of a vector field of type (see Theorem 1):

Z(x.tu) =Y ua(t)Xa(x)

aeA

where:
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A is a finite, countable or eventually uncountable set of indexes;

& = {Xy}aea are defined on a same open set and their s-jets are locally uniformly bounded
(see Definition 2.3);

u = (Ug)aea is a bounded integrable map from some interval I to ['(A).

In fact, in this context, we get a flow cb,f (t, ) of such a vector field Z.

Let £ = {X,}qea be a set which satisfies a local boundedness condition for the s-jets for
sufficiently large s > 0. The existence of /!-curves which are integral curves of some X € &
(or —X) on any subinterval |¢,, t,+1[ associated to a countable partition of an interval I is ob-
tained by application of the previous resultto u = I'" = (I';) where I, is the indicatrix function
of ]ty, ty+1[. Denote by @f (t, ) the associated flow, given any x € M, for T = || (ty+1 —ta)acAall1,
T—> Yr(r) = q§§ (T, x) is a map from a neighborhood of 0 € I'(A) into M such that Y (0)=x
and, of class CS~2, if the condition of local boundness of s-jets of elements of X, are satisfied
(see Theorem 2).

Recall that our purpose is to prove, under appropriate assumptions, that each X'-orbit is a
(weak) submanifold of M as integral manifold of some distribution. According to the proof of
Sussmann’s result, we first enlarge X" into the set X given by

X={Z=0.07), Y, Q)=¢:;po-~~o¢[)fl for Xi,...,X, € X
and appropriate v € R}

(see Section 3.1). From this set X, we associate an appropriate pseudo-group Gy of local diffeo-
morphisms, which is generated by flows of type ¢,X with X € X and diffeomorphisms of type
955 (Izll1, .) (as we has seen previously) or its inverse for & C X. From this pseudogroup we
get a coherent and precise definition of an orbit of X or A" orbit in short. Note that, under this
definition, X and X have the same orbits, and moreover, if y is in the orbit of x, there is an / 1
curve which joins x to y and whose smooth parts are tangent to vector fields of X Note that the
binary relation associated to Gy is then an equivalence relation. So, if y belongs to the X’-orbit
of x, either we have an X -piecewise smooth curve which joins x to y or there exists a sequence
yx of X-smooth piecewise curves whose origin is x (for all curves) and whose sequence of ends
converges to y (see Proposition 3.4 for a complete description of an X orbit).

On the other hand, for any x € M, under appropriate assumptions, we can associate the vec-
tor space ZA)X =1 (22 )x which is the set of all absolutely summable families ZYE P yY(x). In

fact, in the same way, we can also associate the vector space D, = I!(X), generated by X. Of
course D, C ﬁx (see Section 3.3) and we endox these vector spaces with a natural structure
of Banach space. So we get weak distributions D and D on M such that D is invariant by any
flow of vector fields in & and which is “minimal” for such a property (see Remark 3.7). Now,
we need some conditions on X' which makes D integrable. We will give two types of sufficient
conditions.

For tlle first one (called (H) in Section 4.2), we assume that, for any x € M, the Banach struc-
ture on Dy is isomorphic to some /! (A) and there exists a family {X4}aeca of vector fields defined
around x, which are “locally umformly bounded at order s’ and such that { X, (x)}qea is an un-
conditional symmetric basis of D Under this assumption, D is lower trivial (see Section 3.1)
but we cannot prove directly that D is X< -invariant; in particular, we cannot use directly Theo-
rem 1 of [13]. So we first prove that the map v/, previously defined, gives rise to a local integral
manifold of D through x of class C* for s > 2. This leads us to prove that D is X’g—invariam
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and so we can now apply Theorem 1 of [13] and we finally get a smooth integral manifold of D.
When D is closed, we then obtain that each I!-orbit has a structure of weak Banach manifold.
Note that the assumption (H) is always satisfied when Dis finite dimensional (see Remark 4.3).
So this result can be seen as a generalization of the proof Sussmann used in [16].

The second sufficient conditions (called (H') in Section 4.3) impose that D is “upper trivial”
(see Section 4.3) and also some local involutivity conditions on X. Under these conditions, by
using a result of integrability from [13], we can show that Dis integrable and, when D is closed,
each maximal integral manifold is an X-orbit (Theorem 5). Moreover, if we consider the family
X* defined by induction by

X'=x and X=X"Tu{x,¥], XeXx, Yext !} fork>2

we can associate, as previously, a weak distribution Dk = 1(2( k). When such a distribution
satisfies the conditions (H') and is closed, we have Df = D and so we get another sufficient
conditions under which each X-orbit is a weak manifold modelled on some /!(A). For the case
where A is a finite family of global vector fields we get a new proof of the result of accessibility
in [15] (see Example 4.5). Moreover, when X" is a countable family of global vector fields, the
reader can find an application of these results in [14].

All these results can be naturally applied in the context of control theory on Banach mani-
folds (Theorem 7 and Theorem 8). These last theorems can be considered as a generalization of
Sussmann’s accessibility results of [16] in finite dimension.

The paper is organized as follows. In the next section, we study the problem of existence of
I'-curves. For any set X of vector fields which has the “local boundedness of the s-jets of vector
fields”, we give sufficient conditions for the existence of /!-curves (Theorem 1) and we apply this
result to get /!'-curves tangent to X € X or —X, on each subinterval associated to a countable
partition. We also construct the map ¥ mentioned previously (Theorem 2).

The notion of orbit of X or X'-orbit, in short, is precisely defined in Section 3. In Section 3.1,
we construct the announced enlargement X of X, the associated pseudogroup Gy and we give
a precise definition of an X'-orbit. The following subsection is devoted to all definitions and
properties of distributions which will be used later. .

Then the characteristic distributions D and D generated by X and X respectively, are defined
in Section 3.3. Finally, the main results of structure of weak Banach manifolds on X -orbits are
given and proved in Section 4. In Section 4.2 under conditions (H) the corresponding result is
given in Theorem 3. Under conditions (H'), the main results are given in Theorem 5. Section 5
is devoted to some applications: on one hand we obtain a new criterion of integrability of /!-
distributions in Theorem 6 (see Remark 5.1). On the other hand, we give general results on
accessibility sets as applications of the previous results on X'-orbits (Theorem 7 and Theorem 8).
The last section is devoted to the proof of Theorem 2.

2. On [!-integral curve of a uniformly locally bounded set of vector fields
2.1. Problem of existence of I'-integral curve

Let M be a smooth connected Banach manifold modelled on a Banach space E. A local
vector field X on M is a smooth section of the tangent bundle 7 M defined on an open set of M

(denoted by Dom(X)). Denote by X (M) the set of all local vector fields on M. Such a vector
field X € X(M) has a flow ¢>tx which is defined on a maximal open set 2y of R x M.
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In this whole work, A, B and A will denote a finite or a countable, eventually uncountable,
ordered set of indexes. For such a countable set we shall often identify this one with N as ordered
set of indexes.

Consider a subset X’ of X'(M). As we have seen in the introduction, a curve y : [a, b] > M
is called an /!-integral curve of X, if there exists a sequence ¢ = (fy)qeca, Where A is a finite or
countable set such that:

—to=aandt, | <ty <bforaeA;

— t,=bif Aisfinite (A={l,...,n}) orlimy_, oty = b (when A is countable);

— the restriction of y to each subinterval ]¢,_1, 7,[ is an integral curve of X, or —X, for some
Xy eX.

For such a curve y, the point xg = y (a) (resp. x; = y (b)) is called the origin (resp. the end)
of y and we say that xg is joined to x; by an [!-integral curve of X.

It is clear that for any finite set A = {0, ..., n} any /'-integral curve is smooth by parts and, if
wesettg=aand 1, =1y —t4_1 fora =1, ..., n, then there exist vector fields X{,..., X, in X
such that fore =1, ..., n, we have

Xo-
y(s) =X o¢, ' o-0¢Xi(y(@) forselta1.tulanda=1,...,n. )

Given a countable set A= N, and an / 1-integral curve y of X, there exists a sequence of vector
fields {Xy, @ € A} in X such that (2) is true for all « € A. In particular, we must have

Jim g oo gy (v (@) =b. 3)

We can cover such a curve by a finite number of charts (V;,¢;), i = 1,...,r so that any
¥ (Jty—1, t4[) is contained in one domain V;. Note that there exists one of these domains which
contains all y(Jty—1, t4[) for o > ag for some oy € N* and we can assume that V, has this
property. Now, on each V;, a norm || ||, can be defined on each fibre T, M, for x € V; by
lullg;, = lITx i (u)|| where || || is anorm on E. From (3), for any o € A, if y (Jtg—1, t[) C Vi, we
must have

sup{ | Xa (v (0)||,,» 7 € Va1, ta[} is finite.

On the other hand, consider any countable set A = N and any subset {X,, o € A} of X such
that Dom(X,,) contains V and

sup{ ||Xa(x)||¢[_, xeV, ae A} is finite.

Let be T = (ty) € I} (A) such that 7, > O for anyx € A. Settg =0 and 7, = Z?:l T forae A
and T = limy— o0 ty. We set y(0) = x € V. If the flow ¢>IX'(x) is defined for t > 71, we set
y(t) = dX1(t) for t € [1g, 11]. By induction, suppose that we have defined y : [0, #,] — V such
that y : [, ti;1] — V is defined by y (¢) = ¢>f(_iti(y(ti)) forall i =1,...,«a. Then if the flow

¢IX‘“‘ (y (ty)) is defined for r > 144 then we put y () = ¢;X_azzl(y(ta)) for t € [ty, tyr1]. So,
when we can construct y at each step, we get an ['-integral curve of X. Consequently, for the
existence of [ 1-integral curve associated to a countable subset {X,, o € A} of vector fields of X,

we have to produce sufficient conditions under which sequences of compositions

X X X
qbta‘xo...oqsri' o...od)fll’
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converge when o — 0o and the limit defines a local diffeomorphism. These conditions are
assumptions of uniform local boundness on the jets of vector fields (see next subsection).

Remark 2.1. Consider a subset { X, o € A} of X with the previous assumptions and T = (7,) €
I'(A). Recall that, for any local vector field X, for v # 0, we have ¢,X (x) = 5(/ "(x), when the
second member is defined. It follows that given any v > 0if an /!-integral curve y of {X,, a € A}
is defined on [0, T'] as before, we can also define an /!-integral curve 7 of {%Xa, o € A} in an

obvious way on [0, vT'] and we have y (¢t)) = y (vt) for any 7 € [0, T'].
2.2. Set of vector fields uniformly locally bounded at order s

Let IT : TM — M be the tangent bundle of M, with typical fibre E. Local vector fields on
M are local sections of this bundle. Given X € X' (M), the s-order jet of X at x € M is denoted
by J¥(X)(x). The set JS(T M) of s-order jets of local vector fields on M is a Banach bundle
IT° : J5(T M) — M of typical fibre E x L(E, E) x L*(E, E) x --- x L5(E, E) where LK(E, E),
2 < k < s is the Banach space of symmetric k-linear maps from E* into E endowed with the
usual norm (see for instance [7] or [17]). The typical fibre E x L(E, E) x L2E,E) x -+ X
L5(E, E) of J°(T M) is a Banach space for the norm || ||s which is the sum of the norm on E,
the canonical norms on £(E, E) and on L¥(E, E) for 2 <k <s.

Consider a chart (V,¢) on M centered at x. On V there exists a trivialization (¢, @) of
IT°1~1(V) on ¢(V) x JS(E) where JS(E) = E x L(E, E) x L*(E,E) x --- x L5(E, E) is the
typical fibre. On V, we have

VyeV, @I X)(]=7"(0:X)(¢().

So, on [IT*]1~1(V), we have a norm || l¢ characterized by
[P &W, =17 @XM,

Lemma 2.2. (See [11].) Let V' be an open neighborhood of x having the same properties and
(¢', @) the associated trivialization. Denote by || J*(X)()|l¢' = 175 (@, X) (@' ()5 the asso-
ciated norm on [ITS1~Y(V"). Then there exist a neighborhood W C VNV’ of x and a constant
C > 0 such that

VyeWw, |JIX1()

o <ClIxIm|,-

Definition 2.3. Let X" be a set of local vector fields on M. Given x € M, we say that X" satisfies
the condition (LB(s)) at x (Locally Bounded at order s), if there exist a chart (Vy, ¢) centered at
x and a constant k > 0 such that:

For any X € X', whose domain dom(X) contains V,, we have

sup{ || 7°[X1(y)|

5 XeX yev)<k 4)

Remark 2.4. It follows from Lemma 2.2 that the property (4) does not depend neither on the
choice of the norm on E, nor on the choice of the chart.
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Examples 2.5.

(1) Let E and F be two Banach spaces and T : F — E a continuous operator. Given any finite
or countable subset {a,, o € A} uniformly bounded of F (i.e. ||ay|| < k for any o € A) the
assignment x — X, (x) = x + T'(ay) is a vector field on E and {X,, « € A} satisfies the
condition LB(s) at any x € E and for any s € N*,

(2) Let L(F, E) be the set of continuous operators between the Banach spaces F and E. Given
a smooth map @ : E — L(F, E), we denote by &, the continuous operator associated to
x € E. By smoothness of @, for any x € E and s € N*, we can find an open neighborhood U
of x € E such that the jet of order s of @ is bounded on U (in the sense of Lemma 2.2). Then,
for any finite or countable subset {a,, o € A} uniformly bounded of F, denote by X, the
vector field on E defined by X4 (x) = @4 (ay). The set {X,, o € A} satisfies the condition
(LBs) at any x € E and for any s € N*.

(3) Let X ={Xy,..., X,} be a finite family of (global) vector fields on a Banach manifold M.
Then X satisfies the condition (LB s), for any s € N.

2.3. Sufficient conditions for the existence of I'-integral curves
Notations 2.6.

e B(x,r) (resp. By(x,r)) denotes the open (resp. closed) ball centered at x € E of radius r in
the Banach space E.

e Given any Banach space L, if f : R x E x L — E is a smooth map, we denote by D> f
(resp. D3 f) the partial derivative relative to E (resp. L).

e Let R4 will be the set of families (ug)qea Of absolutely summable real numbers where
A is countable or eventually uncountable set of indexes or the set of finite real sequences

u=y,...,uy)if A={1,...,n}. We endow R4 with the norm
el =) Jua .
aeA
It is well known that (R4, || ||1) is a Banach space.

e Given any interval J in R we denote by L 117(.] ) the set of functions u : J — R* of class L!
which are bounded. On L })(J ) we define:
= lully = [} X gen lua®ldt = [ lu@)l dr.
= llullos =sup{} ycq lua@®l, t € J} =sup{llu®l, t € J}.

Given a finite, countable or uncountable ordered set of indexes A, let

£={Xy, 0 €A, Xq€X(M)}

be a set of vector fields on M such that ﬂae 4 Dom(X) contains an open set V' of a chart (V, ¢)
centered at x such that the condition (LB(s +2)) at x is satisfies for some s € N. After restricting
V if necessary, we can suppose that there exists k > 0 such that

sup{ |72 (X) ()|

Without loss of generality, we can suppose that V is an open set of the Banach space E. To
the previous set of vector fields &, we can associate maps Z of type:

¢,X€§,er}<k
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Z:JxVxLy(J)—E,
(%, 1) > Z(tx,u) =Y ui (1) X (x).
ie

It is easy to see that this map Z is of class C**! relatively to the second variable.
Given such a map Z, let J' be a subinterval of J and (79, x,u) € J' x V x L})(I). A map
f :J' — V is an integral curve of Z, with initial condition f(fy) = x if

t

viel, f(t):x—i—/Z(s,f(s),u)ds. (5)
fo

The following theorem gives the existence of a local flow for Z:

Theorem 1. Consider a fixed u in Lé(J), and we set ¢ = ||u|lco. Let (to, xo,7, T', Ty) be an
element of J x V x R*+3 such that

Jto—T 10+ T'[CJ and Bp(xo,2r)C V.
Moreover denote by
Io=1[to — To, to + Tyl and By= B(xg,r —kcTp).

If Tp < min(ﬁ, T'), then there exists a flow @, : Iy x By — V, with the following properties:

1. For all x in By, each curve @,(.,x) : Iy — V is the unique integral curve of Z, with initial
conditions @, (ty, x) = x.

2. Forallt € Iy, there exists an open connected neighborhood Uy of xo, contained in By such
that the map @, (t,.) : Uy — @, (t, Uy) is a C*-diffeomorphism. Moreover, if D,®,(t, .) and
D%@u (t,.), denote the first and second derivative relative to the second variable, we have

t
VxeUy, Dry®,(t,x)=Idg+ / DQZ(S, D, (s, x), u) oDry®, (s, x)ds,

0
t

D3®,(t,x) = /(D%Z(s, @y (s, %), ) 0 (Da®u (s, x), Da®y(s, x))
0
+ D2Z(s, D, (s, x), u) o D§q§u(s, x)) ds.

This result is certainly well known for specialists. The reader can find a complete proof
in[11].

Let @ and ¥ be two local diffeomorphisms on M which are defined on the domains 2¢
and 2y respectively. When ¥ (£2¢) N 2¢ # ¥, we can define the composition @ o ¥ which
is a local diffeomorphism defined on ¢ (2¢) N 24]. In this situation we will say that
@ o ¥ is well defined. More generally, we can consider any finite composition @, o --- o @
of local diffeomorphisms @1, ..., @, when successive compositions @; o (P;_j o --- o @y) are
well defined for i =2,...,n. So, for a finite set A = {1,...,n}, and a finite set & = {X,}peca
of vector fields with the associate flows {qb,’i"}aeA, it is clear that, for T = (ty, ..., 7,), under
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appropriate assumptions, the composition ¢§ = tXn "o---0 ¢§§ !is defined. When A is a countable

or eventually uncountable ordered set of indexes we have the following result:

Theorem 2. Let £ = {Xy}aca be a set of local vector fields such that Dom(Xy) contains V for
alla € A. Let be xg € V and r > 0 such that By (xo, 2r) is contained in V and we assume that &
satisfies the condition (LB(s 4 2)) at xo where the relation (4) is true for all y € V and for the
integer s + 2.

Then, there exists an open connected neighborhood Uy of xo, such that:

1. Fix any T = (tq)aea € R with ||7||1 < %+ Let B be any countable subset of A which con-
tains all the indexes o such that 7, # 0. Identifying the set B with N (as ordered sets), we
denote by {t,,, m € B} the associated subsequence of {ty, o € A}. Then for any x € Uy we
have:

(@) ¢%(x) =liMpo0 o 0+ 0 P! (x) exists.
(0) ¢5 () =limpoo §L 0--- 09X (x) exists.
(¢c) The map qﬁ X > qbf (x) is a local C*®-diffeomorphism whose inverse mapping is
Bz x> §7 (x).
2. The map W* defined in the following way:

r
(1808 B(O, —) -V,

k
TP (1) = ¢§ (x) is of class C*.

When the point x will be fixed we simply denote ¥ instead of ¥*.

The proof of this theorem is long and technical, so it will be given in Section 6.
Remark 2.7.

1. Denote by <Df (resp. éf ) the flow given in Theorem 1 associated to & and u = I'" (resp.
i = I'") (see Section 6). On the associated neighborhood U, we have

5 (t,2) = (Itlh — 1, 5 (=71, 2)).
¢ (2) = D5 (I, 2).
#)=[¢¢] '@ =t (Itli, 2) = E(—lTli, 2).

2. In fact, both limits ¢§ (x) and c/Sf (x) do not depend on the choice of the set B but only depend
on the countable set A; = {o € A such that 7, # 0}. Moreover, the set A; is independent of

x € Uy.
3. To each 7 the associated set A; = {& € A such that 7, # 0} can be written A; = {ok, k € N}
or A ={ax, k=1,...,n}. Consider the associated subdivision {t,, }xen of the interval

[0, T'] defined by
i
0=0<t =t < <ti=) |t < <T= ) |tal.
k=1 aEA;
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Fix some x € Uy and let (xg)q;,ca, be the sequence defined by
Xo
xo=x, and forax € Ar, xx=¢q, " (k—1)= @5 (xk—1).

Then the curve y : [0, T] — M defined by y (s) = qb;(f,kk_l (xk—1) = @f (s,x)fors e [ti—1, t[
is an ['-curve which joins x to lIf‘s’%(x) On the other hand, to qgf we can associate the curve

[0, T] — M defined by y(s) = y(T —5). So y joins y(0) = ¢§ (x) to x. We also call
such a curve, the /!-curve associated to qb,

3. The orbits of X or X -orbits
3.1. Definition of an orbit of X
In this section, we consider a fixed set X" of vector fields on M with the following properties:

(Hi) M =J,cx Dom(X);

(Hii) there exists s > 0 with the following property: for any x € M there exists a chart (Vy, ¢)
centered at x such that for the set X of vector fields X € X whose Dom(X) contains x
we have

|JS+2

sup(| ¢,X€X}<oo
The announced enlargement X of X is obtained from the following lemma:

Lemma 3.1. Let (Vy, ¢) be a chart centered at x and a constant k such that
sup{ [ /P2 IX1(0) [, X € X} <k.

Let /'\A,’x be the set of local vector fields of type Y = (qb,);” 00 ¢t}f‘ )«(v.X), for any v > 0, where

X1,...,Xp, X belongs to X, whose domain contains x and such that
|72 V1 |, < k. 6)
We set
i=|J &
xeM

@) X contains X and satisfies the conditions (Hi) and (Hii).
(i) Let X be the set of vector fields obtained from X in the same way as X from X. Then, we
have X = X.

Remark 3.2. According to Remark 2.1, the flow of any vector field Y = (q),); Po. .o q&t)f Ne(.X)
can be written

Y X X X X X
o; = _lllo--~o¢_;;o¢t/vo¢)tppo~--o¢tll. @)
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Proof. Let be x € M. For any X € X,, we have (¢é( )« X = X and, by construction, the vector

fields in )E'X sAatisﬁes the condition (6) with the same constant k, so X is contAained in )Qx_ If
follows that X satisfies (Hi). The condition (Hii) follows from the definition of X.

By construction, )2)6 18 the set of vector fields Z = (¢,1;” o-- -oqb,)l/‘ )«(v.Y) where Y1,...,Yp, Y

belongs to X for some v > 0. As we have ¥ = (¢,§" 0---0 ¢,)1(‘)*(v’.X), from Remark 3.2 we
get

Z= (g5 00 0ay!),(vX)

for appropriate vector fields X1, ..., X;;, X in X’ and appropriate real values s1, ..., Sy.
Now, on the considered chart (Vy, ¢), we have ||JS+2[Y](x) lp <k, X € X.So we also have

1752 Z](x)| < k. We conclude that Z belongs to X. o

Let Gx be the pseudogroup of local diffeomorphisms ¥ which are defined in the following
way:

W =¢,0---0¢go---o¢p) when these compositions are well defined and where ¢ is a local
diffeomorphism of one of the following type:

@) ¢er for some X € X and 7 € R.

(i) ¢§,’§ or [qbf,’;]_l as defined in Theorem 2, where & = {X,, « € A} is a finite or countable
subset of X and 7 € R4,

Comments 3.3.

1. From (7) any flow qbf forY e X belongs to Gy.

2. Letbe ¥ = ¢, o--- 0 ¢ € Gy. By construction of ¥, to each ¢y is associated a family

& = {Xq, o € A} which is a finite or countable subset of X and 7 € R4, we have a
real positive number Y ;_, |lzx[l1 < oo associated to ¥. If ¢ is of type (ii), according to
Remark 2.7.1, denote by @, the flow associated to each & with u = I'* or u = [ if
or = ff or ¢ = [qbff]_l respectively. If ¢ is of type (i) & is reduced to some Xy € X and
we have @ (1, y) = ¢, (y).
Take any pair (x,y) € M? such that y=¥(x). Wesettyg=0and 7, = Zf:l lITill1 for k =
1, ..., n. Consider the sequence (xy) defined by xo = x and xx = D (tx, xx—1). So for each k,
we can consider the I!-curve Vit [t—1, tx] = M defined by () = @ (t — tx—1, xx—1) (see
Remark 2.7.3). By construction, we have y (fx) = x; and y = x,,. Soif T = ZZ:] lTell1 we
get a sequence of I-curve y =1[0,T] — M, defined by y|(s,_, 5[ = Yk, such that y(0) = x
and y(T) =y.

3. Given a family § C X'(M), recall that a &-piecewise smooth curve is a piecewise smooth
curve y : [a, b] — M such that each smooth part is tangent to X or —X for some X € &.
When y = ¢ry (x)forY e X, from (7), we can clearly associate a &-piecewise smooth curve
which joins x to y.

Now, consider any & = {X,, o € A} C X and 7 small enough such that qbf is defined and
consider y = qﬁ (x). If A={1,...,n} is finite, from the previous argument, there exists a
family &, C X and an associate &,-piecewise smooth curve y, which joins x to y. On the
other hand, if A is countable, to each k € A, we can associate a family & C A" and a &-
piecewise smooth curve yk’ which joins x = xg to x; (as defined in Remark 2.7.3). So we
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get a sequence of X-piecewise smooth curves whose origin is xqo (for all curves) and whose
sequence of ends converges to y. Note that, for Theorem 2, the same result is true for any
pair (z, (Df (z)) for any z in some neighbourhood U of x we have

¢>§ () = mlew ¢y o0 ¢§}1 (z) foranyzeU (8)

where £ = {X¢, k€ A} C X and T = (ft)kea.

From (7) to each finite sequence ¢§?,,, 0-+-0 ¢ ,(z), we can associate an X'-piecewise
smooth curve y,, which joins z to z,, = gbi(;”m o qb_ﬂ (z). So given d)r, forany z € V we
have a family of X-piecewise smooth curves y,, whose origin is z and whose sequence of
ends converges to ¢§ (2).

Now, consider the case y = d3§ (x) = [(/);5]_1 (x). Again, from Theorem 2, there exists some
open neighbourhood U of x such that q3§ is a local diffeomorphism on U of x and we have

Af(z) = lim ¢f;l ) ¢ ' (z) foranyzeU 9)
m—0Q0

where &£ = {Xy, ke A} C Xandt = (t)kea-
Again from (7) to each finite sequence qbi(}l 0--+0 ¢Xtm (z), we can associate an X -piecewise

smooth curve y,, which joins z to z, = f}l -0 ¢X’" (z)- So given ¢r, forany z € V we

have a family of X'-piecewise smooth curves y,, whose origin is z and whose sequence of
ends converges to q@f (z). This is in particular true for the previous fixed pair (x, y).

In the general case when y = @ (x) for some @ € Gy, we have ® = ¢, 0--- o1 € Gy. Set
x1 = ¢1(x). From the previous partial results, either we have an X -piecewise smooth curve
which joins x to x or there exists a sequence yy of X'-piecewise smooth curves whose origin
is x (for all curves) and whose sequence of ends converges to x1. At first, assume that we are
in the first case. Now, if we have an X'-piecewise smooth curve which joins x to x, applying
the previous argument in x; by concatenation, we get either an X -piecewise smooth curve
which joint x to xp = ¢2(x1) or we get a sequence of a sequence of X'-piecewise smooth
curves whose origin is x (for all curves) and whose sequence of ends converges to x;. If we
are in the second case, where V is a neighborhood of x; on which (8) or (9) is true. For k
large enough vk (x1) belongs to V. So for each k, we have a family of X'-piecewise smooth
curves ¥/, ko whose origin is y;(x) (for all curves) and whose sequence of ends converges
to ¢ (Vi (xk)) As lim ¢ (yr (xx)) = x2, there exists an increasing sequence 1y such that the
sequence y; of the concatenations y; with V(k, ) is a sequence of X -piecewise smooth
curves whose origin is x (for all curves) and whose sequence of the ends converges to x;.
By finite induction on k, we get the same result for the pair (x, y).

To Gy is naturally associated the following equivalence relation on M:

x =y if and only if there exists @ € Gy such that @(x) =y

An equivalence class is called an /!-orbit of X’ or an X -orbit.

The term “I'-orbit” will be justified by the following result which sums up the previous com-

mentaries and Lemma 3.1 part (ii):
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Proposition 3.4.

1. Each point of the X -orbit of x can be joined from x by an I'-curve whose each connected
smooth part is tangent to Y or —Y for some Y € X.

2. Foreach pair (x, y) in the same X -orbit, either we have an X -piecewise smooth curve which
joins x to 'y or there exists a sequence Yy of X-piecewise smooth curves whose origin is x
(for all curves) and whose sequence of the ends converges to y.

3. Let G ; be the pseudogroup naturally associated to X. Then we have G y = G x. In particular

each X -orbit is a X -orbit.

3.2. Preliminaries on weak distributions

Recall that, according to the proof of Sussmann’s theorem on reachable sets in [16], we want
to associate to X and X weak distributions D and D respectively, such that D, C D for any
x € M, D is invariant by any flow of vector fields in X and which is minimal (in some sense) for
these properties.

Before beginning this construction, we need to recall some definitions on weak distributions
which will be used in the next subsection.

e Given a finite or countable or eventually uncountable ordered set A of indexes, a family
{€q, & € A} is said to be an unconditional basis of R4 if, for every r € R4 there is a unique fam-
ily of scalars {ry; @ € A} such that T =), T4€, (unconditional convergence); such a basis
is symmetric if for any sequence (o) € A with k € K C N, the basic sequence {7y,, k € K} is
equivalent to the canonical basis of RX (see for instance [12]). It is well known that all uncondi-
tional symmetric basis of R4 are equivalent to the canonical basis of R4,

e A weak submanifold of M of class C” (resp. smooth) is a pair (N, f) of a connected
Banach manifold N of class C? (resp. smooth) (modeled on a Banach space F) and a map
f N — M of class C? (resp. smooth) such that: [6,13]:

— there exists a continuous injective linear map i : F — E between these two Banach
spaces;
— fisinjective and the tangent map T f : Ty N — Ty)M is injective for all x € N.

Note that for a weak submanifold f : N — M, on the subset f(N) in M we have two topolo-
gies:

— the induced topology from M
— the topology for which f is a homeomorphism from N to f(N).

With this last topology, via f, we get a structure of Banach manifold modeled on F. Moreover,
the inclusion from f(N) into M is continuous as a map from the Banach manifold f(N) to M.
In particular, if U is an open set of M, then, f(N) N U is an open set for the topology of the
Banach manifold on f(N).

e According to [13], a weak distribution on an M is an assignment D : x + D, which, to
every x € M, associates a vector subspace D, in Ty M (not necessarily closed) endowed with
anorm | ||, such that (D,, || ||x) is a Banach space (denoted by st) and such that the natural
inclusion i, : Dy — T M is continuous.
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When D, is closed, we have a natural Banach structure on @x, induced by the Banach struc-
ture on Ty M, and so we get the classical definition of a distribution; in this case we will say that
D is closed.

A vector field Z € X (M) is tangent to D, if for all x € Dom(Z), Z(x) belongs to Dy. The set
of local vector fields tangent to D will be denoted by X'p.

o We say that D is generated by a subset X C X' (M) if, for every x € M, the vector space
Dy is the linear hull of the set {Y (x), Y € X, x € Dom(Y)}.

For a weak distribution D, on M we have the following definitions:

e D is lower (locally) trivial at x if there exist an open neighborhood V of x in M, a smooth
map @ : DyxV—>TM (called lower trivialization) such that:

() @Dy x {y}) CD, foreachy € V;
(ii) foreachy eV, @, =®(,y) :ﬁx — TyM is a continuous operator and @, :ﬁx — T M is
the natural inclusion i,;
(iii) there exists a continuous operator q§ D — D such that iy o CDV =Py, q§ is an isomor-
phism from D, onto P, (Dy) and @, is the identity of D,.

We say that D is lower (locally) trivial if it is lower trivial at any x € M.

e D is called a I!-distribution if each Banach space D, is isomorphic to R*, for some ap-
propriate finite, countable or eventually uncountable ordered set A of indexes (which depends
of x).

e An integral manifold of class C”, with p > 1 (resp. smooth) of D through x is a weak
submanifold f : N — M of class C? (resp. smooth) such that there exists xg € N with f(xg) = x
and T, f (T;N) =Dy, for all z € N. An integral manifold through x € M is called maximal if,
for any integral manifold g : L — M through x, the set g(L) is an open submanifold of f(N),
according to the structure of Banach manifold on f(N) induced by N via f.

e D is called integrable of class C? (resp. smooth) if for any x € M there exists an integral
manifold N of class C? (resp. smooth) of D through x.

o If D is generated by X C X' (M), then D is called X'-invariant if for any X € X, the tangent
map Tx¢tX send D,. onto D@x @) for all (¢, x) € 2x. D is invariant if D is X'p-invariant.

3.3. Characteristic distribution associated to X

Consider any set ) of local vector fields such that, conditions (Hi) and (Hii) are satisfied. We
denote by ), the set of vector fields Y € Y such that x belongs to Dom(Y). The distribution
1'(Y) defined by

ll(y)x = {X € T M such that X = Z Tty Y (x) with Z |ty | summable}
YeV, Yey

is called the /!-characteristic distribution generated by .

For x € M fixed, let A be any (ordered) set of indexes of same cardinal as ), so that each ele-
ment of ), can be indexed as Y, A € A. We then have a surjective linear map: T :/ A>T M
defined by T((rA)AeA) ZAGA 7, Y, (x) and whose range is (V). So we get a bijective con-
tinuous map T from the quotient / '(A)/ker T onto I'()),. So we can puton / L)), astructure
of Banach space such that T is an isometry. Finally, zl(y) is a weak distribution. zl(y)x will
always be equipped with this Banach structure.
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Remark 3.5.
1. For the existence of /! ())x we only need that for all X € ),
¢, XeX } < 00

Sllp{ |

So the condition (Hii) is much too strong in this way. However, independently of the ex-
istence of 11(}))),, in this paper, we need to consider the set ) of local vector fields which
satisfies condition (Hii).

2. The Banach space [ L), is isomorphic to / L(A) for some ordered set A if and only if, with
the previous notations, ker 7' is complemented. In this case, A has the same cardinal as A
(see [9]). In particular, if the distribution / L) is upper trivial (see Section 4.3), then ),
is isomorphic to some /' (A) for any x € M.

The characteristic distribution D associated to X is defined by
=11(X).

Note that, from assumptions (Hi) and (Hii), D, is well defined for any x € M. Moreover, the
natural inclusion of D, into T M is continuous. . .
In the same way, the characteristic distribution D associated to X is defined by

Dy =1'(%).
From Lemma 3.1 part (i) it follows that D is well defined and, again, the natural inclusion of

ﬁx in T,y M is continuous. Moreover, as X, C é\A’x, we have D, C f)x for any x € M. The other
relative properties of D and D are given in the following proposition.

Proposition 3.6.

1. D is X-invariant and also X -invariant.
2. Let Y be any family of local vector fields which satisfies (H1) and (Hii) and which contains X .

If the associated distribution L) is x- lnvarlant then 1Y ()), contains D forany x € M.

In particular, if D is X-invariant, then D = D.

3. Given x € M and assume that we have the following properties:

(i) there exists a finite countable or eventually uncountable set A of indexes such that D, is
isomorphic to RA:

(1) there exists a chart domain V, centered at x and a family {X,, o € A} C )2 such
that {Xo, o € A} satisfies the condition (LB(s + 2)) on Vy, for some s > 0, and,
{Xu(x), a € A} is a symmetric unconditional basis ofD =RA.

Then, there exists a weak Banach manifold ® : B(0, p) — M of class C*, which is an inte-

gral manifold of@ through x, where B(0, p) is the open ball in the Banach space R*. Such

a manifold will be called a slice centered at x.

4. Let f : N - M be a smooth connected integral manifold such that x € f(N). Assume that
the hypothesis of part 3 are satisfied at x. Then, for p small enough, @ (B(0, p)) is contained

in f(N) and f_1 (©(B(0, p))) is an open setin N.

Remark 3.7. Classically, a distribution on M is an assignment A : x — A, where Ay is a vector
subspace of T, M. As in [16], on the set of distributions, we can consider the partial order:
AcCA ifandonlyif Ay C A, foranyxe M.

So the result of part 2 of Proposition 3.6 can be interpreted in the following way:
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The distribution D = ll(/'\A’ ) is minimal among all the I!-characteristic distribution /!(}),
generated by the family of vector fields ) which satisfies (Hi) and (Hii), contains & and which
are X’-invariant.

Proof.

eProof of part 1. . )

We want to prove that T,@[D,] = D¢ ;) for any z € Dom(®) and for any flow @ of vector
field of X and X. .

We first show that this is true for any flow ¢>ZX where X € X'. Take any Z € X such that z
belongs to Dom(Z) and set x = q&tx (z). There exists Y € X and a finite composition @ of flows of
vector fields of X' such that Z = @, (vY) for some v > 0. So we have Z’' = (¢X).(Z) = @, (vX)
where @ = (¢ o ®). But, there exists v’ > 0 such that v'Z belongs to Xy, in particular Z’(x)

belongs to ﬁx. As ﬁx is generated by {Y (x), Y € QE’X} we then have
T.¢*[D:] C Dx. (10)
As (¢X)~! = ¢X,, by the same argument we get Ty (¢¥)~'[D,] C D, and from (10) we get
—1._.A A A A
T.¢[Te(¢) " [Dx]] = Dyx () = Dx C Tp [ D).

Now, from (7) and the previous argument, we also have Tzd)ly [ﬁz] =D Y () for any z €

Dom(¢tY ) and for any flow (j)ty with Y € X.

e Proof of part 2. A

Letbe x € M and Z € X such that x € Dom(Z). As before, we have Z = @, (vY) for some
finite composition of flows of vector fields of X and Y is a vector field of X and v > 0.

Zx)=2z(e(e~ ')
=Tp-10@ (VY (27 (0))).

As A is X-invariant we obtain that Z(x) belongs to A, and we get Dy C Ay In particular, if
A =D, it is obvious that D, contains D,, so we get an equality.

This ends the proof of part 2.

eProof of part 3.

In this proof we will use some notations and results proved in Section 6. In each case, we will
mention the precise references of these notations and results.

Let be x € M for which all assumptions in part 3 are satisfied. Denote by (Vy, ¢) the chart
centered at x such that {X,, a« € A} C /'QVX. Then, V, C Dom(X) for each o € A and we set

k= sup{[| 12 (Xa) ()|
Without loss of generality, we can assume that V, is an open subset V of the Banach space

E=T.M and also that TM =V x E on V,. We choose r > 0 such that B(x, 2r) is contained
in V. For the sake of simplicity, we denote by

(o = Xa@]gen

the symmetric unconditional basis of Dy. A

There exists an isomorphism 7 from D to RA such that: T (ey) = e, where {ea}aea is the
canonical basis of R4. So we can choose p > 0 such that the image by T of the open ball
B(0, p) C D, is contained in B(0, D C RA.

e axeA, erx}.
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Given any fixed w = ZaeA ty€q € B(0, p), we set T(w) =T = (Ty)gea- Of course, T (w) €
B(0, 7). By application of Theorem 1 on V' in the particular case where:

& ={Xglaea, I =R, u =TT (see Section 6, Section 6.1), 1o = 0, T is any real number, large
enough, and Tp = || 7|1

We have already proved that

rreLy(® with |I7| =1
Let be Io =[—Tp, To] and Bo = B(x,r — kTy). As Ty < %, there exists a flow @+ defined on

Jo X Bgy. From Theorem 2, ® = ¥* o T, is a map of class C* from B(0, p) C @x with values in
an open set of E contained in V. We then have

Ow) =¥* (1) = ¢ (x) = Dr (Il x). (11)

The exact expression of ¥ is given in Section 6.

It follows from Theorem 2 that ® is a map of class C* with s > 0 from B(0, p) into V. We
can consider D®,, as a field on B(0, p) of operators from zﬁx = R4 into T, M = E. On the other
hand, we have

D®y(ey) = qu()(c)) (T(eoz))
= Dw()(c)) (eq)
=€y.

So D®y is an injective operator from f)x into Ty M.
Now from [13] we have:

Lemma 3.8.

1. Consider two Banach spaces E| and E,> and i : E1 — E> an injective continuous operator.
Let ®y be a continuous field of continuous operators of L(E1, E2) on an open neighbour-
hood V of x € E such that ©®, = i. Then there exists a neighbourhood W in V such that
Oy is an injective operator on W.

2. Let f:U — V be amap of class C' from two open sets U and V in Banach spaces E1 and
E» respectively such that T, f is injective at u € U. Then there exists an open neighbourhood
W of u in U such that the restriction of f to W is injective.

By applying this lemma, we conclude that, for p small enough, ® : B(0, p) — V is a weak
submanifold of class C*. A A

It remains to show that D®,,(Dy) = Dgu)-
Given v = ZaeA Vy€q, We set 0 = T (v). From (29) (Section 6), we have

DO, (v) = DY}, = AV (1) 0 R(t)( > oaea)

aEA

On one hand, the map R(7)(}_,c4 0u€a) = D gen aaAlf/j((—t)"‘)[X,-(llfg(r“)] is a contin-
uous field 7 = R(7) of endomorphisms of ﬁx (see Lemma 6.8). As at T =0, the operator R(0)
is the identity of Dy, for p small enough, w + R o T (w) is a field of isomorphisms of Dx.

On the other hand we have ® (w) = ¢>§(w)(x). As ¢§(w) belongs to Gy, from part 1 of this
proposition, we have: Dd)?(w)(@x) = @fﬁi( ) = ﬁ@(w).



596 A. Lathuille, F. Pelletier / Bull. Sci. math. 136 (2012) 579-616

So we obtain the result required for p small enough. This ends the proof of part 3.

eProof of part 4.

The point x € M for which the assumptions of part 3 of the proposition is true will be fixed,
and we suppose that 7 M is trivializable on the chart domain V (around x). We then have:

Lemma 3.9. Let {Xq}oca be a family of vector fields on U C 'V which satisfies the condition
(LB(s 4+ 2)) on U and which is an unconditional symmetric basis of D;.

1. There exists a morphism ¥ : U x @x — T M which is a lower trivialization at x such that
Uy (Xo (X)) = Xo(y) for any a € A.

2. For any integral manifold f : N — U of D of class C* through x, there exists a family
(Yo )aca of vector fields on N defined on a neighbourhood of f~(x) such f.Yy = Xo and
0 = {Yy}aea satisfies the condition (LB(s + 2)) at £~ (x).

Proof. Consider ¥ : D, x U — D defined in the following way:

if w= Z Wy€q WE set ¥ (w,y) = Z Wo X (¥).

a€A a€A

As usual, we set lf/y = ¥(, y). Denote by @y the normed subspace defined by 75), from the
structure of Banach space on Ty M, and i : ﬁy — Ty M the natural inclusion.

At first, as by definition, ), 4 wq is absolutely summable, from the property LB(s + 2), it
follows that ¥ (w, y) € Ty M is well defined and ¥y, is a continuous operator from ZA)X to ﬁy such
that ||, || < K. Weset ¥, =iy o0 lfly. It is clear that the field y — iy o ¥ (y) is smooth. From this
construction, it is easy to see that ¥ (w, y) =iy o lffy(w) is a lower trivialization at x such that
¥y (Xg(x)) = Xo(y) for any o € A.

Let f: N — U be an integral manifold of D through x of class C*. Then, N is a Banach
manlfold modeled on the Banach space ’D For any open neighborhood W of x the set W=
f~Y(W) is an open neighborhood of ¥ = f~!(x). Without loss of generality, we may assume
that N is an open set in @x, with x =0, and M is an open set in E = T, M. Modulo these
identifications, f is the natural inclusion of N in M, that is the restriction to N of the natural
inclusion iy : f)x — Ty M. In this context, on i(N) C M, y — ¥, is a C’ field of continuous
linear operators from ﬁx into i, (Dy) = iy (ﬁx) x {y} C E x {y} = TyM. From Lemma 2.10
in[13] y —~ lf/y is also a C* field of linear operators from 15,( into ﬁy x {y} = ix(f)x) x {y} =
TyN. It follows that, for any @ € A, Y (y) = W (e,) is a C* vector field on N such that (iy), Yy =
Jf«Yy = Xy . From the previous definition of Y, it follows that n = {Y }4c4 satisfies the condition
(LB(s+2)). O

Now we come back to the proof of part 3. Consider an integral manifold f : N — M of D of
class C* through x and suppose that the assumption of part 2 is satisfied at x. On N, the family
n = {Yy}aea satisfies the condition (LB(s +2)) atx = f ~1(x). So for p small enough, given any
7 € B(0, p) C R4, we can apply Theorem 1 to the family 5 and u = I'* and Theorem 2 on N.
We then get:

e AC* flow &r«(t,) of Z = Y wea Iy Yo (see Section 6) such that for any z in a small
neighborhood W of x we have
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Ore(t. f(2) = fodre(t.2)
where @ (z, )isthe flowof Z=3",_, I'y Xq.

° Qn N, the associated flow qE? (x) = CISrr(T, x) and as in (11), the associated map @(w) =
NEY

Moreover, as Ty @ is an isomorphism, so for p small enough, & is a diffeomorphism from B(0, p)
on an open neighborhood W of X in N. On the other hand, from the previous construction, for
p small enough, we have ® = f o @. It follows that £~ (@ (B(0, p))) = O (B(0, p)) = W. This
ends the proof of part4. O

4. Structure of weak submanifold on X -orbits

In this section, we will give sufficient conditions under which each X’-orbits hasAa structure of
weak submanifold of M. The first one imposes some local conditions on the set X which leads
to integrability of D (Theorem 3) and can be seen as a generalization of Sussmann’s arguments
used in [16]. The second one imposes that D is upper trivial and also some local involutivity
conditions on X

4.1. Structure of manifold and X -orbits

Now we will prove some results about integrable distributions which contain D and X -orbits.
This result will be used in each two following subsections. .

Consider any set ) of local vector fields which contains X and satisfies conditions (Hi).
Assume that there exists a weak distribution generated by Y: for instance if ) satisfies (Hii) then
we can choose A = [!()) (see Section 3.3). Assume that A is integrable on M and for each
x € M there exists a lower trivialization ® : F x V — T M for some Banach space F (which
depends of x) and some neighborhood V of x in M. Let N be the union of all integral manifolds
ir : L - M through x¢. Then iy : N — M is the maximal integral manifold of A through xg
(see Lemma 2.14 [13]).

For the clarity of the proof of results in this subsection, for any point 7 € N, when N is
equipped with the induced topology of M, we denote by 7 the same point of N but when N is
equipped of its Banach manifold structure.

Proposition 4.1. As previously, let f =iy : N - M be the maximal integral manifold of A
through x.

1. Let Z € X(M) be such that Dom(Z) N f(N) # 0 and Z is tangent to A. Set \72 =
f~YDom(Z) N f(N)). Then Vy is an open set in N and there exists a vector field Z on
N such that Dom(Z) = Vz and f*Z =Zof.
Moreover, if lay, by[ is the maximal interval on which the integral curve y : t — ¢Z(t, X)

is defined in M, then the integral curve y .t — d)Z(t, X) is also defined on lay, by[ and we
have

y=fov. (12)
2. Let§ ={Xg, Be B} C X C Y be which satisfies the conditions (LB(s 4 2)) on a chart
domain V centered at x € f(N) and consider ¢>§ for some T € RE as defined in Theorem 2
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and let y be the I'-curve on [0, || 11||1] associated to ¢§ as in Remark 2.77. Then there exists
an 1'-curve p 1 [0, |t |1[ = N such that

foy=y on|0|zli]. (13)

When A is a closed distribution, we extend y to [0, ||t||1] so that (13) is true on [0, ||T]1].
Moreover, under this last assumption, to the local diffeomorphism [¢§]_1, consider the as-
sociated 11 curve y. Then the curve ¢(s) = y(T — s) is an IL-curve which satisfies (13)
relatively to y.

Proof.
e Proof of part 1.
Fix some Z € X (M) as in lemma. As f (resp. T5 f for any y € N) is injective, there exists a

field Z : § — Z(§) € T; N such that

i f[Z3)]=2Z(f(F) foranyye Vz=f'[Dom(Z)N f(N)]. (14)

It remains to show that the vector field 7 is smooth on \72.

In fact, it is sufficient to prove this property on some neighborhood V of any point X € Vyz.

Note at first that from our assumption about the lower trivialization, we have A y=T;N=F.
So F is independent of x € f(N). For any x € f(N) and an associated lower trivialization
O:RAXV > TM we will always choose V such that TMy = E x V. Of course, = Hwv)
is an open neighborhood of ¥ in N. We also always choose an open neighborhood V of % in
f~ (V)suchthatTN~ =FxV.

We assert that the vector field Z is smooth on V.
Indeed, from convenient analysis (see [10]), recall that for a map g from an open set U in a
Banach space E; to a Banach space E> we have the equivalent following properties:

(i) g is smooth;
(i1) for any smooth curve ¢ : R — U the map ¢ > g o c(¢) is smooth;
(iii) the map ¢ — (a, g o c(t)) is smooth for any o € EJ.

Fix some y € VZ As we have already seen, we can choose a neighborhood V of § € V such that
TN|V = F x V. So, without loss of generality, we can suppose that V' is an open set in F' and

V anopen setin E and f =T5 f on V. For simplicity, letbe 0 =T5f : 5N =F > TyM =E

where y = () with our conventions. In these conditions, Z is a map from Vto Fand Z is a
smooth map from V to E. Note that, according to (14), we have

00Z(3)=Z08()
for any ¥ € V. Choose any w € E*. For any smooth curve ¢ : R — V, we then have
(w,Zo@oc):(a),@oZoc)=(0’(w),Zoc).

As the adjoint 67 of 0 is surjective, according to the previous argument of convenient analysis
we conclude that Z is smooth on V.
Now, if x = f(X), from the relation f,Z = Z o f we get

¢Z(t,x) = f o p” (1, %)
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for any  for which ¢Z(z,X) is defined. In particular, this relation exists for some interval
1—e¢, €].

Given the maximal interval ]ay, by[ as in the lemma, choose any t € [0, by[. For each ¢ €
[0, 7] we have an integral manifold f; : L, — M which is an integral manifold of A through
dZ(t,x). As ¢Z(t +5,x) = pZ(t, p% (s, x)), by the previous argument, there exists some sub-
interval on which the curve s — ¢Z(s, x) belongsto L;. If weset L, = Ute[O,t] L;, by connexity
argument, using Lemma 2.14 [13], it follows that i : L; — M is an integral manifold of A
through x. But by construction L; is an open submanifold of N. It follows that (12) is true on
[0, by [; the same arguments works for any t € Jay, 0]. This ends the proof of part 1.

e Proof of part 2.

Now, let be some § = {Xg, B € B} C Xcy satisfying the required conditions. According to
Theorem 2, we have a map ¥~ from some neighborhood U of 0 € R2 into V of class C*. From
part 1, on N, we have a family of smooth vector fields £ = (X g, B € B} such that Dom(X g) =
V= f‘l(V) for any B € B. Fix some 7 € U. According to Remark 2.7, and (14), by induction,
we can construct a curve y; : [0, ||T||1[ such that

fope=®5(t,x) foranytel0,|zlli[. (15)

Suppose that A is closed. So A is closed in T; M for any z € N and it follows that the topology of
N as weak manifold is nothing but the induced topology of M on N. The endpoint y = y (||t ||1)
belongs to V. So y : [0, ||T]|1] — M defined by p(s) = y(|IT|l1 — s) is an integral curve of the
vector field

Z = ZuﬁXﬂ

BeB

where (ug) = 7 is associated to g% .

On the other hand, we have an integral manifold iy : L — M through y. We choose a neigh-
borhood U C V of y such that we have TMy = U x Ty M. From our assumption, again, the
topology of L as weak manifold is nothing but the induced topology of M on L.

From part 1, U=UNL= (i) "' (UNL)is an open neighborhood of y = (iL)_l(y) in L
and we have a family £ = {)7,3, B € B} such that (iL)*(?ﬂ) = [Xﬁ]lff'

From our notations we have TM|y = U x TyM and T, L is a Banach subspace of T, M. So
for each z € U we have an induced norm on the finite order jets of vector fields induced from
lI.ll¢ on the finite jets of vector fields on U.As {X g, B € B} satisfies the conditions (LB (s + 2))
on V,and U C V, the family {17;3; B € B} will also satisfies the condition (LB(s 4+ 2)) on U.So
by application of Theorem 1 on U to Z and the unicity of the integral curve through y we have
obtained that y (||t || — s) = y(s) belongs to L for 0 < s < & with ¢ > 0 small enough. We then
have N N L % @. It follows that U is an open set of N and in particular y belongs to N and we
can extend y to [0, ||T]|1].

For the last part, the /! curve associated to [c/)f]_l isp@)=y(lzlli —s)onl0,|t|]and we
trivially obtain the result from the previous proof. O

4.2. Structure of weak submanifold on X -orbits under local regularity conditions
Now we suppose that X is a set of vector fields on M which satisfies the assumptions

(H) = (Hi,Hii,Hiii) that is to say previous conditions (Hi) and (Hii) and also the assumption
of Proposition 3.6, part 3:
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(Hiii) there exists a finite, countable or eventually uncountable set A of indexes such that ﬁx
is isomorphic to R4 and a family {X,, a € A} C 22' such that {X,, o € A} satisfies the
condltlon (LB(s 4 2)), for some s > 0, and {X4(x), @ € A} is a symmetric unconditional
basis of Dx =RA.

Proposition 4.2.

1. Forall x in M, the X-orbit and the X -orbit passing through x are equal.

2. The distribution Z:? is lower trivial on M. .

3. The distribution D is integrable. Each maximal integral manifold of D has a natural smooth
structure of weak connected Banach submanifold, modeled on some R* where A is a finite,
countable or eventually uncountable set of indexes. Moreover, any maximal integral manifold
of D is contained in an X -orbit.

Theorem 3. If X satisfies the assumptions (H) at each point of M, then Dis integrable. Moreover,
we have the following properties:

(1) Each X-orbit O is the union of the maximal integral manifolds which meet O and such an
integral manifold is dense in O.
(ii) Let D be the closed distribution generated by X. If D is lower trivial and integrable, then,
the X-orbit of x is a dense subset in the maximal integral manifold through x.
@ii) If D is a closed distribution then each X -orbit is a maximal integral manifold of D modeled
on some R4,

Remark 4.3. At any point x € M where D is a finite dimensional vector space, D, is iso-
morphic to some R” and we can always choose a finite set {Xi,...,X,} C X such that
{X1(x),..., Xn(x)} is a basis of D,. Moreover for finite set {Xy,..., X;;} we can always find
an open neighborhood of x so that the condition (LB(s + 2)) is satisfied on V by this set. So, in
this case, the assumption (H) is satisfied at x. So, if D is finite dimensional, from Theorem 3 any
X -orbit is a finite dimensional submanifold of M.

Proof of Theorem 3. The integrability of D is a direct consequence of part 3 of Proposi-
tion 4.2.

Moreover, again from part 3 of Proposition 4.2 we know that each maximal integral manifold
N is contained in an X'-orbit O. It remains to show that such an integral manifold is dense in O.
As the binary relation associated to the X'-orbit is symmetric, O is the X'-orbit of any point of O.
So, if L contains x, then, from Proposition 3.4 part 2 and Proposition 4.1, any y € O must belong
to the closure of L (in M).

Now, assume that the closed distribution D generated by X is lower trivial and integrable.
Denote by O the X-orbit of x. Choose some y € O and let ¥ € Gy be such that ¥ (x) = y.
According to Comments 3.3, we can associate to ¥ a finite sequence of points (xx)x=0
a finite family {yy}x=1....» of I!-curves associated to some ¢§f which joins xx_1 to x; and with
xo =x and x, = y. Let N be the maximal integral manifold of D through x. As xo = x, according
to Proposition 4.1, there exists an /! curve 7| in N such that iy o 7| =y so x| belongs to N. By
induction we can construct an /! -curve Pk in N such that iy o yx = ¥ and then x; belongs to N.
So, for k = n we obtain that x,, = y belongs to N. In particular, by part 1, each maximal integral
manifold L of D which meets O is contained in N. So, as D is closed, the topology of Banach

.....
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manifold on N is the induced topology as subset of M. So, any maximal integral manifold of D
contained in O is dense in O, as subset of N.

Denote by O the closure of @ in N. So O is a connected closed subset of N. Consider any
y € O. Let L be the maximal integral manifold of D through y. As L is arc-connected and the
inclusion of L (with the topology of Banach manifold) in N is continuous, it follows that L is
contained in N. Let O’ be the X -orbit of y. From previous arguments, O’ is also contained in N.
Let (yx) be a sequence in O which converges to y. Given any z € O’ let be @ € Gy such that
@ (y) = z. Now as each y; belongs to O and O is invariant by any local diffeomorphism of Gy, it
follows that z; = @ (yx), for k large enough. So z = limy_, », 2k, and then z belongs to 0. Finally
we get O’ C O and, in particular, the maximal integral manifold L’ of D through y is contained
in O.

On the other hand, as T}, N is the closure in T, M of the normed subspace T, L’, there exists
a neighborhood U of y in L’ (for the two topologies on L) such that, the closure of U in N is
a closed set of N with non-empty interior. But U C L’ C O, so it follows that @ is open. By
connexity argument, we get O=N.

Now if D is a closed distribution, obviously we have D = D so, the assumptions of property
are satisfied. So part (iii) is a direct consequence of properties (i) and (ii). O

Proof of Proposition 4.2.

eProof of part 1.

This result comes from Gy = G ¢ (Proposition 3.4 part 3).

eProof of part 2.

This result is a consequence of Lemma 3.9 part 1.

eProof of part 3.

From Proposition 3.6 part 3, for any x € M we have a C* integral manifold through x, with
s>1.As D is a lower trivial weak distribution, consider the set

Xp = {X (u) =W, (u, y) for any lower trivialization
v, :75)6 XV — TMandanyxeM}.

As through x, we have an integral manifold of class C*, s > 1, from the proof of Proposition 2.8
n [13], it follows that D is XZ; -invariant. So from Theorem 1 of [13] we have a smooth integral
manifold through x. Moreover, if we consider the following equivalence relation on M:

xRy iff there exists an integral manifold of D passing through x and y

then each equivalence class L has a natural structure of weak Banach submanifold modeled on
D, for any x € L and L is an integral manifold of D. Take such an equivalence class L and
denote by iy, the natural inclusion of i;, of L (endowed with its Banach structure) into M. From
Proposition 3.6 part 3, for any x € L, there exist an open ball B(0, pyx) C RA = ﬁx and a C* map
Oy : B(0, px) = M which is a C* integral manifold of D through x and such that @, (B(0, px))
is an open set of L. So, P, = ©,(B(0, py)) has an induced structure of smooth Banach manifold
modeled on lA?x (isomorphic to R4 for some appropriate set of indexes A). In particular, the
natural inclusion i, : P, — M is a smooth integral manifold of D through x. Now take some
x € L. For any y € L we have a continuous curve y : [a,b] C R — L such that y(a) = x and
y (b) = y. By compactness of y([a, b]) we have a finite covering of y ([a, b]) by a family of
open sets {O, (B(0, py;))}i=1,....n such that x; € y([a, b]), x; = x and x, = y. Now choose any
Vi € Oy, (B(0, px;)) N O, (B(O, px;, ) Ny(la, b]) fori =1,...,n — 1. From the construction
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of each O, there exists @; € Gy (resp. q)i/ € Gy ) such that @; (x;) = y; (resp. <1>l.’(xi+1) = yi).
So the composition:

D=0 10[®]] 'o-0d, 10[d, ] (16)

is an element of Gy such that @ (x) = y. It follows that L is contained in the X'-orbit of x. O
4.3. Structure of weak submanifold on X -orbits under involutivity conditions

A weak distribution A is called (locally) upper trivial (upper trivial for short) if, for each
x € M, there exist an open neighborhood V of x, a Banach space F' and a smooth map
@ : F x V— TM (called upper trivialization) such that:

(i) foreachy eV, ®,=®(,y): F — T, M is a continuous operator with @, (F) = Ay;
(i) ker @, complemented in F’;
(iti) if F =ker®, @ S, the restriction 6, of @, to S is injective for any y € V;
(iv) O,y)=(0yo (0,17 (u), y) is a lower trivialization of D.

In this case the map © is called the associated lower trivialization.

In this case, each lower section X, = © (v, ) with v € A, can be writtenas X, = O (® (v, x),)
for any v’ € F such that @ (v/, x) = v € Ay.

An upper trivial weak distribution A is called Lie bracket invariant if, for any x € M, there
exists an upper trivialization @ : F x V — T M such that, for any u € F, there exists ¢ > 0,
and, for all 0 < t < ¢ there exists a smooth field of operators C : [—7, 7] — L(F, F) with the
following property

[Xu, Zul(y (D) =@ (C®)[v], y(1)) forany Z, =P (v,) andany v € F (17)

along the integral curve ¢ — ¢,X” (x) on [—1, 7] of the lower section X,, = @ (P (u, x), ).
With these definitions we have:

Theorem 4.4. Let A be an upper trivial weak distribution. Then A is integrable if and only if A
is Lie bracket invariant.

We now come back to our original context. Consider any set ) of local vector fields which
contains X’ and which satisfies properties (Hi) and (Hii). We have seen that if A is any ordered
set of indexes of same cardinal as the set

Yx ={Y € Y such that x € Dom(Y)}

then we have a surjective linear map: 7 : A = 1NY)y.
Let A be the weak distribution zl(y) and index the set ), as set {Y;, A € A}. Assume that
A has the following properties labelled (H'):

(H'1) for any x € M there exists an upper trivialization ® : ['(A) x V — TM such that
@ (e,) =Y, foreach A € A where {e)}c4 is the canonical basis of /' (A);

(H'2) for any x € M there exists a neighborhood V of x such that V C sea Dom(Yy), and a
constant C > 0 such that we have
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[YA,YH](y)=ZCXM(y)Yu(y) forany A, u e A (18)
veEA

where each C/‘{ M is a smooth function on V, for any A, i, v € A and we have

dler.ml<c

veA

forany y e V.

Theorem 4.

—_—

Under the previous assumptions (H'), the distribution A is integrable.

2. If A is an integrable distribution which satisfies assumption (H'1), then D, is contained in
Ay for any x € M. Moreover if A is closed then each X-orbit is contained in a maximal
integral manifold of A.

To the set X' we can associate the sequence of families

X=X'cx*=XU{[X.Y], X.YeX}C---CAf
=xXTu{x,r], xex, yext ! c

The set X¥ always satisfies the condition (Hi). Moreover, if it satisfies condition (Hii), the distri-
bution D¥ = 1(X¥) is well defined. X
By application of the previous result to A =D or A = D¥ we get:

Theorem 5.

1. If the distribution D satisfies the assumptions (H'), then D is integrable and we have the
following properties:
(1) Each X-orbit O is the union of the maximal integral manifolds which meet O and such
an integral manifold is dense in O.
(ii) Assume that the closed distribution D generated by X is lower trivial and integrable.
Then the X-orbit of x is a dense subset in the maximal integral manifold through x.
(iii) If D is a closed distribution then each X -orbit is a maximal integral manifold of D
modeled on some R4,
2. If X satisfies (LBs), and if DK satisfies assumptions (H') for some k < s, then we have
D =D and D is integrable. Moreover, D satisfies all the previous properties (i), (ii)
and (iii).

Example 4.5. As in Example 2.5(3), consider a finite family X = {X, ..., X,,} of global vector
fields on M. We have seen that the condition (LB s) is satisfied for any s > 0. Then each set X’ k
is finite and then, it is clear that each distribution D is upper trivial:

If ny is the cardinal of X k we can order X* in a sequence {Z1, ..., Z,,} and on each open
set V according to the identification TM =V x T, M we can consider the upper trivialization
@ :V x R* — T M defined by

ng
D(y, (t1,....tn)) = Z t;Z;(y); in fact it is an upper trivialization.
i=1
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Suppose that the condition (H'2) for X’* is satisfied, then from Theorem 5, the closed distribution
DK is integrable, and each maximal integral is a Banach submanifold of M which is also an X-
orbit.

The reader can find such a context in [15] where M is the set (denoted “Conf”) of “configura-
tions” of the snake (which is a Banach manifold), X is the set of global vector fields {£1, ..., &;}
on Conf (in notations [15]). Then X! satisfies the condition (H'2). Each X -orbit is nothing but
an orbit of the action M6b on Conf (see [15]). From Theorem 5 we directly obtain that each orbit
is a closed (finite dimensional) submanifold of Conf.

In [14], the reader can find a generalization of the results of [15] in the context of Hilbert
space and get an application of the previous result for a countable set X of global vector fields
on a Banach manifold.

Proof Theorem 4.

e Proof of part 1.

According to Theorem 4.4, it is sufficient to show that A is Lie bracket invariant. So fix some
x € M and consider an upper trivialization & : I'(A) x V — T M as in the previous assumption.
As ker @, is complemented, we have ' (A) =ker @, @ S. So there exists a family {€, }aea (resp.
{e;}} pep) of | L(A) which is a normalized symmetric unconditional basis of S (resp. ker @,) (see
Remark 3.5). Now, the canonical unconditional basis {e; },c4 has a (unique) decomposition:

a=) fleat ) il (19)
acA BeB
such that Y, 4 1 /%1 < 1and Y g5 1,71 < 1forany 1 € 4.

Any lower section can be written as X, = @ (u, .) for some u = (u;) € I' (A). Such a section
can be written

X, = Z u Y.
reA

On the other hand consider a neighborhood V’ of x in which (H'2) is true and the neighborhood
V NV’ (again denoted by V). As previously fix some lower section X, = @ (u, .) and consider

& > 0 such that the integral curve y (t) = qb,X “(x) is defined on ]—¢, e[ in V. According to (H'2),
forany 0 < |7| < &, we define C : [—7, 7] — L(I'(A),1'(A)) in the following way:

COll= > C(v®)uvue,
A, vEA
where v = (v,) € 1'(A). So from assumption (H'2), we have
lcoml| < D ullvul < c[ > mq[ > |vu|} = Cllul[lv]
A UEA rEA HEA

then C(z) is a field of continuous endomorphisms of [ 1 (A).
On the other hand, for any v = (v,) € 1'(A), we have

Zy=0(. )= ¥,
HEA

So we get

[Xu, Zol(y (1)) = @(C (O[], y (1)).



A. Lathuille, F. Pelletier / Bull. Sci. math. 136 (2012) 579-616 605

From Theorem 4.4 it follows that A is integrable.

e Proof of part 2.

Now suppose that A is integrable. Fix some x € M and let f =iy : N — M be a maximal
integral manifold through x. We want to show that @x is contained in A,. It is sufficient to

prove that for any Y € Xy, Y (x) belongs to Ay. For such a vector field there exist vector fields
X1,...,Xp, X € X and v > 0 such that

Y=(g," 0 0g)"),0X).

Letz = ((j)t};‘!7 o-- -od),)l(l)_1 (x) be. Consider the integral curve y; of X through z: y(¢) = ¢,X‘ (2)
for r € [0,11]. As X C ), from Proposition 4.1, we have a curve p; : [0,7;] — N such that
f oy =1y, and for any s € [0, #1], a neighborhood ‘75 of y1(s) in N, and a vector field 17S on ‘75
such that f fq = X. In particular we also have

fo ¢fx (71()) = ¢ (y1(s)) for any r small enough. (20)

Moreover, we can find X on the neighborhood \70 of Z such that f*()? ) = vX, after hav-
ing restricted Vp if necessary. By compactness, we can cover ([0, #;]) by a finite number
- - - [ i -

Vsgr -+ s Vs, On Vg we have Tz[¢, 91(X((2))) which belongs to T5,yN = Dy, for any ¢
so that yi () belongs to \7so. From properties of )?SO and yy, it follows that

[(61),X)](y(1)) belongs to A, ). Q1)
Choose o7 such that y; (o) belongs to Vsl. So we have (21) for ¢ = o7. By applying the same
argument to T3 [¢:;0]()~( ((2))) by choosing o, such that y;(o7) belongs to Vsl N \752, we obtain

(21) for t = 0. Finally, by induction we get (21) for t = #;. Then by same argument applied to

[(¢txl)*(X)](y (t1)) instead of (vX)(x) and along the curve y»(f; +1) = ¢ZX2 (y1(#1)) we obtain
that

(¢t)2(2 o ¢l)l(')*(vX(x)) belongs to Ay 1,).

Again by induction, on i = 2, ..., p, we finally obtain that Y (x) = (¢t);” 0---0 qb,)f‘)*(uX(z))
belongs to A,.

Now we assume that A is a closed integrable manifold. Take x € M and again let be f =
iy : N - M the maximal integral manifold trough x. We want to show that for any ¥ € Gy,
the point y = ¥ (x) belongs to f(N). From the previous proof we also have obtained that if ¥
is a finite composition (¢;;” 0.0 qbt}f‘), then y belongs to N. So, from (7), for Y € X and any
T eR, ¢§( (x) belongs to f(N) (even when A is not closed).

Suppose that ¥ is reduced to some ¢§, with £ ={Ys, § € D} C X and 7 e RD.

Let y : [0, |It]l1] = M be the curve y(t) = @f (t, x) where cbf(t, .) is the flow associated
to &, v and u = I'" (see Remark 2.7.1) From Proposition 4.1, part 2 there exists an /!-curve
7 [0, |It|l1] = N such that

foy=y on[0,z|] (22)

As @5 (x) = &5 (|7]l1, x), we obtain that y = ¢¢ (x) belongs to f(N).
For the case ¥ = [¢>§]_1, set again y = [d)f]_](x) and let y : [0, T] - M be the '-curve
associated to qbf and we use the previous notations. Then the [ I curve associated to ¥ is P(s) =
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y (T — s) which satisfies y(0) = x and y(||z||1) and y(||z]1) = y = y(0). From (22), we obtain
that x belongs to the maximal integral manifold through y which, by maximality, is N.

In the general case we have ¥ = ¢, o --- o ¢1 where each ¢y is a local diffeomorphism of
type ¢,Y; or qbr or [¢ K171 for k =1,...,n and all these vector fields belong to X. So, by
finite induction on k, using the previous partial results, we get the proof of part 2 in the general
case. O

Proof Theorem 5.

e Proof of part 1.

By application of Theorem 4, part 1 to D, it follows that D is integrable. We must show that
each maximal integral manifold which meets an X'-orbit O is contained in O.

Fix some maximal integral manifold iy : N — M of D. Fix some x € N and consider an
upper trivialization @ : R4 x V — TM as in assumption (H'1). From this assumption, after
restricting V if necessary, the set £ = X satisfies the condition (LB s) at any point of V and for
any s € N (see Example 2.5(2)). On the other hand, according to Lemma 2.10 in [13], we have a
neighborhood V of x, for the Banach structure of N, so that we have a smooth field of continuous
operators y — d> from R4 to TyN such that @y, (.) =Tiy o CD on V. From Proposition 4.1, for

each L € A we have a smooth vector field on Y;L such that
Yy = (in)sYy onV. (23)

Note that, according to the notation used in the proof of Theorem 4 part 1, in fact we have
Y, (y) = <1~5y (ex). So, as previously, after restriction of Vv if necessary, the set E={Y), L€ A}
satisfies the condition (LB(s + 2)) for any s € N. Applying Theorem 2 to & we get a map
U* : B(0,r) C R4 — L of class C*. By the same argument applied to & = {¥;, A € A} on M,
we get a map @~ : B(0, ") — M which is of class C*. Using (23) we have ¥* =iy o ®* on
some B(0, p) with p small enough. The linear map To@~ is surjective and its kernel is ker @, .
So, for p small enough, U~ is a submersion and in particular, P(x, p) =¥*(B(0, p)) is an open
set in N (with it Banach structure). If we set P(x, p) = ¥*(B(o, p)) by definition of an X-
orbit, the set P(x, p) is contained in . But, by construction we have P(x, p) =i N(f’(x, 0))
and then we have an open neighborhood P(x, p) of x (for the Banach structure of N) such
that iN(ﬁ(X, p)) C O. As we can cover N by such open subsets and O is the X-orbit of any
y €O, we get N C O. For the density of N in O, we use the same arguments as in the proof of
Theorem 3. The properties (ii) and (iii) have same proofs as in Theorem 3.

e Proof of part 2.

From Theorem 4 applied to A = DF we obtain that D¥ is integrable and, for any x € M each
Dk contains D According to part 1 of Theorem 35, it remains to show that D contains Dk for
any x e M.

Given x € M, we can suppose that the upper trivialization @ : @’; X V — T M on a neighbor-
hood V of x is such that TM|y = E x V. Take any X e X and Y € X so that x belongs to the
domain of X and of Y. For 0 < ¢ < ¢ small enough so that the flow ¢X is defined on some neigh-

borhood U C V of x, we consider the curve t — %{([qth]*Y)x —Y,}in E. As Dis X -invariant,
the previous curve belongs to Dy, as Banach space. But we have

[X. Y], = lim {([¢, 1Y), =Y«

As DF satisfies the assumption (H'), the structure of Banach space for D’; is isomorphic to
some R4, So D’; has the Schur property. By using an argument of weak convergency and Schur’s
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property, [X,Y ]  belongs to D Now by induction, applying this result for ¥ € X*~!, we obtain
the inclusion D c Dy for anyxeM. O

5. Applications
5.1. Criteria of integrability for I -distribution

In this subsection we will give a criterion of integrability for /' -distributions generated by sets
X of vector fields on M which satisfies the assumption (H). We have the following result:

Theorem 6.

1. Let D be an 1'-distribution generated by a set of (local) vector fields X on a Banach
manifold M which satisfies the assumptions (H). Then D is lower trivial. Moreover, D is
integrable if and only if D is X-invariant.

2. Let D be a lower trivial I'-distribution on a Banach manifold M. Then there exists generat-
ing set X of D which satisfies assumptions (Hi), (Hii) and (Hiii). Given any such generating
set X of D, then D is integrable if and only if D is X-invariant.

Remark 5.1. As any / !_distribution D is a weak distribution, from Theorem 1 of [13], when D
is lower trivial, it is integrable if and only if it is X' -invariant (X’ in the set of lower sections
of D see [13]). So, for lower trivial I1-distribution, Theorem 4 gives a necessary and sufficient
condition of integrability for any generating set of D satisfying (Hi), (Hii) and (Hiii). Note that,
if D is finitely generated at each point, these conditions are automatically satisfied. We then get
a generalization of the famous criterion of integrability of Nagano—Sussmann in this context of
Banach manifold for finite dimensional distribution. In this sense, Theorem 4 can be considered
as a generalization of this Nagano—Sussmann’s result in infinite dimension.

In Example 2.5(1), if the set {T'(xy)}qca is a family of linearly independent vectors, the
conditions of Theorem 4 are satisfied. Of course, this result can be proved directly in an obvious
way. Each leaf is the affine space in E associated to the /! normed space generated by Xj. On
the other hand in Example 2.5(2), even in analogue conditions, the characteristic distribution of
X is not X'-invariant. Such a sufficient conditions will be carried by ¥ (see Theorem 4 in [13]).

Proof of Theorem 6.

Fart 1. A

From Proposition 3.6 we have D = D if and only if D is X' -invariant. On the other hand, X sat-
isfies the assumption (H) (of Section 4). By application of Theorem 3, we obtain the first part.

Part 2.

Fix some x € M. From the property of lower triviality, there exists an open neighborhood V
of x in M, a smooth map ¥ : ﬁx x V — T M such that:

() ¥ (Dy x {y}) CD, foreachy € V;
(ii) foreachy e V, ¥, =¥ (, y): D — Ty M is a continuous operator and ¥y D — Ty M is
the natural inclusion i,; o ~ ~ ~
(iii) there exists a continuous operator ¥, : D, — D, such that i, o ¥, = ¥,, ¥, is an isomor-
phism from D, onto v, (ﬁx) and ¥, is the identity of Dy.
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As @X is isomorphic to some RA consider any unconditional symmetric basis {ey}qeca Of
RA and set X, (y) = ¥(eq, y) for any y € V. We set X, = {X,, o € A} and after a choice of
such a set Xy for any x € M, let be X =, ., Xx. By construction X’ satisfies (Hi) and (Hiii)
but without (LB(s + 2)). Given x € M, with the previous notations, we have |ey|;1 =1 and as
y = Wy is a smooth field of continuous operators from R4 to Ty M = E, we get the property (Hii)
at x after restriction of V if necessary and also (LB(s + 2)) at x for (Hiii).

Now given any generating set of D which satisfies assumption (H), by application of part 1,
we get the result. O

5.2. Attainable set in infinite dimensional control theory for a family of vector fields
Let X be a family of local vector fields which satisfies conditions (Hi) and (Hii) on a Banach

manifold M. In our context a controlled trajectory of the controlled system associated to X is
acurve y : I — M which is the integral curve of some vector field

p
Z(x,tw) =Y (1) Zi(x) (24)
k=1
associated to a family ¢ = {Zy}x=1,..,p C X which satisfied the assumptions of Theorem 1

and where u = (uy) is a family of bounded curves of class L' on some interval of R (see
Theorem 1). In these conditions, u is called the control associated to y. An admissible tra-
jectory is a curve y : [a, b] — M such that there exists a finite partition a = #9p < --- < #,, such
that y : [f;,t;41] — M is a controlled trajectory of the controlled system associated to X for
i=0,....n—1.

This context can be found in many papers (see for example [4,8,18,2,3,1,15]). On the other
hand, it is easy to see that any X-smooth piecewise curve is an admissible trajectory (see Sec-
tion 2.1).

According to the classic context in control theory for a family X of vector fields on M, the
exact attainable set .A(x) of a point x € M is the set of points y such there exists an admis-
sible trajectory y : [0, T] — M such that each y(0) = x and y(T) = y. On the other end, the
approximate attainable set of x € M is the closure A(x) in M.

Remark 5.2. According to Proposition 3.4, if D is integrable, for any ¢ as in (24), on each

,,,,,

such that (iN)*Zk = Zi. So if we set
~ p ~
Z(x, t,u) =Y up(t) Zi(x)
k=1

then we have (in)«Z(t,u,.) = Z(t,u, .) and then we obtain that each controlled trajectory with
origin in L is contained in L. In this case, if O(x) is the X' -orbit of x, we have the inclusions:

A(x) Cc O(x) C A®x).

In finite dimension, we have A(x) = O(x) and it is well known (from [16]) that A(x) is an
immersed submanifold of M for any x € M.
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In our context, a corresponding result is given by the following theorem:

Theorem 7. Assume that the set X (resp. the characteristic distribution D=1 (AA,’ )) satisfies the
conditions (H) (see Section 4.2) (resp. (H') (see Section 4.3)) at any point x € M. Then D is
integrable. The exact attainable set A(x) of any x € M is dense in the maximal integral manifold
L(x) of D through x and the approximate attainable set fl(x) is the closure of L(x) in M and
also the closure of the X-orbit of x. Moreover if the distribution D is closed A(x) is a weak
submanifold of M for any x € M.

The reader will find an illustration of this theorem in [15] or in [14] (see also Example 4.5).
Note that, if D is finite dimensAional, from Remark 4.3, the assumptions of Theorem 7 are always
satisfied and the distribution D is closed. In this case the attainable set is exactly an X'-orbit. So
in particular, when M is finite dimensional we obtain Sussmann’s result.

In finite dimension, to the distribution D we can associate a chain of distributions

D'=Dc...cDc--. (25)

where, for k > 2, Dk is generated by the set Xk of local vector fields of type [ X1, [-- - [Xk—1,
Xi]---] where X1, ..., X belongs to X. The famous theorem of Chow—Rashevsky asserts that
if, for any x € M, there exists k such that Dﬁ = T, M then M is the attainable set of any point
xeM.

Classically, X is called approximatively controllable (resp. exactly controllable) if
Ax)=M (resp. A(x) = M) for any x € M. In order to give an analogue of theorem of Chow—
Rashevsky we have already associated to D, a chain of distributions as in (25) (see Section 4.3).
As we have seen, if X satisfies condition (Hii) for some s € N, then the set X* also satisfies
(Hii) for s’ = s — k and then, the /'-characteristic distribution D¥ = [} (X¥) is well defined. So
we have the following version of theorem of Chow—Rashevsky:

Theorem 8. Assume that the set X (resp. the characteristic distribution D=1 ()E' )) satisfies the
conditions (H) (see Section 4.2) (resp. (H') (see Section 4.3)) at any point x € M. Moreover, we
suppose that for any x € M, there exists k such that ’D§ is defined, and is dense in Ty M (resp.
D)]g =T, M). Then M is approximatively controllable (resp. exactly controllable).

In the previous theorem, note that, according to the assumption we can have controllability
only if the Banach manifold M is modeled on some I'(A) where A is a countable or uncountable
set.

We say that a distribution D on M is finite co-dimensional if for each x, the normed space
D, is finite co-dimensional in 7y M. In this case D, must be closed. In particular, finite co-
dimensional /! distribution on M again imposes that M is modeled on I'(A) where A is a
countable or uncountable set. In this case we have:

Corollary 5.3. Let M be a Banach manifold modeled on some 1" (B). Consider any set of vector
fields X on M, which satisfies the conditions (H). If the characteristic distribution D is finite co-
dimensional, then M is foliated by weak Banach submanifolds of M and each leaf is an X -orbit.
Moreover, each attainable set is dense in such a leaf.

Proof of Theorem 7. By application of Theorem 3 or Theorem 5, we get the integrability of D.
On one hand, for any x € M, if y belongs to A(x) as in (24), the set ¢ is finite, it follows from
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Proposition 4.1 that each integral curve of such a Z is tangent to the leaf L through x. On the
other hand, from Proposition 3.4, if y belongs to L, then y is adherent to A(x). According to
Remark 5.2, we have

A(x) C L(x) c O(x) C A(x).

So, we get L(x) = O(x) = A(x).
The last part is also a consequence of Theorem 3 or Theorem 5. O

Proof of Theorem 8. From Theorem 7 we know that D is integrable and, as Banach space is
isomorphic to some R4. So by the same arguments as the ones used in the proof of Theorem 5
part 2, we have Dﬁ C ﬁx. It follows that ﬁx is dense in Tx M or equal to T, M. The result is then
a consequence of properties (ii) or (iii) respectively of Theorem 4 or Theorem 5. O

Proof of Corollary 5.3. It is sufficient to prove that X satisfies the condition (H) at each point
x € M. Given any x € M, from our assumption we know that X satisfies the condition (H) at x.
Take an unconditional symmetric basisA{XD, (x)}aeca such that {Xy}qea C Xy and satisfies the
condition (LB(s + 2)) for s > 0. As X, contains X, and as Dy is finite co-dimensional, we
can choose in lsx a finite number Y7, ..., Y, such that {Xy(x)}aca U {Y1(x),...,Yp(x)} is an
unconditional symmetric basis and {X4}gea U {Y1,..., Y} satisfies the condition (LB(s + 2))
for s > 0. We then apply Theorem 7. The last part can be shown as in the finite dimensional case
(see [16]). O

6. Proof of Theorem 2

In this last section, we will use Theorem 1 to give a proof of Theorem 2.
Recall that £ = {X,, o € A} is a family of vector fields defined on an open neighborhood V
of xg € E and satisfies the condition (LB(s 4+ 2)) at xg and with the relation (4) true for all x € V.

6.1. Maps I'" and I'*

In this subsection we fix T = (Ty4)aca € RA. Let B be any countable subset of A which
contains all the indexes a € A such that 7, # 0. The set B can be written as a sequence
{Bi, i € N} C A. For the sake of simplicity, we then denote by 7; instead of g, the corresponding
term of (74 )gea. With these notations we define the sequence (I7);¢p in the following way

e fori =1,
. if 7y =0 then I (s) =0,
. if 71 #0 then
F]‘L’(S)={;_; 1fS€[O,|T]|[’
0 othewise;
e fori > 1,
. if ; =0 then I (s) =0,
. if 7; #£ 0 then

T - i—1 . i .
Fl_f(s)z{ﬂ ifs € 25 171 X 110

0 otherwise.
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Now, for all « ¢ B we set I, (s) =0forall s e R.
Finally, we define the families 1”7 (s) and I"*(s) in the following way by
re@s)=(Iry),c, and I'"=(I7),c= 0Tl =s5)),4-
From this construction, it follows that
VseR, (I7(s),.,€R* and (I7(),., €RA

acA
Now we consider the maps I'* and ['* defined in the following way:
I'':R— R4,
s T (s) = (Fof(s))
I":R— RA,
s> () = (f'ar(s))

aeA’

acA’
Lemma 6.1. I'* and I'® belong to L} (R).
6.2. Proof of the first part of Theorem 2

In this section x € V and 7 = (74)qea € R4 are fixed. We consider any element 0 = (04 )aca
of RA. We choose a countable subset B of A such that B contains all the indexes « € A such that
to # 0 and also all indexes 8 € A such that og # 0. Again the ordered set B can be written as
B = {B;, i € N} and we then denote by (7;)g;ep (resp. (0;)g;ep) the corresponding subsequence
or T (resp. o) and also we denote simply by X; the vector field X . of & for all 8; € B.

With these notations, for any n € N and any o € R4, we set 6" = (o1,...,0,) € R" and R"
is then considered as a subset of R¥ ¢ R4

wr)lc(_[n) — ¢$in o--- o¢£2 o¢§l (x),
U (") =Xt 009X (). (26)

Lemma 6.2. With the previous notations, for each n € N, the map ;; is differentiable on R* N
B(0, 1), and its differential is given by

Xn X
DYy (0") = D¢, Wy © 0 Do )

n

X

x [ Z:"PDM%I iy 7 ° D‘pffp(wp(rp))(xp(lﬁp (fp)))}-
p=

Moreover, we have

[ DV ony | < eIl

forall x € V and any n € B.

The proof of this lemma is an elementary calculus by induction. For more details see [11,
Chapter 5].
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Afterwards, we will simply note, for any fixed x € V:
n
X X X
DYiu(ny(0") = D" 0+ 0 DX [ Y opD¢ll o0 DGZ! (X, (v (zP)))}.
p=1

We now define the following map:
AP (") =Dl o0 DS (x),
Ay, (t") = D1 o - 0 DYXn(x). 27)

For these maps in the same way, we obtain:

Lemma 6.3. For any fixed x € V, for each n € N the maps Avy;; and Al&;{ are differentiable on
R™ N B(0, ).

Now we are in situation to prove part 1 of Theorem 2.

Let xo € V and r > 0 be such that By(xp,2r) C V and fix T = (Tg)aea € R4 such that
T € B(0, %) c RA. We fix some countable subset B C A which contains the set of indexes «
such that 7, # 0. As before the ordered set B can be written B = {;, i € N} and each 75, with
Bi € B will be denoted t;. With these notations, we set

T=) ltl=)Y Itl=Itl.
ieN aEA

e Now we use Theorem 1 with the following adaptations: I =R, u = I'", 1o =0, § a real
number large enough and 7o =T

From Lemma 6.1 we have I'* € L})(R), with [l |leo =1. As T < %, if weset Io=[-T,T]
and Uy = By = B(xg,r — kT), we get a flow @, defined on Iy x Up. In particular, from
Theorem 1 the map ¢>§ =@ (T,) is a C*® diffeomorphism, and moreover, by construction, we
get

$:(0) = lim ¢Jro- -0 g1 (x) = lim ¥y (z").

The same argument can be used to obtain the result concerning 1/35 .
o Now we prove that the inverse map of ¢§ is q)f.

6 () — x| < 5 (85 00) — v © (e) | + | © (e) — x|
<[5 (35 ) — O (@) + [ O @) =T (@)
At first, we have
Tim (9§ () -y (=) =o.

So, it remains to show that the second term in the previous majoration converges to 0 when
n— oo.

The map x — ;) (t") is of class C! and its differential at x is noting but AW, (t"). So we
have

|awi ()] <
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So we obtain
[ (@) = il )] < T (B 0 — B ()
Finally, we get
‘pr( ) 1// (=1") _
dm [y (") - ()=

which ends the proof of part 1 of Theorem 1.
6.3. Proof of the second part of Theorem 2

For any fixed x € Uy, we introduce the following notations:
Yp(m) = lim 9 (2") = 97 (),
Ayp(t) = lim Ay, (r”) =Dy ®r: (T, x). (28)
n—od

As a consequence of Lemma 6.2 and Lemma 6.3 we get:

Lemma 6.4. 3, and Ay are continuous maps on R5 N B(O, 7

For each @ ¢ B we can remark that 7, = 0 and so ¢>;§°‘ = Id and Dq&,}j‘” = Id. So the previous
limits (28) can be seen as an uncountable composition of maps of type (¢y)ac4, evaluated at x,
where only a countable subset of them are not equal to the identity.

Notations 6.5. Given any a € A we set 7% = (/) witho' € A, o’ < a.
On the other hand for any @ € A we consider the set

By = {B; such that 8; < «}.

Considering the family of local diffeomorphisms associated to the family & of vector fields
we denote by

X(_ a\ _ V/Y)lc(rn) if By ={B1, ..., Bn}
w“(T)_{w;; if By = B,

o [DVRGE) i Ba=(Br.... B,
A (v )_{Aw;; if B, = B,

APy (") if By ={B1,..., B},
A
V() = {AwB if B, = B,

VIO =y =¢; and AYY(r) = AYR(1) = Dr®re(T, x) = Dy (x).
Given any 0 = (0y)qea € R4, by taking for B any countable set which contains the (count-
able) sets {« such that 7, # 0} and {« such that o, # 0}, from Lemma 6.4 and Notations 6.5 we
get:

Lemma 6.6. The map y* and Ay* are continuous on B(0, 7).
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Now we can prove part 2 of Theorem 2.
We begin by proving that ¥* is a C' map. We will use the following result of [5, p. 426]:

Proposition 6.7. Let X and Y be two Banach spaces, U C X an open set and D a dense vector
subspace of X. Consider a continuous map f : U — Y such that, for all (x,v) € U x X, the
derivative f at x in the direction v denoted by 0, f (x) exists. Moreover, assume that there exists
a continuous map L : U — L(X,Y) such that, for any (x,v) € U N D x D, we have 9, f (x) =
L(x)(v). Then f € CY(U,Y) and Df = L.

We apply this result to the sets:

X=RY,U=B0,7)andY =E;

D = span{e,, @ € A} where e, = (Sg)f;eA, where 8%‘ =1lifa=pand 8%‘ =0 for a # B;
(in fact, {e,, o € A} is the canonical basis of R4);

the map f is the map ¥* on B(0, ) C R4;

L is defined in the following way:

for 6 = (0a)aca € B0, £) CRA: L(1)(0) = AP (D)X gep 0 AV (—T*) [ Xa (Ya ()],

e It is clear that D is a dense set in R4.
e The continuity of ¢* follows from Lemma 6.6.
e Now we prove that Vt € B(0, %) ND,Yo € D, 9;:y*(0) = A(t)(0).

Let be (r,0) € B(0, 1) N D x D. So we have

.....

The family {(ey,)i=1.....ps (eﬁj)jzl ,,,,, ¢} can be put in an ordered family {eg,};=1,...,
n < inf(p, ¢). So we can consider that T and o belong to span{e,, ..., eq, }. For simplicity we
denote by 7; (resp. 0;) the component of 7 (resp. o) on ey, and X; instead of X,,, fori =1,...,n.
Now, for any A € R and A # 0, we have

Y (t + ro) — (1)
=y (r" + Aa”) — Yy (1:")

=3D¢y 0 w0 D¢y [ > 0pDgXy 0-e 0 DYLY (Xp(lﬂp(f”)))} +o(3o")
p=1

SO

0¥ (0) = lim st )“;) YO _ o)),

e The continuity of T — L(7):
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Now we consider the following map:

R : B0, p) — L(Dy),
T R(1)

defined by R(t)(Xyen 0 Xa (X)) = 3 yen 0 AUE(—T))[X; (Y (T)].
Note that from Lemma 6.2, we have

HR(r)( Zoaxaoc)) H <ket o)y

aeA

So R(t) is a continuous linear map. On the other hand, we can write

L(7)(0) =Aw"(r)o7e(r)< Zoaxam). (29)

a€A

The proof of the following lemma can be found in [11, Chapter 5]:
Lemma 6.8. The map t — R(t) is continuous on B(0, %).

From this lemma and Lemma 6.6, it follows that T +— L(7) is continuous.
So we obtain that ¥ is C! on B(0, )
To prove that v is of class C* for s > 2, as classically we use the fact that

(@r:(t,x), D2®r<(T,x), ..., D3®r=(T, x))

is the flow of an adapted vector field 7% onan open set of the Banach space E x L(E, E) X --- X
L% (E, E) and proceed by induction.

Acknowledgements

We would like to thank Professor Tilmann Wurzbacher for long and helpful discussions about
integrability of distributions and for many useful remarks about some proofs in this work and
also Professor Patrick Cabau for all his remarks and advices about this paper.

References

[1] A. Berrabah, N. Bensalem, F. Pelletier, Optimality problem for infinite dimensional bilinear systems, Bull. Sci.
Math. 130 (5) (2006) 442-466.

[2] H. Bounit, H. Hammouri, Observer design for distributed parameter dissipative bilinear systems, Appl. Math. Com-
put. Sci. 8 (1998) 381-402.

[3] N. Bensalem, F. Pelletier, Geometrical properties of infinite dimensional bilinear controlled system, in: Caustics 98,
Banach Center Publ., vol. 50, Warsaw, 2001, pp. 41-59.

[4] T. Cazenave, A. Haraux, Introduction aux problemes d’évolution semi-linéaires, Ellipses, Société de Mathématiques
Appliquées et Industrielles, 1990.

[5] K. Driver, Analysis Tools with Applications, Springer, Berlin/Heidelberg/New York, 2003.

[6] H.-1. Eliasson, Condition (C) and geodesics on Sobolev manifolds, Bull. Amer. Math. Soc. 77 (1971) 1002-1005.

[7]1 G.-N. Galanis, Limits of Banach vector bundles, Port. Math. 55 (1) (1998).

[8] J.-P. Gauthier, C.Z. Xu, A. Bounabat, An observer for infinite dimensional skew-adjoint bilinear systems, J. Math.
Syst. Estim. Control 5 (1995) 119-122.

[9] G. Kothe, C.Z. Xu, A. Bounabat, Hebbare lokalkonvexe Rume, Math. Ann. 165 (1966) 181-195.



616 A. Lathuille, F. Pelletier / Bull. Sci. math. 136 (2012) 579-616

[10] A. Kriegl, P.-W. Michor, The Convenient Setting of Global Analysis, Math. Surveys Monogr., vol. 53, Amer. Math.
Soc., 1991.

[11] A. Lathuille, Sur I’intégrabilité des distributions en dimension infinie, thése, Université de Savoie, 2009.

[12] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces, Springer, Berlin/Heidelberg/New York, 1977.

[13] F. Pelletier, Integrability of weak distributions on Banach manifolds, http://arxiv.org/abs/1012.1950v1, Indag. Math.,
in press.

[14] F. Pelletier, R. Saffidine, The Hilbert snake and application in control for Schrodinger equation, LAMA Université
de Savoie, preprint, 2011.

[15] E. Rodriguez, L’algorithme du charmeur de serpents, PhD thesis, University of Geneva, http://www.unige.ch/
cyberdocuments/theses2006/RodriguezE/these.pdf.

[16] H.-J. Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc. 80
(1973) 171-188.

[17] P. Van Eecke, Connexions d’ordre infini, Cah. Topol. Geom. Differ. Categ. 11 (1969) 281-321.

[18] C.-Z. Xu, P. Ligarius, J.-P. Gauthier, An observer for infinite-dimensional dissipative bilinear systems, Comput.
Math. Appl. 29 (7) (1995) 13-21.


http://arxiv.org/abs/1012.1950v1
http://www.unige.ch/cyberdocuments/theses2006/RodriguezE/these.pdf
http://www.unige.ch/cyberdocuments/theses2006/RodriguezE/these.pdf

	On Sussmann theorem for orbits of sets of vector ﬁelds on Banach manifolds
	1 Introduction
	2 On l1-integral curve of a uniformly locally bounded set of vector ﬁelds
	2.1 Problem of existence of l1-integral curve
	2.2 Set of vector ﬁelds uniformly locally bounded at order s
	2.3 Sufﬁcient conditions for the existence of l1-integral curves

	3 The orbits of X or X-orbits
	3.1 Deﬁnition of an orbit of X
	3.2 Preliminaries on weak distributions
	3.3 Characteristic distribution associated to X

	4 Structure of weak submanifold on X-orbits
	4.1 Structure of manifold and X-orbits
	4.2 Structure of weak submanifold on X-orbits under local regularity conditions
	4.3 Structure of weak submanifold on X-orbits under involutivity conditions

	5 Applications
	5.1 Criteria of integrability for l1-distribution
	5.2 Attainable set in inﬁnite dimensional control theory for a family of vector ﬁelds

	6 Proof of Theorem 2
	6.1 Maps  Γτ and Γ̂τ
	6.2 Proof of the ﬁrst part of Theorem 2
	6.3 Proof of the second part of Theorem 2

	Acknowledgements
	References


