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Abstract

The purpose of this paper is to give some generalizations, in the context of Banach manifolds, of Suss-
mann’s results about the orbits of families of vector fields (Sussmann, 1973 [16]). Essentially, we define
the notion of “l1-orbits” for any family of vector fields on a Banach manifold, and we prove, under appro-
priate assumptions, that such an orbit is a weak Banach submanifold.
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1. Introduction

Let X be a family of local vector fields on a finite dimensional manifold M . According to
the context of [16], the orbit of X through x ∈ M is the set of points φ

Xk
tk

◦ · · · ◦ φ
X1
t1

(x) where

{X1, . . . ,Xk} is any finite family of vector fields in X and φ
Xi
t is the flow of Xi , i = 1, . . . , k.

One most important result of H.-J. Sussmann in [16] is that each such an orbit is an immersed
submanifold of M . The proof of this result is founded on the two principal arguments:
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(i) Enlargement of X to the family X̂ of vector fields of type (φ
Xp

tp
◦ · · · ◦ φ

X1
t1

)∗(X), for appro-

priate finite sets {X1, . . . ,Xp,X} ⊂ X and each orbit of X̂ is also an orbit of X .
(ii) The distribution D̂ generated by X̂ is integrable and each maximal integral manifold of D̂ is

an orbit of X̂ and so also is an orbit of X .

As the dimension of M is finite, the fundamental argument for the proof of this last property is
that D̂ is finite dimensional.

For a generalization of such a result to Banach manifolds, we can enlarge any family X in
the same way as (i), but in (ii), the argument of finite dimension of the distribution D̂ is, of
course, no more valid. Naturally, we can hope that there exist some conditions under which
analog arguments work for some “characteristic type” of families of (local) vector fields on
Banach manifolds. So, given a set X of local vector fields on a Banach manifold M , after having
enlarged X to a family X̂ of vector fields (in the same way as (i)), we can look for the orbits
of X̂ . It is natural to consider the set of points of type

y = φ
Xn
tn

◦ · · · ◦ φ
X1
t1

(x) or y = lim
k→∞φ

Xk
tk

◦ · · · ◦ φ
X1
t1

(x) (1)

as an orbit through x for any finite or countable family {Xk, k ∈ A} of vector fields in X̂ . Note
that, if we restrict us to finite sets A, the binary relation defined by

y � x if and only if y = φ
Xn
tn

◦ · · · ◦ φ
X1
t1

(x),

is an equivalence relation. Moreover, in this case, there exists a piecewise smooth curve which
joins x to y and whose each connected part is tangent to Xi or −Xi for some i = 1, . . . , n.

Unfortunately, in the previous general case, the associated binary relation clearly associated
to (1) is not any more a relation of equivalence. The X -orbit of x will be the set of such
points y under some conditions so that the associated binary relation is an equivalence rela-
tion.

Given a family ξ ⊂ X (M), a ξ -piecewise smooth curve is a piecewise smooth curve
γ : [a, b] → M such that each smooth part is tangent to X or −X for some X ∈ ξ . In the context
of (1), for such a point y, there exists a family γk : [0, Tk] → M of X -piecewise smooth curves
such that the sequences of ends xk = γk(Tk) converge to y. When the sequence Tk converges to
some T ∈ R we have a continuous curve γ : [0, T ] → M such that γ (0) = x and γ (T ) = y. For
such a curve γ , there exists a countable partition t = (tα)α∈A of [0, T ] such that, the restriction
of γ to ]tα, tα+1[ is an integral curve of X or −X, for some X ∈ X . In particular the family
(τα = tα+1 − tα)α∈A belongs to l1(N). Such a curve will be called an l1-curve of X . The pre-
cise definition of an orbit of X (see Section 2.1) is based on this notion of l1-curve but for the
family X̂ . Of course, we need some sufficient conditions under which l1-curves exist. It is easy
to see that condition of “local boundedness” is a natural necessary condition, but, for the local
existence, we need more: the local boundedness of the s-jets of vector fields of X , for sufficiently
large s > 0 (see Section 2.2). Under such assumptions, we can prove the existence of l1-curves
which are the integral curves of a vector field of type (see Theorem 1):

Z(x, t, u) =
∑
α∈A

uα(t)Xα(x)

where:
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A is a finite, countable or eventually uncountable set of indexes;
ξ = {Xα}α∈A are defined on a same open set and their s-jets are locally uniformly bounded
(see Definition 2.3);
u = (uα)α∈A is a bounded integrable map from some interval I to l1(A).

In fact, in this context, we get a flow Φ
ξ
u(t, ) of such a vector field Z.

Let ξ = {Xα}α∈A be a set which satisfies a local boundedness condition for the s-jets for
sufficiently large s > 0. The existence of l1-curves which are integral curves of some X ∈ ξ

(or −X) on any subinterval ]tα, tα+1[ associated to a countable partition of an interval I is ob-
tained by application of the previous result to u = Γ τ = (Γ τ

α ) where Γ τ
α is the indicatrix function

of ]tα, tα+1[. Denote by Φ
ξ
τ (t, ) the associated flow, given any x ∈ M , for T = ‖(tα+1 − tα)α∈A‖1,

τ → ψx(τ) = Φ
ξ
τ (T , x) is a map from a neighborhood of 0 ∈ l1(A) into M such that ψx(0) = x

and, of class Cs−2, if the condition of local boundness of s-jets of elements of X , are satisfied
(see Theorem 2).

Recall that our purpose is to prove, under appropriate assumptions, that each X -orbit is a
(weak) submanifold of M as integral manifold of some distribution. According to the proof of
Sussmann’s result, we first enlarge X into the set X̂ given by

X̂ = {
Z = Φ∗(νY ), Y ∈ X , Φ = φ

Xp

tp
◦ · · · ◦ φ

X1
t1

for X1, . . . ,Xp ∈ X
and appropriate ν ∈ R

}
(see Section 3.1). From this set X̂ , we associate an appropriate pseudo-group G X of local diffeo-
morphisms, which is generated by flows of type φX

t with X ∈ X and diffeomorphisms of type
Φ

ξ
u(‖τ‖1, .) (as we has seen previously) or its inverse for ξ ⊂ X̂ . From this pseudogroup we

get a coherent and precise definition of an orbit of X or X orbit in short. Note that, under this
definition, X and X̂ have the same orbits, and moreover, if y is in the orbit of x, there is an l1

curve which joins x to y and whose smooth parts are tangent to vector fields of X̂ . Note that the
binary relation associated to G X is then an equivalence relation. So, if y belongs to the X -orbit
of x, either we have an X -piecewise smooth curve which joins x to y or there exists a sequence
γk of X -smooth piecewise curves whose origin is x (for all curves) and whose sequence of ends
converges to y (see Proposition 3.4 for a complete description of an X orbit).

On the other hand, for any x ∈ M , under appropriate assumptions, we can associate the vec-
tor space D̂x = l1(X̂ )x which is the set of all absolutely summable families

∑
Y∈X̂ τY Y (x). In

fact, in the same way, we can also associate the vector space Dx = l1(X )x generated by X . Of
course Dx ⊂ D̂x (see Section 3.3) and we endox these vector spaces with a natural structure
of Banach space. So we get weak distributions D and D̂ on M such that D̂ is invariant by any
flow of vector fields in X and which is “minimal” for such a property (see Remark 3.7). Now,
we need some conditions on X̂ which makes D̂ integrable. We will give two types of sufficient
conditions.

For the first one (called (H) in Section 4.2), we assume that, for any x ∈ M , the Banach struc-
ture on D̂x is isomorphic to some l1(A) and there exists a family {Xα}α∈A of vector fields defined
around x, which are “locally uniformly bounded at order s” and such that {Xα(x)}α∈A is an un-
conditional symmetric basis of D̂x . Under this assumption, D̂ is lower trivial (see Section 3.1)
but we cannot prove directly that D̂ is X −

D̂ -invariant; in particular, we cannot use directly Theo-
rem 1 of [13]. So we first prove that the map ψx , previously defined, gives rise to a local integral
manifold of D̂ through x of class Cs for s � 2. This leads us to prove that D̂ is X −-invariant
D̂
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and so we can now apply Theorem 1 of [13] and we finally get a smooth integral manifold of D̂.
When D̂ is closed, we then obtain that each l1-orbit has a structure of weak Banach manifold.
Note that the assumption (H) is always satisfied when D̂ is finite dimensional (see Remark 4.3).
So this result can be seen as a generalization of the proof Sussmann used in [16].

The second sufficient conditions (called (H′) in Section 4.3) impose that D̂ is “upper trivial”
(see Section 4.3) and also some local involutivity conditions on X̂ . Under these conditions, by
using a result of integrability from [13], we can show that D̂ is integrable and, when D̂ is closed,
each maximal integral manifold is an X -orbit (Theorem 5). Moreover, if we consider the family
X k defined by induction by

X 1 = X and X k = X k−1 ∪ {[X,Y ], X ∈ X , Y ∈ X k−1} for k � 2

we can associate, as previously, a weak distribution Dk = l1(X k). When such a distribution
satisfies the conditions (H′) and is closed, we have Dk = D̂ and so we get another sufficient
conditions under which each X -orbit is a weak manifold modelled on some l1(A). For the case
where X is a finite family of global vector fields we get a new proof of the result of accessibility
in [15] (see Example 4.5). Moreover, when X is a countable family of global vector fields, the
reader can find an application of these results in [14].

All these results can be naturally applied in the context of control theory on Banach mani-
folds (Theorem 7 and Theorem 8). These last theorems can be considered as a generalization of
Sussmann’s accessibility results of [16] in finite dimension.

The paper is organized as follows. In the next section, we study the problem of existence of
l1-curves. For any set X of vector fields which has the “local boundedness of the s-jets of vector
fields”, we give sufficient conditions for the existence of l1-curves (Theorem 1) and we apply this
result to get l1-curves tangent to X ∈ X or −X, on each subinterval associated to a countable
partition. We also construct the map ψx mentioned previously (Theorem 2).

The notion of orbit of X or X -orbit, in short, is precisely defined in Section 3. In Section 3.1,
we construct the announced enlargement X̂ of X , the associated pseudogroup GX and we give
a precise definition of an X -orbit. The following subsection is devoted to all definitions and
properties of distributions which will be used later.

Then the characteristic distributions D and D̂ generated by X and X̂ respectively, are defined
in Section 3.3. Finally, the main results of structure of weak Banach manifolds on X -orbits are
given and proved in Section 4. In Section 4.2 under conditions (H) the corresponding result is
given in Theorem 3. Under conditions (H′), the main results are given in Theorem 5. Section 5
is devoted to some applications: on one hand we obtain a new criterion of integrability of l1-
distributions in Theorem 6 (see Remark 5.1). On the other hand, we give general results on
accessibility sets as applications of the previous results on X -orbits (Theorem 7 and Theorem 8).
The last section is devoted to the proof of Theorem 2.

2. On l1-integral curve of a uniformly locally bounded set of vector fields

2.1. Problem of existence of l1-integral curve

Let M be a smooth connected Banach manifold modelled on a Banach space E. A local
vector field X on M is a smooth section of the tangent bundle T M defined on an open set of M

(denoted by Dom(X)). Denote by X (M) the set of all local vector fields on M . Such a vector
field X ∈ X (M) has a flow φX

t which is defined on a maximal open set ΩX of R × M .
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In this whole work, A, B and Λ will denote a finite or a countable, eventually uncountable,
ordered set of indexes. For such a countable set we shall often identify this one with N as ordered
set of indexes.

Consider a subset X of X (M). As we have seen in the introduction, a curve γ : [a, b] → M

is called an l1-integral curve of X , if there exists a sequence t = (tα)α∈A, where A is a finite or
countable set such that:

– t0 = a and tα−1 � tα � b for α ∈ A;
– tn = b if A is finite (A ≡ {1, . . . , n}) or limα→∞ tα = b (when A is countable);
– the restriction of γ to each subinterval ]tα−1, tα[ is an integral curve of Xα or −Xα for some

Xα ∈ X .

For such a curve γ , the point x0 = γ (a) (resp. x1 = γ (b)) is called the origin (resp. the end)
of γ and we say that x0 is joined to x1 by an l1-integral curve of X .

It is clear that for any finite set A = {0, . . . , n} any l1-integral curve is smooth by parts and, if
we set τ0 = a and τα = tα − tα−1 for α = 1, . . . , n, then there exist vector fields X1, . . . ,Xn in X
such that for α = 1, . . . , n, we have

γ (s) = φ
Xα
s−tα−1

◦ φ
Xα−1
α−1 ◦ · · · ◦ φX1

τ1

(
γ (a)

)
for s ∈ [tα−1, tα[ and α = 1, . . . , n. (2)

Given a countable set A ≡ N, and an l1-integral curve γ of X , there exists a sequence of vector
fields {Xα, α ∈ A} in X such that (2) is true for all α ∈ A. In particular, we must have

lim
α→∞φ

Xα
tα

◦ · · · ◦ φ
X1
t1

(
γ (a)

) = b. (3)

We can cover such a curve by a finite number of charts (Vi, φi), i = 1, . . . , r so that any
γ (]tα−1, tα[) is contained in one domain Vi . Note that there exists one of these domains which
contains all γ (]tα−1, tα[) for α � α0 for some α0 ∈ N

∗ and we can assume that Vr has this
property. Now, on each Vi , a norm ‖ ‖φi

can be defined on each fibre TxM , for x ∈ Vi by
‖u‖φi

= ‖Txφi(u)‖ where ‖ ‖ is a norm on E. From (3), for any α ∈ A, if γ (]tα−1, tα[) ⊂ Vi , we
must have

sup
{∥∥Xα

(
γ (t)

)∥∥
φi

, t ∈ ]tα−1, tα[} is finite.

On the other hand, consider any countable set A ≡ N and any subset {Xα, α ∈ A} of X such
that Dom(Xα) contains V and

sup
{∥∥Xα(x)

∥∥
φi

, x ∈ V, α ∈ A
}

is finite.

Let be τ = (τα) ∈ l1(A) such that τα > 0 for any α ∈ A. Set t0 = 0 and tα = ∑α
i=1 τi for α ∈ A

and T = limα→∞ tα . We set γ (0) = x ∈ V . If the flow φ
X1
t (x) is defined for t � τ1, we set

γ (t) = φX1(t) for t ∈ [t0, t1]. By induction, suppose that we have defined γ : [0, tα] → V such
that γ : [ti , ti+1] → V is defined by γ (t) = φ

Xi
t−ti

(γ (ti)) for all i = 1, . . . , α. Then if the flow

φ
Xα+1
t (γ (tα)) is defined for t � τα+1 then we put γ (t) = φ

Xα+1
t−tα

(γ (tα)) for t ∈ [tα, tα+1]. So,
when we can construct γ at each step, we get an l1-integral curve of X . Consequently, for the
existence of l1-integral curve associated to a countable subset {Xα, α ∈ A} of vector fields of X ,
we have to produce sufficient conditions under which sequences of compositions

φXα
τ ◦ · · · ◦ φXi

τ ◦ · · · ◦ φX1
τ ,
α i 1
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converge when α → ∞ and the limit defines a local diffeomorphism. These conditions are
assumptions of uniform local boundness on the jets of vector fields (see next subsection).

Remark 2.1. Consider a subset {Xα, α ∈ A} of X with the previous assumptions and τ = (τα) ∈
l1(A). Recall that, for any local vector field X, for ν �= 0, we have φX

t (x) = φ
X/ν
νt (x), when the

second member is defined. It follows that given any ν > 0 if an l1-integral curve γ of {Xα, α ∈ A}
is defined on [0, T ] as before, we can also define an l1-integral curve γ̄ of { 1

ν
Xα, α ∈ A} in an

obvious way on [0, νT ] and we have γ̄ (t)) = γ (νt) for any t ∈ [0, T ].

2.2. Set of vector fields uniformly locally bounded at order s

Let Π : T M → M be the tangent bundle of M , with typical fibre E. Local vector fields on
M are local sections of this bundle. Given X ∈ X (M), the s-order jet of X at x ∈ M is denoted
by J s(X)(x). The set J s(T M) of s-order jets of local vector fields on M is a Banach bundle
Πs : J s(T M) → M of typical fibre E × L(E,E)× L2(E,E)×· · ·× Ls(E,E) where Lk(E,E),
2 � k � s is the Banach space of symmetric k-linear maps from Ek into E endowed with the
usual norm (see for instance [7] or [17]). The typical fibre E × L(E,E) × L2(E,E) × · · · ×
Ls(E,E) of J s(T M) is a Banach space for the norm ‖ ‖s which is the sum of the norm on E,
the canonical norms on L(E,E) and on Lk(E,E) for 2 � k � s.

Consider a chart (V ,φ) on M centered at x. On V there exists a trivialization (φ,Φ) of
[Πs]−1(V ) on φ(V )× J s(E) where J s(E) = E × L(E,E)× L2(E,E)× · · ·× Ls(E,E) is the
typical fibre. On V , we have

∀y ∈ V, Φ
[
J s(X)(y)

] = J s(φ∗X)
(
φ(y)

)
.

So, on [Πs]−1(V ), we have a norm ‖ ‖φ characterized by

∥∥J s(X)(y)
∥∥

φ
= ∥∥J s(φ∗X)

(
φ(y)

)∥∥
s
.

Lemma 2.2. (See [11].) Let V ′ be an open neighborhood of x having the same properties and
(φ′,Φ ′) the associated trivialization. Denote by ‖J s(X)(y)‖φ′ = ‖J s(φ′∗X)(φ′(y))‖s the asso-
ciated norm on [Πs]−1(V ′). Then there exist a neighborhood W ⊂ V ∩ V ′ of x and a constant
C > 0 such that

∀y ∈ W,
∥∥J s[X](y)

∥∥
φ′ � C

∥∥J s[X](y)
∥∥

φ
.

Definition 2.3. Let X be a set of local vector fields on M . Given x ∈ M , we say that X satisfies
the condition (LB(s)) at x (Locally Bounded at order s), if there exist a chart (Vx,φ) centered at
x and a constant k > 0 such that:

For any X ∈ X , whose domain dom(X) contains Vx , we have

sup
{∥∥J s[X](y)

∥∥
φ
, X ∈ X , y ∈ Vx

}
� k. (4)

Remark 2.4. It follows from Lemma 2.2 that the property (4) does not depend neither on the
choice of the norm on E, nor on the choice of the chart.
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Examples 2.5.

(1) Let E and F be two Banach spaces and T : F → E a continuous operator. Given any finite
or countable subset {aα, α ∈ A} uniformly bounded of F (i.e. ‖aα‖ � k for any α ∈ A) the
assignment x �→ Xα(x) = x + T (aα) is a vector field on E and {Xα, α ∈ A} satisfies the
condition LB(s) at any x ∈ E and for any s ∈ N

∗.
(2) Let L(F,E) be the set of continuous operators between the Banach spaces F and E. Given

a smooth map Φ : E → L(F,E), we denote by Φx the continuous operator associated to
x ∈ E. By smoothness of Φ , for any x ∈ E and s ∈ N

∗, we can find an open neighborhood U

of x ∈ E such that the jet of order s of Φ is bounded on U (in the sense of Lemma 2.2). Then,
for any finite or countable subset {aα, α ∈ A} uniformly bounded of F , denote by Xα the
vector field on E defined by Xα(x) = Φx(aα). The set {Xα, α ∈ A} satisfies the condition
(LB s) at any x ∈ E and for any s ∈ N

∗.
(3) Let X = {X1, . . . ,Xn} be a finite family of (global) vector fields on a Banach manifold M .

Then X satisfies the condition (LB s), for any s ∈ N.

2.3. Sufficient conditions for the existence of l1-integral curves

Notations 2.6.

• B(x, r) (resp. Bf (x, r)) denotes the open (resp. closed) ball centered at x ∈ E of radius r in
the Banach space E.

• Given any Banach space L, if f : R × E × L → E is a smooth map, we denote by D2f

(resp. D3f ) the partial derivative relative to E (resp. L).
• Let R

A will be the set of families (uα)α∈A of absolutely summable real numbers where
A is countable or eventually uncountable set of indexes or the set of finite real sequences
u = (u1, . . . , un) if A = {1, . . . , n}. We endow R

A with the norm

‖u‖1 =
∑
α∈A

|uα|.

It is well known that (RA,‖ ‖1) is a Banach space.
• Given any interval J in R we denote by L1

b(J ) the set of functions u : J → RA of class L1

which are bounded. On L1
b(J ) we define:

– ‖u‖1 = ∫
J

∑
α∈A |uα(t)|dt = ∫

J
‖u(t)‖1 dt .

– ‖u‖∞ = sup{∑α∈A |uα(t)|, t ∈ J } = sup{‖u(t)‖1, t ∈ J }.

Given a finite, countable or uncountable ordered set of indexes A, let

ξ = {
Xα, α ∈ A, Xα ∈ X (M)

}
be a set of vector fields on M such that

⋂
α∈A Dom(Xα) contains an open set V of a chart (V ,φ)

centered at x such that the condition (LB(s +2)) at x is satisfies for some s ∈ N. After restricting
V if necessary, we can suppose that there exists k > 0 such that

sup
{∥∥J s+2(X)(y)

∥∥
φ
, X ∈ ξ, y ∈ V

}
� k.

Without loss of generality, we can suppose that V is an open set of the Banach space E. To
the previous set of vector fields ξ , we can associate maps Z of type:
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Z : J × V × L1
b(J ) → E,

(t, x,u) �→ Z(t, x,u) =
∑
i∈J

ui(t)Xi(x).

It is easy to see that this map Z is of class Cs+1 relatively to the second variable.
Given such a map Z, let J ′ be a subinterval of J and (t0, x,u) ∈ J ′ × V × L1

b(I ). A map
f : J ′ → V is an integral curve of Z, with initial condition f (t0) = x if

∀t ∈ I ′, f (t) = x +
t∫

t0

Z
(
s, f (s), u

)
ds. (5)

The following theorem gives the existence of a local flow for Z:

Theorem 1. Consider a fixed u in L1
b(J ), and we set c = ‖u‖∞. Let (t0, x0, r, T

′, T0) be an

element of J × V × R
∗+3 such that]

t0 − T ′, t0 + T ′[ ⊂ J and Bf (x0,2r) ⊂ V.

Moreover denote by

I0 = [t0 − T0, t0 + T0] and B0 = B(x0, r − kcT0).

If T0 < min( r
kc

, T ′), then there exists a flow Φu : I0 × B0 → V , with the following properties:

1. For all x in B0, each curve Φu(., x) : I0 → V is the unique integral curve of Z, with initial
conditions Φu(t0, x) = x.

2. For all t ∈ I0, there exists an open connected neighborhood U0 of x0, contained in B0 such
that the map Φu(t, .) : U0 → Φu(t,U0) is a Cs -diffeomorphism. Moreover, if D2Φu(t, .) and
D2

2Φu(t, .), denote the first and second derivative relative to the second variable, we have

∀x ∈ U0, D2Φu(t, x) = IdE +
t∫

0

D2Z
(
s,Φu(s, x), u

) ◦ D2Φu(s, x) ds,

D2
2Φu(t, x) =

t∫
0

(
D2

2Z
(
s,Φu(s, x), u

) ◦ (
D2Φu(s, x),D2Φu(s, x)

)

+ D2Z
(
s,Φu(s, x), u

) ◦ D2
2Φu(s, x)

)
ds.

This result is certainly well known for specialists. The reader can find a complete proof
in [11].

Let Φ and Ψ be two local diffeomorphisms on M which are defined on the domains ΩΦ

and ΩΨ respectively. When Ψ (ΩΨ ) ∩ ΩΦ �= ∅, we can define the composition Φ ◦ Ψ which
is a local diffeomorphism defined on Ψ −1[Ψ (ΩΨ ) ∩ ΩΦ ]. In this situation we will say that
Φ ◦ Ψ is well defined. More generally, we can consider any finite composition Φn ◦ · · · ◦ Φ1
of local diffeomorphisms Φ1, . . . ,Φn when successive compositions Φi ◦ (Φi−1 ◦ · · · ◦ Φ1) are
well defined for i = 2, . . . , n. So, for a finite set A = {1, . . . , n}, and a finite set ξ = {Xα}α∈A

of vector fields with the associate flows {φXα
t }α∈A, it is clear that, for τ = (τ1, . . . , τn), under

α
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appropriate assumptions, the composition φ
ξ
τ = φ

Xn
τn ◦ · · · ◦φ

X1
τ1 is defined. When A is a countable

or eventually uncountable ordered set of indexes we have the following result:

Theorem 2. Let ξ = {Xα}α∈A be a set of local vector fields such that Dom(Xα) contains V for
all α ∈ A. Let be x0 ∈ V and r > 0 such that Bf (x0,2r) is contained in V and we assume that ξ

satisfies the condition (LB(s + 2)) at x0 where the relation (4) is true for all y ∈ V and for the
integer s + 2.

Then, there exists an open connected neighborhood U0 of x0, such that:

1. Fix any τ = (τα)α∈A ∈ R
A with ‖τ‖1 � r

k
. Let B be any countable subset of A which con-

tains all the indexes α such that τα �= 0. Identifying the set B with N (as ordered sets), we
denote by {τm, m ∈ B} the associated subsequence of {τα, α ∈ A}. Then for any x ∈ U0 we
have:
(a) φ

ξ
τ (x) = limm→∞ φ

Xm
τm ◦ · · · ◦ φ

X1
τ1 (x) exists.

(b) φ̂
ξ
τ (x) = limm→∞ φ

X1−τ1
◦ · · · ◦ φ

Xm−τm
(x) exists.

(c) The map φ
ξ
τ : x �→ φ

ξ
τ (x) is a local Cs -diffeomorphism whose inverse mapping is

φ̂
ξ
τ : x �→ φ̂

ξ
τ (x).

2. The map Ψ x defined in the following way:

Ψ x : B
(

0,
r

k

)
→ V,

τ �→ Ψ x(τ) = φξ
τ (x) is of class Cs.

When the point x will be fixed we simply denote Ψ instead of Ψ x .

The proof of this theorem is long and technical, so it will be given in Section 6.

Remark 2.7.

1. Denote by Φ
ξ
τ (resp. Φ̂

ξ
τ ) the flow given in Theorem 1 associated to ξ and u = Γ τ (resp.

û = Γ̂ τ ) (see Section 6). On the associated neighborhood U , we have

Φ̂ξ
τ (t, z) = Φξ

τ

(‖τ‖1 − t,Φξ
τ

(−‖τ‖1, z
))

,

φξ
τ (z) = Φξ

τ

(‖τ‖1, z
)
,

φ̂ξ
τ (z) = [

φξ
τ

]−1
(z) = Φ̂ξ

τ

(‖τ‖1, z
) = Φξ

τ

(−‖τ‖1, z
)
.

2. In fact, both limits φ
ξ
τ (x) and φ̂

ξ
τ (x) do not depend on the choice of the set B but only depend

on the countable set Aτ = {α ∈ A such that τα �= 0}. Moreover, the set Aτ is independent of
x ∈ U0.

3. To each τ the associated set Aτ = {α ∈ A such that τα �= 0} can be written Aτ = {αk, k ∈ N}
or Aτ = {αk, k = 1, . . . , n}. Consider the associated subdivision {tαk

}k∈N of the interval
[0, T ] defined by

t0 = 0 � t1 = |τα1 | � · · · � ti =
i∑

|ταk
| � · · · � T =

∑
|τα|.
k=1 α∈Aτ
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Fix some x ∈ U0 and let (xk)αk∈Aτ be the sequence defined by

x0 = x, and for αk ∈ Aτ , xk = φ
Xαk
ταk

(xk−1) = φξ
τ (xk−1).

Then the curve γ : [0, T ] → M defined by γ (s) = φ
Xαk
s−tk−1

(xk−1) = Φ
ξ
τ (s, x) for s ∈ [tk−1, tk[

is an l1-curve which joins x to Ψ
ξ
τ (x). On the other hand, to φ̂

ξ
τ we can associate the curve

γ̂ : [0, T ] → M defined by γ̂ (s) = γ (T − s). So γ̂ joins γ (0) = φ
ξ
τ (x) to x. We also call

such a curve, the l1-curve associated to φ̂
ξ
τ .

3. The orbits of X or X -orbits

3.1. Definition of an orbit of X

In this section, we consider a fixed set X of vector fields on M with the following properties:

(Hi) M = ⋃
x∈X Dom(X);

(Hii) there exists s � 0 with the following property: for any x ∈ M there exists a chart (Vx,φ)

centered at x such that for the set Xx of vector fields X ∈ X whose Dom(X) contains x

we have

sup
{∥∥J s+2[X](x)

∥∥
φ
, X ∈ X

}
< ∞.

The announced enlargement X̂ of X is obtained from the following lemma:

Lemma 3.1. Let (Vx,φ) be a chart centered at x and a constant k such that

sup
{∥∥J s+2[X](x)

∥∥
φ
, X ∈ X

}
� k.

Let X̂x be the set of local vector fields of type Y = (φ
Xp

tp
◦ · · · ◦ φ

X1
t1

)∗(ν.X), for any ν > 0, where
X1, . . . ,Xp,X belongs to X , whose domain contains x and such that∥∥J s+2[Y ](x)

∥∥
φ

� k. (6)

We set

X̂ =
⋃
x∈M

X̂x.

(i) X̂ contains X and satisfies the conditions (Hi) and (Hii).

(ii) Let ˆ̂X be the set of vector fields obtained from X̂ in the same way as X̂ from X . Then, we

have ˆ̂X = X̂.

Remark 3.2. According to Remark 2.1, the flow of any vector field Y = (φ
Xp

tp
◦ · · · ◦φ

X1
t1

)∗(ν.X)

can be written

φY
τ = φ

X1−t1
◦ · · · ◦ φ

Xp

−tp
◦ φX

τ/ν ◦ φ
Xp

tp
◦ · · · ◦ φ

X1
t1

. (7)
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Proof. Let be x ∈ M . For any X ∈ Xx , we have (φX
0 )∗X = X and, by construction, the vector

fields in X̂x satisfies the condition (6) with the same constant k, so Xx is contained in X̂x . If
follows that X̂ satisfies (Hi). The condition (Hii) follows from the definition of X̂x .

By construction, ˆ̂X x is the set of vector fields Z = (φ
Yp

tp
◦· · ·◦φ

Y1
t1

)∗(ν.Y ) where Y1, . . . , Yp,Y

belongs to X̂ for some ν > 0. As we have Y = (φ
Xq

tq
◦ · · · ◦ φ

X1
t1

)∗(ν′.X), from Remark 3.2 we
get

Z = (
φXm

sm
◦ · · · ◦ φX1

s1

)
∗
(
νν′X

)
for appropriate vector fields X1, . . . ,Xm,X in X and appropriate real values s1, . . . , sm.

Now, on the considered chart (Vx,φ), we have ‖J s+2[Y ](x)‖φ � k,X ∈ X . So we also have
‖J s+2[Z](x)‖ � k. We conclude that Z belongs to X̂ . �

Let GX be the pseudogroup of local diffeomorphisms Ψ which are defined in the following
way:

Ψ = φn ◦ · · · ◦ φk ◦ · · · ◦ φ1 when these compositions are well defined and where φk is a local
diffeomorphism of one of the following type:

(i) φX
τk

for some X ∈ X and τk ∈ R.

(ii) φ
ξk
τk

or [φξk
τk

]−1 as defined in Theorem 2, where ξk = {Xα, α ∈ Ak} is a finite or countable
subset of X̂ and τk ∈ R

Ak .

Comments 3.3.

1. From (7) any flow φY
τ for Y ∈ X̂ belongs to G X .

2. Let be Ψ = φn ◦ · · · ◦ φ1 ∈ GX . By construction of Ψ , to each φk is associated a family
ξk = {Xα, α ∈ Ak} which is a finite or countable subset of X̂ and τk ∈ R

Ak , we have a
real positive number

∑n
k=1 ‖τk‖1 < ∞ associated to Ψ . If φk is of type (ii), according to

Remark 2.7.1, denote by Φk the flow associated to each ξk with u = Γ τk or u = Γ̂ τk if
φk = φ

ξk
τk

or φk = [φξk
τk

]−1 respectively. If φk is of type (i) ξk is reduced to some Xk ∈ X and
we have Φk(t, y) = φ

Xk
t (y).

Take any pair (x, y) ∈ M2 such that y = Ψ (x). We set t0 = 0 and tk = ∑k
i=1 ‖τi‖1 for k =

1, . . . , n. Consider the sequence (xk) defined by x0 = x and xk = Φk(τk, xk−1). So for each k,
we can consider the l1-curve γk : [tk−1, tk] → M defined by γk(t) = Φk(t − tk−1, xk−1) (see
Remark 2.7.3). By construction, we have γ (tk) = xk and y = xn. So if T = ∑n

k=1 ‖τk‖1 we
get a sequence of l1-curve γ = [0, T ] → M , defined by γ|[tk−1,tk[ = γk , such that γ (0) = x

and γ (T ) = y.
3. Given a family ξ ⊂ X (M), recall that a ξ -piecewise smooth curve is a piecewise smooth

curve γ : [a, b] → M such that each smooth part is tangent to X or −X for some X ∈ ξ .
When y = φY

τ (x) for Y ∈ X̂ , from (7), we can clearly associate a ξ -piecewise smooth curve
which joins x to y.
Now, consider any ξ = {Xα, α ∈ A} ⊂ X̂ and τ small enough such that φ

ξ
τ is defined and

consider y = φ
ξ
τ (x). If A = {1, . . . , n} is finite, from the previous argument, there exists a

family ξn ⊂ X and an associate ξn-piecewise smooth curve γ ′
n which joins x to y. On the

other hand, if A is countable, to each k ∈ A, we can associate a family ξk ⊂ X and a ξk-
piecewise smooth curve γ ′ which joins x = x0 to xk (as defined in Remark 2.7.3). So we
k
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get a sequence of X -piecewise smooth curves whose origin is x0 (for all curves) and whose
sequence of ends converges to y. Note that, for Theorem 2, the same result is true for any
pair (z,Φ

ξ
τ (z)) for any z in some neighbourhood U of x we have

φξ
τ (z) = lim

m→∞φ
Xm−τm

◦ · · · ◦ φ
X1−τ1

(z) for any z ∈ U (8)

where ξ = {Xk, k ∈ A} ⊂ X̂ and τ = (tk)k∈A.
From (7) to each finite sequence φ

Xm−τm
◦ · · · ◦ φ

X1−τ1
(z), we can associate an X -piecewise

smooth curve γ ′
m which joins z to zm = φ

Xm−τm
◦ · · · ◦ φ

X1−τ1
(z). So given φ

ξ
τ , for any z ∈ V we

have a family of X -piecewise smooth curves γ ′
m whose origin is z and whose sequence of

ends converges to φ
ξ
τ (z).

Now, consider the case y = φ̂
ξ
τ (x) = [φξ

τ ]−1(x). Again, from Theorem 2, there exists some
open neighbourhood U of x such that φ̂

ξ
τ is a local diffeomorphism on U of x and we have

φ̂ξ
τ (z) = lim

m→∞φ
X1−τ1

◦ · · · ◦ φ
Xm−τm

(z) for any z ∈ U (9)

where ξ = {Xk, k ∈ A} ⊂ X̂ and τ = (tk)k∈A.
Again from (7) to each finite sequence φ

X1−τ1
◦ · · · ◦φ

Xm−τm
(z), we can associate an X -piecewise

smooth curve γ ′
m which joins z to zm = φ

X1−τ1
◦ · · · ◦ φ

Xm−τm
(z). So given φ̂

ξ
τ , for any z ∈ V we

have a family of X -piecewise smooth curves γ ′
m whose origin is z and whose sequence of

ends converges to φ̂
ξ
τ (z). This is in particular true for the previous fixed pair (x, y).

In the general case when y = Φ(x) for some Φ ∈ G X , we have Φ = φn ◦ · · · ◦ φ1 ∈ GX . Set
x1 = φ1(x). From the previous partial results, either we have an X -piecewise smooth curve
which joins x to x1 or there exists a sequence γk of X -piecewise smooth curves whose origin
is x (for all curves) and whose sequence of ends converges to x1. At first, assume that we are
in the first case. Now, if we have an X -piecewise smooth curve which joins x to x1, applying
the previous argument in x1 by concatenation, we get either an X -piecewise smooth curve
which joint x to x2 = φ2(x1) or we get a sequence of a sequence of X -piecewise smooth
curves whose origin is x (for all curves) and whose sequence of ends converges to x2. If we
are in the second case, where V is a neighborhood of x1 on which (8) or (9) is true. For k

large enough, γk(x1) belongs to V . So for each k, we have a family of X -piecewise smooth
curves γ ′

(k,n) whose origin is γk(x) (for all curves) and whose sequence of ends converges
to φ2(γk(xk)). As limφ2(γk(xk)) = x2, there exists an increasing sequence nk such that the
sequence γ̂k of the concatenations γk with γ ′

(k,nk)
is a sequence of X -piecewise smooth

curves whose origin is x (for all curves) and whose sequence of the ends converges to x2.
By finite induction on k, we get the same result for the pair (x, y).

To GX is naturally associated the following equivalence relation on M :

x ≡ y if and only if there exists Φ ∈ G X such that Φ(x) = y.

An equivalence class is called an l1-orbit of X or an X -orbit.
The term “l1-orbit” will be justified by the following result which sums up the previous com-

mentaries and Lemma 3.1 part (ii):
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Proposition 3.4.

1. Each point of the X -orbit of x can be joined from x by an l1-curve whose each connected
smooth part is tangent to Y or −Y for some Y ∈ X̂ .

2. For each pair (x, y) in the same X -orbit, either we have an X -piecewise smooth curve which
joins x to y or there exists a sequence γk of X -piecewise smooth curves whose origin is x

(for all curves) and whose sequence of the ends converges to y.
3. Let G X̂ be the pseudogroup naturally associated to X̂ . Then we have G X̂ = G X . In particular

each X̂ -orbit is a X -orbit.

3.2. Preliminaries on weak distributions

Recall that, according to the proof of Sussmann’s theorem on reachable sets in [16], we want
to associate to X and X̂ weak distributions D and D̂ respectively, such that Dx ⊂ D̂x for any
x ∈ M , D̂ is invariant by any flow of vector fields in X and which is minimal (in some sense) for
these properties.

Before beginning this construction, we need to recall some definitions on weak distributions
which will be used in the next subsection.

• Given a finite or countable or eventually uncountable ordered set A of indexes, a family
{εα, α ∈ A} is said to be an unconditional basis of R

A if, for every τ ∈ R
A there is a unique fam-

ily of scalars {τα; α ∈ A} such that τ = ∑
α∈A ταεα (unconditional convergence); such a basis

is symmetric if for any sequence (αk) ∈ A with k ∈ K ⊂ N, the basic sequence {ταk
, k ∈ K} is

equivalent to the canonical basis of R
K (see for instance [12]). It is well known that all uncondi-

tional symmetric basis of R
A are equivalent to the canonical basis of R

A.
• A weak submanifold of M of class Cp (resp. smooth) is a pair (N,f ) of a connected

Banach manifold N of class Cp (resp. smooth) (modeled on a Banach space F ) and a map
f : N → M of class Cp (resp. smooth) such that: [6,13]:

– there exists a continuous injective linear map i : F → E between these two Banach
spaces;

– f is injective and the tangent map Txf : TxN → Tf (x)M is injective for all x ∈ N .

Note that for a weak submanifold f : N → M , on the subset f (N) in M we have two topolo-
gies:

– the induced topology from M ;
– the topology for which f is a homeomorphism from N to f (N).

With this last topology, via f , we get a structure of Banach manifold modeled on F . Moreover,
the inclusion from f (N) into M is continuous as a map from the Banach manifold f (N) to M .
In particular, if U is an open set of M , then, f (N) ∩ U is an open set for the topology of the
Banach manifold on f (N).

• According to [13], a weak distribution on an M is an assignment D : x �→ Dx which, to
every x ∈ M , associates a vector subspace Dx in TxM (not necessarily closed) endowed with
a norm ‖ ‖x such that (Dx,‖ ‖x) is a Banach space (denoted by D̃x ) and such that the natural
inclusion ix : D̃x → TxM is continuous.
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When Dx is closed, we have a natural Banach structure on D̃x , induced by the Banach struc-
ture on TxM , and so we get the classical definition of a distribution; in this case we will say that
D is closed.

A vector field Z ∈ X (M) is tangent to D, if for all x ∈ Dom(Z), Z(x) belongs to Dx . The set
of local vector fields tangent to D will be denoted by XD .

• We say that D is generated by a subset X ⊂ X (M) if, for every x ∈ M , the vector space
Dx is the linear hull of the set {Y(x), Y ∈ X , x ∈ Dom(Y )}.

For a weak distribution D, on M we have the following definitions:
• D is lower (locally) trivial at x if there exist an open neighborhood V of x in M , a smooth

map Φ : D̃x × V → T M (called lower trivialization) such that:

(i) Φ(D̃x × {y}) ⊂ Dy for each y ∈ V ;
(ii) for each y ∈ V , Φy ≡ Φ(,y) : D̃x → TyM is a continuous operator and Φx : D̃x → TxM is

the natural inclusion ix ;
(iii) there exists a continuous operator Φ̃y : D̃x → D̃y such that iy ◦ Φ̃y = Φy , Φ̃y is an isomor-

phism from D̃x onto Φy(D̃x) and Φ̃x is the identity of D̃x .

We say that D is lower (locally) trivial if it is lower trivial at any x ∈ M .
• D is called a l1-distribution if each Banach space D̃x is isomorphic to R

A, for some ap-
propriate finite, countable or eventually uncountable ordered set A of indexes (which depends
of x).

• An integral manifold of class Cp , with p � 1 (resp. smooth) of D through x is a weak
submanifold f : N → M of class Cp (resp. smooth) such that there exists x0 ∈ N with f (x0) = x

and Tzf (TzN) = Df (z) for all z ∈ N . An integral manifold through x ∈ M is called maximal if,
for any integral manifold g : L → M through x, the set g(L) is an open submanifold of f (N),
according to the structure of Banach manifold on f (N) induced by N via f .

• D is called integrable of class Cp (resp. smooth) if for any x ∈ M there exists an integral
manifold N of class Cp (resp. smooth) of D through x.

• If D is generated by X ⊂ X (M), then D is called X -invariant if for any X ∈ X , the tangent
map Txφ

X
t send Dx onto DφX

t (x) for all (t, x) ∈ ΩX . D is invariant if D is X D -invariant.

3.3. Characteristic distribution associated to X

Consider any set Y of local vector fields such that, conditions (Hi) and (Hii) are satisfied. We
denote by Yx the set of vector fields Y ∈ Y such that x belongs to Dom(Y ). The distribution
l1(Y ) defined by

l1(Y )x =
{
X ∈ TxM such that X =

∑
Y∈Yx

τY Y (x) with
∑
Y∈Y

|τY | summable

}

is called the l1-characteristic distribution generated by Y .
For x ∈ M fixed, let Λ be any (ordered) set of indexes of same cardinal as Yx so that each ele-

ment of Yx can be indexed as Yλ, λ ∈ Λ. We then have a surjective linear map: T : l1(Λ) → TxM

defined by T ((τλ)λ∈Λ) = ∑
λ∈Λ τλYλ(x) and whose range is l1(Y )x . So we get a bijective con-

tinuous map T̄ from the quotient l1(A)/kerT onto l1(Y )x . So we can put on l1(Y )x a structure
of Banach space such that T̄ is an isometry. Finally, l1(Y ) is a weak distribution. l1(Y )x will
always be equipped with this Banach structure.
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Remark 3.5.

1. For the existence of l1(Y )x we only need that for all X ∈ Yx

sup
{∥∥X(x)

∥∥
φ
, X ∈ X

}
< ∞.

So the condition (Hii) is much too strong in this way. However, independently of the ex-
istence of l1(Y )x , in this paper, we need to consider the set Y of local vector fields which
satisfies condition (Hii).

2. The Banach space l1(Y )x is isomorphic to l1(A) for some ordered set A if and only if, with
the previous notations, kerT is complemented. In this case, A has the same cardinal as Λ

(see [9]). In particular, if the distribution l1(Y ) is upper trivial (see Section 4.3), then l1(Y )x
is isomorphic to some l1(A) for any x ∈ M.

The characteristic distribution D associated to X is defined by

Dx = l1(Xx).

Note that, from assumptions (Hi) and (Hii), Dx is well defined for any x ∈ M . Moreover, the
natural inclusion of Dx into TxM is continuous.

In the same way, the characteristic distribution D̂ associated to X̂ is defined by

D̂x = l1(X̂x).

From Lemma 3.1 part (i) it follows that D̂ is well defined and, again, the natural inclusion of
D̂x in TxM is continuous. Moreover, as Xx ⊂ X̂x , we have Dx ⊂ D̂x for any x ∈ M . The other
relative properties of D and D̂ are given in the following proposition.

Proposition 3.6.

1. D̂ is X -invariant and also X̂ -invariant.
2. Let Y be any family of local vector fields which satisfies (Hi) and (Hii) and which contains X .

If the associated distribution l1(Y ) is X -invariant then l1(Y )x contains D̂x for any x ∈ M .
In particular, if D is X -invariant, then D = D̂.

3. Given x ∈ M and assume that we have the following properties:
(i) there exists a finite countable or eventually uncountable set A of indexes such that D̂x is

isomorphic to R
A;

(ii) there exists a chart domain Vx centered at x and a family {Xα, α ∈ A} ⊂ X̂x such
that {Xα, α ∈ A} satisfies the condition (LB(s + 2)) on Vx , for some s > 0, and,
{Xα(x), α ∈ A} is a symmetric unconditional basis of D̂x ≡ R

A.
Then, there exists a weak Banach manifold Θ : B(0, ρ) → M of class Cs , which is an inte-
gral manifold of D̂ through x, where B(0, ρ) is the open ball in the Banach space R

A. Such
a manifold will be called a slice centered at x.

4. Let f : N → M be a smooth connected integral manifold such that x ∈ f (N). Assume that
the hypothesis of part 3 are satisfied at x. Then, for ρ small enough , Θ(B(0, ρ)) is contained
in f (N) and f −1(Θ(B(0, ρ))) is an open set in N .

Remark 3.7. Classically, a distribution on M is an assignment � : x �→ �x where �x is a vector
subspace of TxM . As in [16], on the set of distributions, we can consider the partial order:

� ⊂ �′ if and only if �x ⊂ �′
x for any x ∈ M.

So the result of part 2 of Proposition 3.6 can be interpreted in the following way:
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The distribution D̂ = l1(X̂ ) is minimal among all the l1-characteristic distribution l1(Y ),
generated by the family of vector fields Y which satisfies (Hi) and (Hii), contains X and which
are X -invariant.

Proof.
•Proof of part 1.
We want to prove that TzΦ[D̂z] = D̂Φ(z) for any z ∈ Dom(Φ) and for any flow Φ of vector

field of X and X̂ .
We first show that this is true for any flow φX

t where X ∈ X . Take any Z ∈ X̂ such that z

belongs to Dom(Z) and set x = φX
t (z). There exists Y ∈ X and a finite composition Φ of flows of

vector fields of X such that Z = Φ∗(νY ) for some ν > 0. So we have Z′ = (φX
t )∗(Z) = Φ ′∗(νX)

where Φ ′ = (φX
t ◦ Φ). But, there exists ν′ > 0 such that ν′Z belongs to X̂x , in particular Z′(x)

belongs to D̂x . As D̂x is generated by {Y(x), Y ∈ X̂x} we then have

Tzφ
X
t [D̂z] ⊂ D̂x. (10)

As (φX
t )−1 = φX−t , by the same argument we get Tx(φ

X
t )−1[D̂x] ⊂ D̂z and from (10) we get

Tzφ
X
t

[
Tx

(
φX

t

)−1[D̂x]
] = D̂φX

t (z) = D̂x ⊂ Tzφ
X
t [D̂z].

Now, from (7) and the previous argument, we also have Tzφ
Y
t [D̂z] = D̂φY

t (z) for any z ∈
Dom(φY

t ) and for any flow φY
t with Y ∈ X̂ .

•Proof of part 2.
Let be x ∈ M and Z ∈ X̂ such that x ∈ Dom(Z). As before, we have Z = Φ∗(νY ) for some

finite composition of flows of vector fields of X and Y is a vector field of X and ν > 0.

Z(x) = Z
(
Φ

(
Φ−1(x)

))
= TΦ−1(x)Φ

(
νY

(
Φ−1(x)

))
.

As � is X -invariant we obtain that Z(x) belongs to �x and we get D̂x ⊂ �x . In particular, if
� = D, it is obvious that D̂x contains Dx , so we get an equality.

This ends the proof of part 2.
•Proof of part 3.
In this proof we will use some notations and results proved in Section 6. In each case, we will

mention the precise references of these notations and results.
Let be x ∈ M for which all assumptions in part 3 are satisfied. Denote by (Vx,φ) the chart

centered at x such that {Xα, α ∈ A} ⊂ X̂Vx . Then, Vx ⊂ Dom(Xα) for each α ∈ A and we set

k = sup
{∥∥J s+2(Xα)(y)

∥∥
φ
, α ∈ A, y ∈ Vx

}
.

Without loss of generality, we can assume that Vx is an open subset V of the Banach space
E ≡ TxM and also that T M ≡ V × E on Vx . We choose r > 0 such that B(x,2r) is contained
in V . For the sake of simplicity, we denote by{

εα = Xα(x)
}
α∈A

the symmetric unconditional basis of D̂x .
There exists an isomorphism T from D̂x to R

A such that: T (εα) = eα where {eα}α∈A is the
canonical basis of R

A. So we can choose ρ > 0 such that the image by T of the open ball
B(0, ρ) ⊂ D̂x is contained in B(0, r ) ⊂ R

A.

k
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Given any fixed w = ∑
α∈A tαεα ∈ B(0, ρ), we set T (w) = τ = (τα)α∈α . Of course, T (w) ∈

B(0, r
k
). By application of Theorem 1 on V in the particular case where:

ξ = {Xα}α∈A, I = R, u = Γ τ (see Section 6, Section 6.1), t0 = 0, T ′ is any real number, large
enough, and T0 = ‖τ‖1.

We have already proved that

Γ τ ∈ L1
b(R) with

∥∥Γ τ
∥∥∞ = 1.

Let be I0 = [−T0, T0] and B0 = B(x, r − kT0). As T0 < r
k

, there exists a flow ΦΓ τ defined on

J0 × B0. From Theorem 2, Θ = Ψ x ◦ T , is a map of class Cs from B(0, ρ) ⊂ D̂x with values in
an open set of E contained in V . We then have

Θ(w) = Ψ x(τ) = φξ
τ (x) = ΦΓ τ

(‖τ‖1, x
)
. (11)

The exact expression of ψx is given in Section 6.
It follows from Theorem 2 that Θ is a map of class Cs with s > 0 from B(0, ρ) into V . We

can consider DΘw as a field on B(0, ρ) of operators from D̂x ≡ R
A into TxM ≡ E. On the other

hand, we have

DΘ0(εα) = DΨ x
(0)

(
T (εα)

)
= DΨ x

(0)(eα)

= εα.

So DΘ0 is an injective operator from D̂x into TxM .
Now from [13] we have:

Lemma 3.8.

1. Consider two Banach spaces E1 and E2 and i : E1 → E2 an injective continuous operator.
Let Θy be a continuous field of continuous operators of L(E1,E2) on an open neighbour-
hood V of x ∈ E1 such that Θx = i. Then there exists a neighbourhood W in V such that
Θy is an injective operator on W .

2. Let f : U → V be a map of class C1 from two open sets U and V in Banach spaces E1 and
E2 respectively such that Tuf is injective at u ∈ U . Then there exists an open neighbourhood
W of u in U such that the restriction of f to W is injective.

By applying this lemma, we conclude that, for ρ small enough, Θ : B(0, ρ) → V is a weak
submanifold of class Cs .

It remains to show that DΘw(D̂x) = D̂Θ(w).
Given v = ∑

α∈A vαεα , we set σ = T (v). From (29) (Section 6), we have

DΘw(v) = DΨ x
T (w) = �Ψ x(τ) ◦ R(τ )

( ∑
α∈A

σαεα

)
.

On one hand, the map R(τ )(
∑

α∈A σαεα) = ∑
α∈A σα�Ψ̂ x

α ((−τ)α)[Xi(Ψ
x
α (τα)] is a contin-

uous field τ �→ R(τ ) of endomorphisms of D̂x (see Lemma 6.8). As at τ = 0, the operator R(0)

is the identity of D̂x , for ρ small enough, w �→ R ◦ T (w) is a field of isomorphisms of D̂x .
On the other hand we have Θ(w) = φ

ξ

T (w)(x). As φ
ξ

T (w) belongs to G X , from part 1 of this

proposition, we have: Dφ
ξ

T (w)(D̂x) = D̂
φ

ξ
(x)

= D̂Θ(w).

T (w)
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So we obtain the result required for ρ small enough. This ends the proof of part 3.
•Proof of part 4.
The point x ∈ M for which the assumptions of part 3 of the proposition is true will be fixed,

and we suppose that T M is trivializable on the chart domain V (around x). We then have:

Lemma 3.9. Let {Xα}α∈A be a family of vector fields on U ⊂ V which satisfies the condition
(LB(s + 2)) on U and which is an unconditional symmetric basis of D̂x .

1. There exists a morphism Ψ : U × D̂x → T M which is a lower trivialization at x such that
Ψy(Xα(x)) = Xα(y) for any α ∈ A.

2. For any integral manifold f : N → U of D̂ of class Cs through x, there exists a family
{Yα}α∈A of vector fields on N defined on a neighbourhood of f −1(x) such f∗Yα = Xα and
η = {Yα}α∈A satisfies the condition (LB(s + 2)) at f −1(x).

Proof. Consider Ψ̃ : D̂x × U → D̂ defined in the following way:

if w =
∑
α∈A

wαεα we set Ψ (w,y) =
∑
α∈A

wαXα(y).

As usual, we set Ψ̃y = Ψ̃ (, y). Denote by D̄y the normed subspace defined by D̂y from the
structure of Banach space on TyM , and iy : D̂y → TyM the natural inclusion.

At first, as by definition,
∑

α∈A wα is absolutely summable, from the property LB(s + 2), it
follows that Ψ (w,y) ∈ TyM is well defined and Ψy is a continuous operator from D̂x to D̂y such
that ‖Ψy‖ � K . We set Ψy = iy ◦ Ψ̃y . It is clear that the field y → iy ◦ Ψ̃ (y) is smooth. From this
construction, it is easy to see that Ψ (w,y) = iy ◦ Ψ̃y(w) is a lower trivialization at x such that
Ψy(Xα(x)) = Xα(y) for any α ∈ A.

Let f : N → U be an integral manifold of D̂ through x of class Cs . Then, N is a Banach
manifold modeled on the Banach space D̂x . For any open neighborhood W of x the set W̃ =
f −1(W) is an open neighborhood of x̃ = f −1(x). Without loss of generality, we may assume
that N is an open set in D̂x , with x̃ = 0, and M is an open set in E ≡ TxM . Modulo these
identifications, f is the natural inclusion of N in M , that is the restriction to N of the natural
inclusion ix : D̂x → TxM . In this context, on i(N) ⊂ M , y → Ψy is a Cs field of continuous
linear operators from D̂x into iy(Dy) ≡ ix(D̂x) × {y} ⊂ E × {y} ≡ TyM . From Lemma 2.10
in [13] y �→ Ψ̃y is also a Cs field of linear operators from D̂x into D̂y × {y} ≡ ix(D̂x) × {y} ≡
TyN . It follows that, for any α ∈ A, Yα(y) = Ψ̃ (εα) is a Cs vector field on N such that (ix)∗Yα ≡
f∗Yα = Xα . From the previous definition of Yα , it follows that η = {Yα}α∈A satisfies the condition
(LB(s + 2)). �

Now we come back to the proof of part 3. Consider an integral manifold f : N → M of D̂ of
class Cs through x and suppose that the assumption of part 2 is satisfied at x. On N , the family
η = {Yα}α∈A satisfies the condition (LB(s +2)) at x̃ = f −1(x). So for ρ small enough, given any
τ ∈ B(0, ρ) ⊂ R

A, we can apply Theorem 1 to the family η and u = Γ τ and Theorem 2 on N .
We then get:

• A Cs flow Φ̃Γ τ (t, ) of Z̃ = ∑
α∈A Γ τ

α Yα (see Section 6) such that for any z in a small
neighborhood W of x̃ we have
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ΦΓ τ

(
t, f (z)

) = f ◦ Φ̃Γ τ (t, z)

where ΦΓ τ (t, ) is the flow of Z = ∑
α∈A Γ τ

α Xα .
• On N , the associated flow φ̃

η
τ (x) = Φ̃Γ τ (T , x̃) and as in (11), the associated map Θ̃(w) =

φ̃
η

T (w)(x̃).

Moreover, as T0Θ̃ is an isomorphism, so for ρ small enough, Θ̃ is a diffeomorphism from B(0, ρ)

on an open neighborhood W of x̃ in N . On the other hand, from the previous construction, for
ρ small enough, we have Θ = f ◦ Θ̃ . It follows that f −1(Θ(B(0, ρ))) = Θ̃(B(0, ρ)) = W . This
ends the proof of part 4. �
4. Structure of weak submanifold on X -orbits

In this section, we will give sufficient conditions under which each X -orbits has a structure of
weak submanifold of M . The first one imposes some local conditions on the set X̂ which leads
to integrability of D̂ (Theorem 3) and can be seen as a generalization of Sussmann’s arguments
used in [16]. The second one imposes that D̂ is upper trivial and also some local involutivity
conditions on X̂ .

4.1. Structure of manifold and X -orbits

Now we will prove some results about integrable distributions which contain D and X -orbits.
This result will be used in each two following subsections.

Consider any set Y of local vector fields which contains X̂ and satisfies conditions (Hi).
Assume that there exists a weak distribution generated by Y : for instance if Y satisfies (Hii) then
we can choose � = l1(Y ) (see Section 3.3). Assume that � is integrable on M and for each
x ∈ M there exists a lower trivialization Θ : F × V → T M for some Banach space F (which
depends of x) and some neighborhood V of x in M . Let N be the union of all integral manifolds
iL : L → M through x0. Then iN : N → M is the maximal integral manifold of � through x0
(see Lemma 2.14 [13]).

For the clarity of the proof of results in this subsection, for any point z ∈ N , when N is
equipped with the induced topology of M , we denote by z̃ the same point of N but when N is
equipped of its Banach manifold structure.

Proposition 4.1. As previously, let f ≡ iN : N → M be the maximal integral manifold of �
through x.

1. Let Z ∈ X (M) be such that Dom(Z) ∩ f (N) �= ∅ and Z is tangent to �. Set ṼZ =
f −1(Dom(Z) ∩ f (N)). Then ṼZ is an open set in N and there exists a vector field Z̃ on
N such that Dom(Z̃) = ṼZ and f∗Z̃ = Z ◦ f .
Moreover, if ]ax, bx[ is the maximal interval on which the integral curve γ : t → φZ(t, x)

is defined in M , then the integral curve γ̃ : t → φZ̃(t, x̃) is also defined on ]ax, bx[ and we
have

γ = f ◦ γ̃ . (12)

2. Let ξ = {Xβ, β ∈ B} ⊂ X̂ ⊂ Y be which satisfies the conditions (LB(s + 2)) on a chart

domain V centered at x ∈ f (N) and consider φ
ξ
τ for some τ ∈ R

B as defined in Theorem 2
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and let γ be the l1-curve on [0,‖τ1‖1] associated to φ
ξ
τ as in Remark 2.7. Then there exists

an l1-curve γ̃ : [0,‖τ‖1[ → N such that

f ◦ γ̃ = γ on
[
0,‖τ‖1

[
. (13)

When � is a closed distribution, we extend γ̃ to [0,‖τ‖1] so that (13) is true on [0,‖τ‖1].
Moreover, under this last assumption, to the local diffeomorphism [φξ

τ ]−1, consider the as-
sociated l1 curve γ̂ . Then the curve c̃(s) = γ̃ (T − s) is an l1-curve which satisfies (13)
relatively to γ̂ .

Proof.
• Proof of part 1.
Fix some Z ∈ X (M) as in lemma. As f (resp. Tỹf for any ỹ ∈ N ) is injective, there exists a

field Z̃ : ỹ → Z̃(ỹ) ∈ TỹN such that

Tỹf
[
Z̃(ỹ)

] = Z
(
f (ỹ)

)
for any ỹ ∈ ṼZ = f −1[Dom(Z) ∩ f (N)

]
. (14)

It remains to show that the vector field Z̃ is smooth on ṼZ .
In fact, it is sufficient to prove this property on some neighborhood Ṽ of any point x̃ ∈ ṼZ .
Note at first that from our assumption about the lower trivialization, we have �̃x = Tx̃N ≡ F .

So F is independent of x ∈ f (N). For any x ∈ f (N) and an associated lower trivialization
Θ : R

A × V → T M we will always choose V such that T M|V ≡ E × V . Of course, f −1(V )

is an open neighborhood of x̃ in N . We also always choose an open neighborhood Ṽ of x̃ in
f −1(V ) such that T N|Ṽ ≡ F × Ṽ .

We assert that the vector field Z̃ is smooth on Ṽ .
Indeed, from convenient analysis (see [10]), recall that for a map g from an open set U in a

Banach space E1 to a Banach space E2 we have the equivalent following properties:

(i) g is smooth;
(ii) for any smooth curve c : R → U the map t �→ g ◦ c(t) is smooth;

(iii) the map t �→ 〈α,g ◦ c(t)〉 is smooth for any α ∈ E∗
2 .

Fix some ỹ ∈ ṼZ . As we have already seen, we can choose a neighborhood Ṽ of ỹ ∈ ṼZ such that
T N|Ṽ ≡ F × Ṽ . So, without loss of generality, we can suppose that Ṽ is an open set in F and

V an open set in E and f ≡ Tỹf on Ṽ . For simplicity, let be θ = Tỹf : TỹN ≡ F → TyM ≡ E

where y = f (ỹ) with our conventions. In these conditions, Z̃ is a map from Ṽ to F and Z is a
smooth map from V to E. Note that, according to (14), we have

θ ◦ Z̃(ỹ) = Z ◦ θ(ỹ)

for any ỹ ∈ Ṽ . Choose any ω ∈ E∗. For any smooth curve c : R → Ṽ , we then have

〈ω,Z ◦ θ ◦ c〉 = 〈ω,θ ◦ Z̃ ◦ c〉 = 〈
θ t (ω), Z̃ ◦ c

〉
.

As the adjoint θ t of θ is surjective, according to the previous argument of convenient analysis
we conclude that Z̃ is smooth on Ṽ .

Now, if x = f (x̃), from the relation f∗Z̃ = Z ◦ f we get

φZ(t, x) = f ◦ φZ̃(t, x̃)
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for any t for which φZ̃(t, x̃) is defined. In particular, this relation exists for some interval
]−ε, ε[.

Given the maximal interval ]ax, bx[ as in the lemma, choose any τ ∈ [0, bx[. For each t ∈
[0, τ ] we have an integral manifold ft : Lt → M which is an integral manifold of � through
φZ(t, x). As φZ̃(t + s, x) = φZ̃(t, φZ̃(s, x)), by the previous argument, there exists some sub-
interval on which the curve s → φZ̃(s, x) belongs to Lt . If we set Lτ = ⋃

t∈[0,τ ] Lt , by connexity
argument, using Lemma 2.14 [13], it follows that iLτ : Lτ → M is an integral manifold of �
through x. But by construction Lτ is an open submanifold of N . It follows that (12) is true on
[0, bx[; the same arguments works for any τ ∈ ]ax,0]. This ends the proof of part 1.

• Proof of part 2.
Now, let be some ξ = {Xβ, β ∈ B} ⊂ X̂ ⊂ Y satisfying the required conditions. According to

Theorem 2, we have a map Ψ x from some neighborhood U of 0 ∈ R
B into V of class Cs . From

part 1, on N , we have a family of smooth vector fields ξ̃ = {X̃β, β ∈ B} such that Dom(X̃β) =
Ṽ = f −1(V ) for any β ∈ B . Fix some τ ∈ U . According to Remark 2.7, and (14), by induction,
we can construct a curve γ̃τ : [0,‖τ‖1[ such that

f ◦ γ̃τ = Φξ
τ (t, x) for any t ∈ [

0,‖τ‖1
[
. (15)

Suppose that � is closed. So �z is closed in TzM for any z ∈ N and it follows that the topology of
N as weak manifold is nothing but the induced topology of M on N . The endpoint y = γ (‖τ‖1)

belongs to V . So γ̂ : [0,‖τ‖1] → M defined by γ̂ (s) = γ (‖τ‖1 − s) is an integral curve of the
vector field

Z =
∑
β∈B

uβXβ

where (uβ) = Γ̂ τ is associated to φ̂
ξ
τ .

On the other hand, we have an integral manifold iL : L → M through y. We choose a neigh-
borhood U ⊂ V of y such that we have T M|U ≡ U × TyM . From our assumption, again, the
topology of L as weak manifold is nothing but the induced topology of M on L.

From part 1, Ũ = U ∩ L = (iL)−1(U ∩ L) is an open neighborhood of ỹ = (iL)−1(y) in L

and we have a family ξ = {Ỹβ, β ∈ B} such that (iL)∗(Ỹβ) = [Xβ ]|Ũ .
From our notations we have T M|U ≡ U × TyM and TyL is a Banach subspace of TyM . So

for each z ∈ Ũ we have an induced norm on the finite order jets of vector fields induced from
‖.‖φ on the finite jets of vector fields on Ũ . As {Xβ, β ∈ B} satisfies the conditions (LB(s + 2))

on V , and U ⊂ V , the family {Ỹβ; β ∈ B} will also satisfies the condition (LB(s + 2)) on Ũ . So
by application of Theorem 1 on Ũ to Z and the unicity of the integral curve through y we have
obtained that γ (‖τ‖1 − s) = γ̂ (s) belongs to L for 0 � s < ε with ε > 0 small enough. We then
have N ∩ L �= ∅. It follows that Ũ is an open set of N and in particular y belongs to N and we
can extend γ̃ to [0,‖τ‖1].

For the last part, the l1 curve associated to [φξ
τ ]−1 is γ̂ (s) = γ (‖τ‖1 − s) on [0,‖τ‖1] and we

trivially obtain the result from the previous proof. �
4.2. Structure of weak submanifold on X -orbits under local regularity conditions

Now we suppose that X is a set of vector fields on M which satisfies the assumptions
(H) = (Hi,Hii,Hiii) that is to say previous conditions (Hi) and (Hii) and also the assumption
of Proposition 3.6, part 3:
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(Hiii) there exists a finite, countable or eventually uncountable set A of indexes such that D̂x

is isomorphic to R
A and a family {Xα, α ∈ A} ⊂ X̂x such that {Xα, α ∈ A} satisfies the

condition (LB(s + 2)), for some s > 0, and {Xα(x), α ∈ A} is a symmetric unconditional
basis of D̂x ≡ R

A.

Proposition 4.2.

1. For all x in M , the X̂ -orbit and the X -orbit passing through x are equal.
2. The distribution D̂ is lower trivial on M .
3. The distribution D̂ is integrable. Each maximal integral manifold of D̂ has a natural smooth

structure of weak connected Banach submanifold, modeled on some R
A where A is a finite,

countable or eventually uncountable set of indexes. Moreover, any maximal integral manifold
of D̂ is contained in an X -orbit.

Theorem 3. If X satisfies the assumptions (H) at each point of M , then D̂ is integrable. Moreover,
we have the following properties:

(i) Each X -orbit O is the union of the maximal integral manifolds which meet O and such an
integral manifold is dense in O.

(ii) Let D̄ be the closed distribution generated by X̂ . If D̄ is lower trivial and integrable, then,
the X -orbit of x is a dense subset in the maximal integral manifold through x.

(iii) If D̂ is a closed distribution then each X -orbit is a maximal integral manifold of D̂ modeled
on some R

A.

Remark 4.3. At any point x ∈ M where D̂ is a finite dimensional vector space, D̂x is iso-
morphic to some R

n and we can always choose a finite set {X1, . . . ,Xn} ⊂ X̂ such that
{X1(x), . . . ,Xn(x)} is a basis of D̂x . Moreover for finite set {X1, . . . ,Xn} we can always find
an open neighborhood of x so that the condition (LB(s + 2)) is satisfied on V by this set. So, in
this case, the assumption (H) is satisfied at x. So, if D̂ is finite dimensional, from Theorem 3 any

X -orbit is a finite dimensional submanifold of M .

Proof of Theorem 3. The integrability of D̂ is a direct consequence of part 3 of Proposi-
tion 4.2.

Moreover, again from part 3 of Proposition 4.2 we know that each maximal integral manifold
N is contained in an X -orbit O. It remains to show that such an integral manifold is dense in O.
As the binary relation associated to the X -orbit is symmetric, O is the X -orbit of any point of O.
So, if L contains x, then, from Proposition 3.4 part 2 and Proposition 4.1, any y ∈ O must belong
to the closure of L (in M).

Now, assume that the closed distribution D̄ generated by X̂ is lower trivial and integrable.
Denote by O the X -orbit of x. Choose some y ∈ O and let Ψ ∈ G X be such that Ψ (x) = y.
According to Comments 3.3, we can associate to Ψ a finite sequence of points (xk)k=0,...,n and
a finite family {γk}k=1,...,n of l1-curves associated to some φ

ξk
τk

which joins xk−1 to xk and with
x0 = x and xn = y. Let N be the maximal integral manifold of D̄ through x. As x0 = x, according
to Proposition 4.1, there exists an l1 curve γ̃1 in N such that iN ◦ γ̃1 = γ1 so x1 belongs to N . By
induction we can construct an l1-curve γ̃k in N such that iN ◦ γ̃k = γk and then xk belongs to N .
So, for k = n we obtain that xn = y belongs to N . In particular, by part 1, each maximal integral
manifold L of D̂ which meets O is contained in N . So, as D̄ is closed, the topology of Banach
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manifold on N is the induced topology as subset of M . So, any maximal integral manifold of D̂
contained in O is dense in O, as subset of N .

Denote by Ō the closure of O in N . So Ō is a connected closed subset of N . Consider any
y ∈ Ō. Let L be the maximal integral manifold of D̂ through y. As L is arc-connected and the
inclusion of L (with the topology of Banach manifold) in N is continuous, it follows that L is
contained in N . Let O′ be the X -orbit of y. From previous arguments, O′ is also contained in N .
Let (yk) be a sequence in O which converges to y. Given any z ∈ O′ let be Φ ∈ G X such that
Φ(y) = z. Now as each yk belongs to O and O is invariant by any local diffeomorphism of G X , it
follows that zk = Φ(yk), for k large enough. So z = limk→∞ zk , and then z belongs to Ō. Finally
we get O′ ⊂ Ō and, in particular, the maximal integral manifold L′ of D̂ through y is contained
in Ō.

On the other hand, as TyN is the closure in TyM of the normed subspace TyL
′, there exists

a neighborhood U of y in L′ (for the two topologies on L) such that, the closure of U in N is
a closed set of N with non-empty interior. But U ⊂ L′ ⊂ Ō, so it follows that Ō is open. By
connexity argument, we get Ō = N .

Now if D̂ is a closed distribution, obviously we have D̄ = D̂ so, the assumptions of property
are satisfied. So part (iii) is a direct consequence of properties (i) and (ii). �
Proof of Proposition 4.2.

•Proof of part 1.
This result comes from G X = G X̂ (Proposition 3.4 part 3).
•Proof of part 2.
This result is a consequence of Lemma 3.9 part 1.
•Proof of part 3.
From Proposition 3.6 part 3, for any x ∈ M we have a Cs integral manifold through x, with

s � 1. As D̂ is a lower trivial weak distribution, consider the set

X −
D = {

X(u) = Ψx(u, y) for any lower trivialization

Ψx : D̂x × V → T M and any x ∈ M
}
.

As through x, we have an integral manifold of class Cs , s � 1, from the proof of Proposition 2.8
in [13], it follows that D is X −

D -invariant. So from Theorem 1 of [13] we have a smooth integral
manifold through x. Moreover, if we consider the following equivalence relation on M :

xRy iff there exists an integral manifold of D̂ passing through x and y

then each equivalence class L has a natural structure of weak Banach submanifold modeled on
D̂x for any x ∈ L and L is an integral manifold of D̂. Take such an equivalence class L and
denote by iL the natural inclusion of iL of L (endowed with its Banach structure) into M . From
Proposition 3.6 part 3, for any x ∈ L, there exist an open ball B(0, ρx) ⊂ R

A ≡ D̂x and a Cs map
Θx : B(0, ρx) → M which is a Cs integral manifold of D̂ through x and such that Θx(B(0, ρx))

is an open set of L. So, Px = Θx(B(0, ρx)) has an induced structure of smooth Banach manifold
modeled on D̂x (isomorphic to R

A for some appropriate set of indexes A). In particular, the
natural inclusion ix : Px → M is a smooth integral manifold of D̂ through x. Now take some
x ∈ L. For any y ∈ L we have a continuous curve γ : [a, b] ⊂ R → L such that γ (a) = x and
γ (b) = y. By compactness of γ ([a, b]) we have a finite covering of γ ([a, b]) by a family of
open sets {Θxi

(B(0, ρxi
))}i=1,...,n such that xi ∈ γ ([a, b]), x1 = x and xn = y. Now choose any

yi ∈ Θx (B(0, ρx )) ∩ Θx (B(0, ρx )) ∩ γ ([a, b]) for i = 1, . . . , n − 1. From the construction

i i i+1 i+1
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of each Θx , there exists Φi ∈ GX (resp. Φ ′
i ∈ GX ) such that Φi(xi) = yi (resp. Φ ′

i (xi+1) = yi ).
So the composition:

Φ = Φ1 ◦ [
Φ ′

1

]−1 ◦ · · · ◦ Φn−1 ◦ [
Φ ′

n−1

]−1 (16)

is an element of GX such that Φ(x) = y. It follows that L is contained in the X -orbit of x. �
4.3. Structure of weak submanifold on X -orbits under involutivity conditions

A weak distribution � is called (locally) upper trivial (upper trivial for short) if, for each
x ∈ M , there exist an open neighborhood V of x, a Banach space F and a smooth map
Φ : F × V → T M (called upper trivialization) such that:

(i) for each y ∈ V , Φy ≡ Φ(,y) : F → TyM is a continuous operator with Φy(F ) = �y ;
(ii) kerΦx complemented in F ;

(iii) if F = kerΦx ⊕ S, the restriction θy of Φy to S is injective for any y ∈ V ;
(iv) Θ(u,y) = (θy ◦ [θx]−1(u), y) is a lower trivialization of D.

In this case the map Θ is called the associated lower trivialization.
In this case, each lower section Xv = Θ(v, ) with v ∈ �x can be written as Xv = Θ(Φ(v′, x), )

for any v′ ∈ F such that Φ(v′, x) = v ∈ �x .
An upper trivial weak distribution � is called Lie bracket invariant if, for any x ∈ M , there

exists an upper trivialization Φ : F × V → T M such that, for any u ∈ F , there exists ε > 0,
and, for all 0 < τ < ε there exists a smooth field of operators C : [−τ, τ ] → L(F,F ) with the
following property

[Xu,Zv]
(
γ (t)

) = Φ
(
C(t)[v], γ (t)

)
for any Zv = Φ(v, ) and any v ∈ F (17)

along the integral curve t �→ φ
Xu
t (x) on [−τ, τ ] of the lower section Xu = Θ(Φ(u,x), ).

With these definitions we have:

Theorem 4.4. Let � be an upper trivial weak distribution. Then � is integrable if and only if �
is Lie bracket invariant.

We now come back to our original context. Consider any set Y of local vector fields which
contains X and which satisfies properties (Hi) and (Hii). We have seen that if Λ is any ordered
set of indexes of same cardinal as the set

Yx = {
Y ∈ Y such that x ∈ Dom(Y )

}
then we have a surjective linear map: T : l1(Λ) → l1(Y )x .

Let � be the weak distribution l1(Y ) and index the set Yx as set {Yλ, Λ ∈ Λ}. Assume that
� has the following properties labelled (H′):

(H′1) for any x ∈ M there exists an upper trivialization Φ : l1(Λ) × V → T M such that
Φ(eλ) = Yλ for each Λ ∈ Λ where {eλ}λ∈Λ is the canonical basis of l1(Λ);

(H′2) for any x ∈ M there exists a neighborhood V of x such that V ⊂ ⋂
λ∈Λ Dom(Yλ), and a

constant C > 0 such that we have
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[Yλ,Yμ](y) =
∑
ν∈Λ

Cν
λμ(y)Yν(y) for any λ,μ ∈ Λ (18)

where each Cν
λμ is a smooth function on V , for any λ,μ, ν ∈ Λ and we have∑

ν∈A

∣∣Cν
λμ(y)

∣∣ � C

for any y ∈ V .

Theorem 4.

1. Under the previous assumptions (H′), the distribution � is integrable.
2. If � is an integrable distribution which satisfies assumption (H′1), then D̂x is contained in

�x for any x ∈ M . Moreover if � is closed then each X -orbit is contained in a maximal
integral manifold of �.

To the set X we can associate the sequence of families

X = X 1 ⊂ X 2 = X ∪ {[X,Y ], X,Y ∈ X
} ⊂ · · · ⊂ X k

= X k−1 ∪ {[X,Y ], X ∈ X , Y ∈ X k−1} ⊂ · · · .
The set X k always satisfies the condition (Hi). Moreover, if it satisfies condition (Hii), the distri-
bution Dk = l1(X k) is well defined.

By application of the previous result to � = D̂ or � = Dk we get:

Theorem 5.

1. If the distribution D̂ satisfies the assumptions (H′), then D̂ is integrable and we have the
following properties:

(i) Each X -orbit O is the union of the maximal integral manifolds which meet O and such
an integral manifold is dense in O.

(ii) Assume that the closed distribution D̄ generated by X̂ is lower trivial and integrable.
Then the X -orbit of x is a dense subset in the maximal integral manifold through x.

(iii) If D̂ is a closed distribution then each X -orbit is a maximal integral manifold of D̂
modeled on some R

A.
2. If X satisfies (LB s), and if Dk satisfies assumptions (H′) for some k � s, then we have

Dk = D̂ and Dk is integrable. Moreover, Dk satisfies all the previous properties (i), (ii)
and (iii).

Example 4.5. As in Example 2.5(3), consider a finite family X = {X1, . . . ,Xn} of global vector
fields on M . We have seen that the condition (LB s) is satisfied for any s > 0. Then each set X k

is finite and then, it is clear that each distribution Dk is upper trivial:
If nk is the cardinal of X k , we can order X k in a sequence {Z1, . . . ,Znk

} and on each open
set V according to the identification T M ≡ V × TxM we can consider the upper trivialization
Φ : V × R

nk → T M defined by

Φ
(
y, (t1, . . . , tnk

)
) =

nk∑
tiZi(y); in fact it is an upper trivialization.
i=1
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Suppose that the condition (H′2) for X k is satisfied, then from Theorem 5, the closed distribution
Dk is integrable, and each maximal integral is a Banach submanifold of M which is also an X -
orbit.

The reader can find such a context in [15] where M is the set (denoted “Conf”) of “configura-
tions” of the snake (which is a Banach manifold), X is the set of global vector fields {ξ1, . . . , ξd}
on Conf (in notations [15]). Then X 1 satisfies the condition (H′2). Each X -orbit is nothing but
an orbit of the action Möb on Conf (see [15]). From Theorem 5 we directly obtain that each orbit
is a closed (finite dimensional) submanifold of Conf.

In [14], the reader can find a generalization of the results of [15] in the context of Hilbert
space and get an application of the previous result for a countable set X of global vector fields
on a Banach manifold.

Proof Theorem 4.
• Proof of part 1.
According to Theorem 4.4, it is sufficient to show that � is Lie bracket invariant. So fix some

x ∈ M and consider an upper trivialization Φ : l1(Λ) × V → T M as in the previous assumption.
As kerΦx is complemented, we have l1(Λ) = kerΦx ⊕S. So there exists a family {εα}α∈A (resp.
{ε′

β}β∈B ) of l1(Λ) which is a normalized symmetric unconditional basis of S (resp. kerΦx ) (see
Remark 3.5). Now, the canonical unconditional basis {eλ}λ∈Λ has a (unique) decomposition:

eλ =
∑
α∈A

f α
λ εα +

∑
β∈B

f
′β
λ ε′

β (19)

such that
∑

α∈A |f α
λ | � 1 and

∑
β∈B |f ′β

λ | � 1 for any λ ∈ Λ.

Any lower section can be written as Xu = Φ(u, .) for some u = (uλ) ∈ l1(Λ). Such a section
can be written

Xu =
∑
λ∈Λ

uλYλ.

On the other hand consider a neighborhood V ′ of x in which (H′2) is true and the neighborhood
V ∩ V ′ (again denoted by V ). As previously fix some lower section Xu = Φ(u, .) and consider
ε > 0 such that the integral curve γ (t) = φ

Xu
t (x) is defined on ]−ε, ε[ in V . According to (H′2),

for any 0 < |τ | < ε, we define C : [−τ, τ ] → L(l1(Λ), l1(Λ)) in the following way:

C(t)[v] =
∑

λ,μ,ν∈Λ

Cν
λμ

(
γ (t)

)
uλvμeν

where v = (vμ) ∈ l1(Λ). So from assumption (H′2), we have∥∥C(t)[v]∥∥ � C
∑

λ,μ∈Λ

|uλ||vμ| � C

[ ∑
λ∈Λ

|uλ|
][ ∑

μ∈Λ

|vμ|
]

= C‖u‖1‖v‖1

then C(t) is a field of continuous endomorphisms of l1(Λ).
On the other hand, for any v = (vμ) ∈ l1(Λ), we have

Zv = Φ(v, .) =
∑
μ∈Λ

vμYμ.

So we get

[Xu,Zv]
(
γ (t)

) = Φ
(
C(t)[v], γ (t)

)
.
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From Theorem 4.4 it follows that � is integrable.
• Proof of part 2.
Now suppose that � is integrable. Fix some x ∈ M and let f ≡ iN : N → M be a maximal

integral manifold through x. We want to show that D̂x is contained in �x . It is sufficient to
prove that for any Y ∈ X̂x , Y(x) belongs to �x . For such a vector field there exist vector fields
X1, . . . ,Xp,X ∈ X and ν > 0 such that

Y = (
φ

Xp

tp
◦ · · · ◦ φ

X1
t1

)
∗(νX).

Let z = (φ
Xp

tp
◦· · ·◦φ

X1
t1

)−1(x) be. Consider the integral curve γ1 of X1 through z: γ1(t) = φ
X1
t (z)

for t ∈ [0, t1]. As X ⊂ Y , from Proposition 4.1, we have a curve γ̃1 : [0, t1] → N such that
f ◦ γ̃1 = γ1, and for any s ∈ [0, t1], a neighborhood Ṽs of γ̃1(s) in N , and a vector field Ỹs on Ṽs

such that f∗Ỹs = X1. In particular we also have

f ◦ φỸs
r

(
γ̃1(s)

) = φX1
r

(
γ1(s)

)
for any r small enough. (20)

Moreover, we can find X̃ on the neighborhood Ṽ0 of z̃ such that f∗(X̃) = νX, after hav-
ing restricted Ṽ0 if necessary. By compactness, we can cover γ̃1([0, t1]) by a finite number

Ṽs0, . . . , Ṽsm . On Ṽs0 we have Tz̃[φỸs0
t ](X̃((z̃))) which belongs to Tγ̃1(t)N = D̃γ̃1(t) for any t

so that γ̃1(t) belongs to Ṽs0 . From properties of Ỹs0 and γ̃1, it follows that[(
φ

X1
t

)
∗(νX)

](
γ (t)

)
belongs to �γ (t). (21)

Choose σ1 such that γ̃1(σ1) belongs to Ṽs1 . So we have (21) for t = σ1. By applying the same

argument to Tz̃[φỸs0
σ1 ](X̃((z̃))) by choosing σ2 such that γ̃1(σ2) belongs to Ṽs1 ∩ Ṽs2 , we obtain

(21) for t = σ2. Finally, by induction we get (21) for t = t1. Then by same argument applied to
[(φX1

t )∗(X)](γ (t1)) instead of (νX)(x) and along the curve γ2(t1 + t) = φ
X2
t (γ1(t1)) we obtain

that (
φ

X2
t2

◦ φ
X1
t1

)
∗
(
νX(x)

)
belongs to �γ (t2).

Again by induction, on i = 2, . . . , p, we finally obtain that Y(x) = (φ
Xp

tp
◦ · · · ◦ φ

X1
t1

)∗(νX(z))

belongs to �x .
Now we assume that � is a closed integrable manifold. Take x ∈ M and again let be f =

iN : N → M the maximal integral manifold trough x. We want to show that for any Ψ ∈ GX ,
the point y = Ψ (x) belongs to f (N). From the previous proof we also have obtained that if Ψ

is a finite composition (φ
Xp

tp
◦ · · · ◦ φ

X1
t1

), then y belongs to N . So, from (7), for Y ∈ X̂ and any

τ ∈ R, φX
τ (x) belongs to f (N) (even when � is not closed).

Suppose that Ψ is reduced to some φ
ξ
τ , with ξ = {Yδ, δ ∈ D} ⊂ X̂ and τ ∈ R

D .
Let γ : [0,‖τ‖1] → M be the curve γ (t) = Φ

ξ
τ (t, x) where Φ

ξ
τ (t, .) is the flow associated

to ξ , τ and u = Γ τ (see Remark 2.7.1) From Proposition 4.1, part 2 there exists an l1-curve
γ̃ : [0,‖τ‖1] → N such that

f ◦ γ̃ = γ on
[
0,‖τ‖1

]
. (22)

As φ
ξ
τ (x) = Φ

ξ
τ (‖τ‖1, x), we obtain that y = φ

ξ
τ (x) belongs to f (N).

For the case Ψ = [φξ
τ ]−1, set again y = [φξ

τ ]−1(x) and let γ : [0, T ] → M be the l1-curve
associated to φ

ξ
τ and we use the previous notations. Then the l1 curve associated to Ψ is γ̂ (s) =
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γ (T − s) which satisfies γ̂ (0) = x and γ (‖τ‖1) and γ̂ (‖τ‖1) = y = γ (0). From (22), we obtain
that x belongs to the maximal integral manifold through y which, by maximality, is N .

In the general case we have Ψ = φn ◦ · · · ◦ φ1 where each φk is a local diffeomorphism of
type φ

Yk
τk

or φ
ξk
τk

or [φξk
τk

]−1 for k = 1, . . . , n and all these vector fields belong to X̂ . So, by
finite induction on k, using the previous partial results, we get the proof of part 2 in the general
case. �
Proof Theorem 5.

• Proof of part 1.
By application of Theorem 4, part 1 to D̂, it follows that D̂ is integrable. We must show that

each maximal integral manifold which meets an X -orbit O is contained in O.
Fix some maximal integral manifold iN : N → M of D̂. Fix some x ∈ N and consider an

upper trivialization Φ : R
Λ × V → T M as in assumption (H′1). From this assumption, after

restricting V if necessary, the set ξ = X̂x satisfies the condition (LB s) at any point of V and for
any s ∈ N (see Example 2.5(2)). On the other hand, according to Lemma 2.10 in [13], we have a
neighborhood Ṽ of x, for the Banach structure of N , so that we have a smooth field of continuous
operators y → Φ̃y from R

Λ to TyN such that Φy(.) = T iN ◦ Φ̃y on Ṽ . From Proposition 4.1, for
each λ ∈ Λ we have a smooth vector field on Ỹλ such that

Yλ = (iN )∗Ỹλ on Ṽ . (23)

Note that, according to the notation used in the proof of Theorem 4 part 1, in fact we have
Yλ(y) = Φ̃y(eλ). So, as previously, after restriction of Ṽ if necessary, the set ξ̃ = {Ỹλ, λ ∈ Λ}
satisfies the condition (LB(s + 2)) for any s ∈ N. Applying Theorem 2 to ξ̃ we get a map
Ψ̃ x : B(0, r) ⊂ R

A → L of class Cs . By the same argument applied to ξ = {Yλ, λ ∈ Λ} on M ,
we get a map Φx : B(0, r ′) → M which is of class Cs . Using (23) we have Ψ x = iN ◦ Φ̃x on
some B(0, ρ) with ρ small enough. The linear map T0Φ̃

x is surjective and its kernel is kerΦx .
So, for ρ small enough, Ψ̃ x is a submersion and in particular, P̃ (x, ρ) = Ψ̃ x(B(0, ρ)) is an open
set in N (with it Banach structure). If we set P(x,ρ) = Ψ x(B(o,ρ)) by definition of an X -
orbit, the set P(x,ρ) is contained in O. But, by construction we have P(x,ρ) = iN (P̃ (x,ρ))

and then we have an open neighborhood P̃ (x, ρ) of x (for the Banach structure of N ) such
that iN (P̃ (x,ρ)) ⊂ O. As we can cover N by such open subsets and O is the X -orbit of any
y ∈ O, we get N ⊂ O. For the density of N in O, we use the same arguments as in the proof of
Theorem 3. The properties (ii) and (iii) have same proofs as in Theorem 3.

• Proof of part 2.
From Theorem 4 applied to � = Dk we obtain that Dk is integrable and, for any x ∈ M each

Dk
x contains D̂x . According to part 1 of Theorem 5, it remains to show that D̂x contains Dk

x for
any x ∈ M .

Given x ∈ M , we can suppose that the upper trivialization Φ : D̃k
x × V → T M on a neighbor-

hood V of x is such that T M|V ≡ E × V . Take any X ∈ X and Y ∈ X̂ so that x belongs to the
domain of X and of Y . For 0 < t < ε small enough so that the flow φX

t is defined on some neigh-
borhood U ⊂ V of x, we consider the curve t → 1

t
{([φX

t ]∗Y)x − Yx} in E. As D̂ is X -invariant,

the previous curve belongs to D̂x , as Banach space. But we have

[X,Y ]x = lim
t→0

1

t

{([
φX

t

]
∗Y

)
x

− Yx

}
.

As Dk satisfies the assumption (H′), the structure of Banach space for Dk
x is isomorphic to

some R
A. So Dk

x has the Schur property. By using an argument of weak convergency and Schur’s
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property, [X,Y ]x belongs to D̂x . Now by induction, applying this result for Y ∈ X k−1, we obtain
the inclusion Dk

x ⊂ D̂x for any x ∈ M . �
5. Applications

5.1. Criteria of integrability for l1-distribution

In this subsection we will give a criterion of integrability for l1-distributions generated by sets
X of vector fields on M which satisfies the assumption (H). We have the following result:

Theorem 6.

1. Let D be an l1-distribution generated by a set of (local) vector fields X on a Banach
manifold M which satisfies the assumptions (H). Then D is lower trivial. Moreover, D is
integrable if and only if D is X -invariant.

2. Let D be a lower trivial l1-distribution on a Banach manifold M . Then there exists generat-
ing set X of D which satisfies assumptions (Hi), (Hii) and (Hiii). Given any such generating
set X of D, then D is integrable if and only if D is X -invariant.

Remark 5.1. As any l1-distribution D is a weak distribution, from Theorem 1 of [13], when D
is lower trivial, it is integrable if and only if it is X −

D -invariant (X −
D in the set of lower sections

of D see [13]). So, for lower trivial l1-distribution, Theorem 4 gives a necessary and sufficient
condition of integrability for any generating set of D satisfying (Hi), (Hii) and (Hiii). Note that,
if D is finitely generated at each point, these conditions are automatically satisfied. We then get
a generalization of the famous criterion of integrability of Nagano–Sussmann in this context of
Banach manifold for finite dimensional distribution. In this sense, Theorem 4 can be considered
as a generalization of this Nagano–Sussmann’s result in infinite dimension.

In Example 2.5(1), if the set {T (xα)}α∈A is a family of linearly independent vectors, the
conditions of Theorem 4 are satisfied. Of course, this result can be proved directly in an obvious
way. Each leaf is the affine space in E associated to the l1 normed space generated by X0. On
the other hand in Example 2.5(2), even in analogue conditions, the characteristic distribution of
X is not X -invariant. Such a sufficient conditions will be carried by Ψ (see Theorem 4 in [13]).

Proof of Theorem 6.
Part 1.
From Proposition 3.6 we have D = D̂ if and only if D is X -invariant. On the other hand, X sat-

isfies the assumption (H) (of Section 4). By application of Theorem 3, we obtain the first part.
Part 2.
Fix some x ∈ M . From the property of lower triviality, there exists an open neighborhood V

of x in M , a smooth map Ψ : D̃x × V → T M such that:

(i) Ψ (D̃x × {y}) ⊂ Dy for each y ∈ V ;
(ii) for each y ∈ V , Ψy ≡ Ψ (,y) : D̃x → TyM is a continuous operator and Ψx : D̃x → TxM is

the natural inclusion ix ;
(iii) there exists a continuous operator Ψ̃y : D̃x → D̃y such that iy ◦ Ψ̃y = Ψy , Ψ̃y is an isomor-

phism from D̃x onto Ψy(D̃x) and Ψ̃x is the identity of D̃x .



608 A. Lathuille, F. Pelletier / Bull. Sci. math. 136 (2012) 579–616
As D̃x is isomorphic to some R
A consider any unconditional symmetric basis {eα}α∈A of

R
A and set Xα(y) = Ψ (eα, y) for any y ∈ V . We set Xx = {Xα, α ∈ A} and after a choice of

such a set Xx for any x ∈ M , let be X = ⋃
x∈M Xx . By construction X satisfies (Hi) and (Hiii)

but without (LB(s + 2)). Given x ∈ M , with the previous notations, we have ‖eα‖1 = 1 and as
y �→ Ψy is a smooth field of continuous operators from R

A to TxM ≡ E, we get the property (Hii)
at x after restriction of V if necessary and also (LB(s + 2)) at x for (Hiii).

Now given any generating set of D which satisfies assumption (H), by application of part 1,
we get the result. �
5.2. Attainable set in infinite dimensional control theory for a family of vector fields

Let X be a family of local vector fields which satisfies conditions (Hi) and (Hii) on a Banach
manifold M . In our context a controlled trajectory of the controlled system associated to X is
a curve γ : I → M which is the integral curve of some vector field

Z(x, t, u) =
p∑

k=1

uk(t)Zk(x) (24)

associated to a family ζ = {Zk}k=1,...,p ⊂ X which satisfied the assumptions of Theorem 1
and where u = (uk) is a family of bounded curves of class L1 on some interval of R (see
Theorem 1). In these conditions, u is called the control associated to γ . An admissible tra-
jectory is a curve γ : [a, b] → M such that there exists a finite partition a = t0 � · · · � tn such
that γ : [ti , ti+1] → M is a controlled trajectory of the controlled system associated to X for
i = 0, . . . , n − 1.

This context can be found in many papers (see for example [4,8,18,2,3,1,15]). On the other
hand, it is easy to see that any X -smooth piecewise curve is an admissible trajectory (see Sec-
tion 2.1).

According to the classic context in control theory for a family X of vector fields on M , the
exact attainable set A(x) of a point x ∈ M is the set of points y such there exists an admis-
sible trajectory γ : [0, T ] → M such that each γ (0) = x and γ (T ) = y. On the other end, the
approximate attainable set of x ∈ M is the closure Ā(x) in M .

Remark 5.2. According to Proposition 3.4, if D̂ is integrable, for any ζ as in (24), on each
maximal integral manifold N which meets V = ⋂

k=1,...,p Dom(Zk), there exist vector fields Z̃k ,

such that (iN )∗Z̃k = Zk . So if we set

Z̃(x, t, u) =
p∑

k=1

uk(t)Z̃k(x)

then we have (iN )∗Z̃(t, u, .) = Z(t, u, .) and then we obtain that each controlled trajectory with
origin in L is contained in L. In this case, if O(x) is the X -orbit of x, we have the inclusions:

A(x) ⊂ O(x) ⊂ Ā(x).

In finite dimension, we have A(x) = O(x) and it is well known (from [16]) that A(x) is an
immersed submanifold of M for any x ∈ M .
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In our context, a corresponding result is given by the following theorem:

Theorem 7. Assume that the set X̂ (resp. the characteristic distribution D̂ = l1(X̂ )) satisfies the
conditions (H) (see Section 4.2) (resp. (H′) (see Section 4.3)) at any point x ∈ M . Then D̂ is
integrable. The exact attainable set A(x) of any x ∈ M is dense in the maximal integral manifold
L(x) of D̂ through x and the approximate attainable set Ā(x) is the closure of L(x) in M and
also the closure of the X -orbit of x. Moreover if the distribution D̂ is closed Â(x) is a weak
submanifold of M for any x ∈ M .

The reader will find an illustration of this theorem in [15] or in [14] (see also Example 4.5).
Note that, if D̂ is finite dimensional, from Remark 4.3, the assumptions of Theorem 7 are always
satisfied and the distribution D̂ is closed. In this case the attainable set is exactly an X -orbit. So
in particular, when M is finite dimensional we obtain Sussmann’s result.

In finite dimension, to the distribution D we can associate a chain of distributions

D1 = D ⊂ · · · ⊂ Dk ⊂ · · · (25)

where, for k � 2, Dk is generated by the set X k of local vector fields of type [X1, [· · · [Xk−1,

Xk] · · ·] where X1, . . . ,Xk belongs to X . The famous theorem of Chow–Rashevsky asserts that
if, for any x ∈ M , there exists k such that Dk

x = TxM then M is the attainable set of any point
x ∈ M .

Classically, X is called approximatively controllable (resp. exactly controllable) if
Ā(x) = M (resp. A(x) = M) for any x ∈ M . In order to give an analogue of theorem of Chow–
Rashevsky we have already associated to D, a chain of distributions as in (25) (see Section 4.3).
As we have seen, if X satisfies condition (Hii) for some s ∈ N, then the set X k also satisfies
(Hii) for s′ = s − k and then, the l1-characteristic distribution Dk = l1(X k) is well defined. So
we have the following version of theorem of Chow–Rashevsky:

Theorem 8. Assume that the set X̂ (resp. the characteristic distribution D̂ = l1(X̂ )) satisfies the
conditions (H) (see Section 4.2) (resp. (H′) (see Section 4.3)) at any point x ∈ M . Moreover, we
suppose that for any x ∈ M , there exists k such that Dk

x is defined, and is dense in TxM (resp.
Dk

x = TxM). Then M is approximatively controllable (resp. exactly controllable).

In the previous theorem, note that, according to the assumption we can have controllability
only if the Banach manifold M is modeled on some l1(A) where A is a countable or uncountable
set.

We say that a distribution D on M is finite co-dimensional if for each x, the normed space
Dx is finite co-dimensional in TxM . In this case Dx must be closed. In particular, finite co-
dimensional l1 distribution on M again imposes that M is modeled on l1(A) where A is a
countable or uncountable set. In this case we have:

Corollary 5.3. Let M be a Banach manifold modeled on some l1(B). Consider any set of vector
fields X on M , which satisfies the conditions (H). If the characteristic distribution D is finite co-
dimensional, then M is foliated by weak Banach submanifolds of M and each leaf is an X -orbit.
Moreover, each attainable set is dense in such a leaf.

Proof of Theorem 7. By application of Theorem 3 or Theorem 5, we get the integrability of D̂.
On one hand, for any x ∈ M , if y belongs to A(x) as in (24), the set ζ is finite, it follows from
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Proposition 4.1 that each integral curve of such a Z is tangent to the leaf L through x. On the
other hand, from Proposition 3.4, if y belongs to L, then y is adherent to A(x). According to
Remark 5.2, we have

A(x) ⊂ L(x) ⊂ O(x) ⊂ Ā(x).

So, we get L̄(x) = Ō(x) = Ā(x).
The last part is also a consequence of Theorem 3 or Theorem 5. �

Proof of Theorem 8. From Theorem 7 we know that D̂ is integrable and, as Banach space is
isomorphic to some R

A. So by the same arguments as the ones used in the proof of Theorem 5
part 2, we have Dk

x ⊂ D̂x . It follows that D̂x is dense in TxM or equal to TxM . The result is then
a consequence of properties (ii) or (iii) respectively of Theorem 4 or Theorem 5. �
Proof of Corollary 5.3. It is sufficient to prove that X̂ satisfies the condition (H) at each point
x ∈ M . Given any x ∈ M , from our assumption we know that X satisfies the condition (H) at x.
Take an unconditional symmetric basis {Xα(x)}α∈A such that {Xα}α∈A ⊂ Xx and satisfies the
condition (LB(s + 2)) for s > 0. As X̂x contains Xx and as Dx is finite co-dimensional, we
can choose in D̂x a finite number Y1, . . . , Yp such that {Xα(x)}α∈A ∪ {Y1(x), . . . , Yp(x)} is an
unconditional symmetric basis and {Xα}α∈A ∪ {Y1, . . . , Yp} satisfies the condition (LB(s + 2))

for s > 0. We then apply Theorem 7. The last part can be shown as in the finite dimensional case
(see [16]). �
6. Proof of Theorem 2

In this last section, we will use Theorem 1 to give a proof of Theorem 2.
Recall that ξ = {Xα, α ∈ A} is a family of vector fields defined on an open neighborhood V

of x0 ∈ E and satisfies the condition (LB(s +2)) at x0 and with the relation (4) true for all x ∈ V .

6.1. Maps Γ τ and Γ̂ τ

In this subsection we fix τ = (τα)α∈A ∈ R
A. Let B be any countable subset of A which

contains all the indexes α ∈ A such that τα �= 0. The set B can be written as a sequence
{βi, i ∈ N} ⊂ A. For the sake of simplicity, we then denote by τi instead of τβi

the corresponding
term of (τα)α∈A. With these notations we define the sequence (Γ τ

i )i∈B in the following way

• for i = 1,
. if τ1 = 0 then Γ τ

1 (s) = 0,
. if τ1 �= 0 then

Γ τ
1 (s) =

{ τ1|τ1| if s ∈ [0, |τ1|[,
0 othewise;

• for i > 1,
. if τi = 0 then Γ τ

i (s) = 0,
. if τi �= 0 then

Γ τ
i (s) =

{
τi|τi | if s ∈ [∑i−1

j=1 |τj |,∑i
j=1 |τj |[,

0 otherwise.
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Now, for all α /∈ B we set Γ τ
α (s) = 0 for all s ∈ R.

Finally, we define the families Γ τ (s) and Γ̂ τ (s) in the following way by

Γ τ (s) = (
Γ τ

α (s)
)
α∈A

and Γ̂ τ = (
Γ̂ τ

α (s)
)
α∈A

= (
Γ τ

α

(‖τ‖1 − s
))

α∈A
.

From this construction, it follows that

∀s ∈ R,
(
Γ τ

α (s)
)
α∈A

∈ R
A and

(
Γ̂ τ

α (s)
)
α∈A

∈ R
A.

Now we consider the maps Γ τ and Γ̂ τ defined in the following way:

Γ τ : R → R
A,

s �→ Γ τ (s) = (
Γ τ

α (s)
)
α∈A

,

Γ̂ τ : R → R
A,

s �→ Γ̂ τ (s) = (
Γ̂ τ

α (s)
)
α∈A

.

Lemma 6.1. Γ τ and Γ̂ τ belong to L1
b(R).

6.2. Proof of the first part of Theorem 2

In this section x ∈ V and τ = (τα)α∈A ∈ R
A are fixed. We consider any element σ = (σα)α∈A

of R
A. We choose a countable subset B of A such that B contains all the indexes α ∈ A such that

tα �= 0 and also all indexes β ∈ A such that σβ �= 0. Again the ordered set B can be written as
B = {βi, i ∈ N} and we then denote by (τi)βi∈B (resp. (σi)βi∈B ) the corresponding subsequence
or τ (resp. σ ) and also we denote simply by Xi the vector field Xβi

of ξ for all βi ∈ B .
With these notations, for any n ∈ N and any σ ∈ R

A, we set σn = (σ1, . . . , σn) ∈ R
n and R

n

is then considered as a subset of R
B ⊂ R

A

ψx
n

(
τn

) = φXn
τn

◦ · · · ◦ φX2
τ2

◦ φX1
τ1

(x),

ψ̂x
n

(
τn

) = φX1
τ1

◦ · · · ◦ φXn
τn

(x). (26)

Lemma 6.2. With the previous notations, for each n ∈ N, the map ψx
n is differentiable on R

n ∩
B(0, r

k
), and its differential is given by

Dψn
x
(τn)

(
σn

) = DφXn
τn (ψn−1(τ

n−1))
◦ · · · ◦ DφX1

τ1 (x)

×
[

n∑
p=1

σpDφ
X1−τ1 (ψ1(τ

1))
◦ · · · ◦ Dφ

Xp

−τp (ψp(τp))

(
Xp

(
ψp

(
τp

)))]
.

Moreover, we have∥∥Dψx
n (τn)

∥∥ � ke2k‖τ‖1

for all x ∈ V and any n ∈ B .

The proof of this lemma is an elementary calculus by induction. For more details see [11,
Chapter 5].
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Afterwards, we will simply note, for any fixed x ∈ V :

Dψn(τn)

(
σn

) = Dφ
Xn
tn

◦ · · · ◦ DφX1
τ1

[
n∑

p=1

σpDφ
X1−τ1

◦ · · · ◦ Dφ
Xp

−τp

(
Xp

(
ψp

(
τp

)))]
.

We now define the following map:

�ψx
n

(
τn

) = DφXn
τn

◦ · · · ◦ DφX1
τ1

(x),

�̂ψ
x

n

(
τn

) = DφX1
τ1

◦ · · · ◦ DφXn
τn

(x). (27)

For these maps in the same way, we obtain:

Lemma 6.3. For any fixed x ∈ V , for each n ∈ N the maps �ψx
n and �ψ̂x

n are differentiable on
R

n ∩ B(0, r
k
).

Now we are in situation to prove part 1 of Theorem 2.
Let x0 ∈ V and r > 0 be such that Bf (x0,2r) ⊂ V and fix τ = (τα)α∈A ∈ R

A such that
τ ∈ B(0, r

k
) ⊂ R

A. We fix some countable subset B ⊂ A which contains the set of indexes α

such that τα �= 0. As before the ordered set B can be written B = {βi, i ∈ N} and each τβi
with

βi ∈ B will be denoted τi . With these notations, we set

T =
∑
i∈N

|τi | =
∑
α∈A

|τα| = ‖τ‖1.

• Now we use Theorem 1 with the following adaptations: I = R, u = Γ τ , t0 = 0, δ a real
number large enough and T0 = T .

From Lemma 6.1 we have Γ τ ∈ L1
b(R), with ‖Γ τ‖∞ = 1. As T < r

k
, if we set I0 = [−T ,T ]

and U0 = B0 = B(x0, r − kT ), we get a flow ΦΓ τ , defined on I0 × U0. In particular, from
Theorem 1 the map φ

ξ
τ = ΦΓ τ (T , ) is a Cs diffeomorphism, and moreover, by construction, we

get

φξ
τ (x) = lim

n→∞φXn
τn

◦ · · · ◦ φX1
τ1

(x) = lim
n→∞ψx

n

(
τn

)
.

The same argument can be used to obtain the result concerning ψ̂
ξ
τ .

• Now we prove that the inverse map of φ
ξ
τ is φ̂

ξ
τ .∥∥φξ

τ

(
φ̂ξ

τ (x)
) − x

∥∥ �
∥∥φξ

τ

(
φ̂ξ

τ (x)
) − ψφ̂

ξ
τ (x)

n

(
τn

)∥∥ + ∥∥ψφ̂
ξ
τ (x)

n

(
τn

) − x
∥∥

�
∥∥φξ

τ

(
φ̂ξ

τ (x)
) − ψφ̂

ξ
τ (x)

n

(
τn

)∥∥ + ∥∥ψφ̂
ξ
τ (x)

n

(
τn

) − ψ
ψ̂x

n (−τn)
n

(
τn

)∥∥.

At first, we have

lim
n→∞

∥∥φξ
τ

(
φ̂ξ

τ (x)
) − ψφ̂

ξ
τ (x)

n

(
τn

)∥∥ = 0.

So, it remains to show that the second term in the previous majoration converges to 0 when
n → ∞.

The map x �→ ψx
n (τn) is of class C1 and its differential at x is noting but �Ψn(τ

n). So we
have ∥∥�Ψ x

(
τn

)∥∥ � ekT .
n
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So we obtain∥∥ψφ̂
ξ
τ (x)

n

(
τn

) − ψ
ψ̂x

n (−τn)
n

(
τn

)∥∥ � ekT
(
φ̂ξ

τ (x) − ψ̂x
n

(−τn
))

.

Finally, we get

lim
n→∞

∥∥ψφ̂
ξ
τ (x)

n

(
τn

) − ψ
ψ̂x

n (−τn)
n

(
τn

)∥∥ = 0

which ends the proof of part 1 of Theorem 1.

6.3. Proof of the second part of Theorem 2

For any fixed x ∈ U0, we introduce the following notations:

ψx
B(τ) = lim

n→∞ψx
n

(
τn

) = φξ
τ (x),

�ψx
B(τ) = lim

n→∞�ψx
n

(
τn

) = D2ΦΓ τ (T , x). (28)

As a consequence of Lemma 6.2 and Lemma 6.3 we get:

Lemma 6.4. ψx
B and �ψx

B are continuous maps on R
B ∩ B(0, r

k
).

For each α /∈ B we can remark that tα = 0 and so φ
Xα
tα

= Id and Dφ
Xα
tα

= Id. So the previous
limits (28) can be seen as an uncountable composition of maps of type (φα)α∈A, evaluated at x,
where only a countable subset of them are not equal to the identity.

Notations 6.5. Given any α ∈ A we set τα = (tα′) with α′ ∈ A, α′ � α.
On the other hand for any α ∈ A we consider the set

Bα = {βi such that βi � α}.
Considering the family of local diffeomorphisms associated to the family ξ of vector fields

we denote by

ψx
α

(
τα

) =
{

ψx
n (τn) if Bα = {β1, . . . , βn},

ψx
B if Bα = B,

�ψx
α

(
τα

) =
{�ψx

n (τn) if Bα = {β1, . . . , βn},
�ψx

B if Bα = B,

�ψ̂x
α

(
τα

) =
{

�ψ̂x
n (τn) if Bα = {β1, . . . , βn},

�ψ̂x
B if Bα = B,

ψx(τ) = ψx
B(τ) = φξ

τ and �ψx(τ) = �ψx
B(τ) = D2ΦΓ τ (T , x) = Dψξ

τ (x).

Given any σ = (σα)α∈A ∈ R
A, by taking for B any countable set which contains the (count-

able) sets {α such that τα �= 0} and {α such that σα �= 0}, from Lemma 6.4 and Notations 6.5 we
get:

Lemma 6.6. The map ψx and �ψx are continuous on B(0, r ).

k
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Now we can prove part 2 of Theorem 2.
We begin by proving that ψx is a C1 map. We will use the following result of [5, p. 426]:

Proposition 6.7. Let X and Y be two Banach spaces, U ⊂ X an open set and D a dense vector
subspace of X. Consider a continuous map f : U → Y such that, for all (x, v) ∈ U × X, the
derivative f at x in the direction v denoted by ∂vf (x) exists. Moreover, assume that there exists
a continuous map L : U → L(X,Y ) such that, for any (x, v) ∈ U ∩ D × D, we have ∂vf (x) =
L(x)(v). Then f ∈ C 1(U,Y ) and Df = L.

We apply this result to the sets:

X = R
A, U = B(0, r

k
) and Y = E;

D = span{eα, α ∈ A} where eα = (δα
β )β∈A, where δα

β = 1 if α = β and δα
β = 0 for α �= β;

(in fact, {eα, α ∈ A} is the canonical basis of R
A);

the map f is the map ψx on B(0, r
k
) ⊂ R

A;
L is defined in the following way:

for σ = (σα)α∈A ∈ B(0, r
k
) ⊂ R

A: L(τ)(σ ) = �ψx(τ)[∑α∈A σα�ψ̂x(−τα)[Xα(ψα(τα)))].

• It is clear that D is a dense set in R
A.

• The continuity of ψx follows from Lemma 6.6.
• Now we prove that ∀τ ∈ B(0, r

k
) ∩ D, ∀σ ∈ D, ∂τψ

x(σ ) = A(τ)(σ ).

Let be (τ, σ ) ∈ B(0, r
k
) ∩ D × D. So we have

τ = (ταi
)i=1,...,p with ‖τ‖1 <

r

k
,

σ = (σβj
)j=1,...,q with ‖σ‖1 <

r

k
.

The family {(eαi
)i=1,...,p, (eβj

)j=1,...,q} can be put in an ordered family {eαl
}l=1,...,n with

n � inf(p, q). So we can consider that τ and σ belong to span{eα1, . . . , eαn}. For simplicity we
denote by τi (resp. σi ) the component of τ (resp. σ ) on eαi

and Xi instead of Xαi
, for i = 1, . . . , n.

Now, for any λ ∈ R and λ �= 0, we have

ψx(τ + λσ) − ψx(τ)

= ψx
n

(
τn + λσn

) − ψn

(
τn

)
= λDφXn

τn
◦ · · · ◦ DφX1

τ1

[
n∑

p=1

σpDφ
X1−τ1

◦ · · · ◦ Dφ
Xp

−τp

(
Xp

(
ψp

(
τp

)))] + o
(
λσn

)
so

∂τΨ (σ ) = lim
λ→0

Ψ (τ + λσ) − Ψ (τ)

λ
= L(τ)(σ ).

• The continuity of τ → L(τ):
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Now we consider the following map:

R : B(0, ρ) → L(D̂x),

τ �→ R(τ )

defined by R(τ )(
∑

α∈A σαXα(x)) = ∑
α∈A σα�ψ̂x

α ((−τ)α)[Xi(ψ
x
α (τα))].

Note that from Lemma 6.2, we have∥∥∥∥R(τ )

( ∑
α∈A

σαXα(x)

)∥∥∥∥ � kek‖τ‖1‖σ‖1.

So R(τ ) is a continuous linear map. On the other hand, we can write

L(τ)(σ ) = �ψx(τ) ◦ R(τ )

( ∑
α∈A

σαXα(x)

)
. (29)

The proof of the following lemma can be found in [11, Chapter 5]:

Lemma 6.8. The map τ �→ R(τ ) is continuous on B(0, r
k
).

From this lemma and Lemma 6.6, it follows that τ �→ L(τ) is continuous.
So we obtain that ψ is C1 on B(0, r

k
).

To prove that ψ is of class Cs for s � 2, as classically we use the fact that(
ΦΓ τ (t, x),D2ΦΓ τ (T , x), . . . ,Ds

2ΦΓ τ (T , x)
)

is the flow of an adapted vector field Ẑs on an open set of the Banach space E × L(E,E)×· · ·×
Ls(E,E) and proceed by induction.
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