JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 148, 497-508 (1990)

Generalized Variational Inequalities and Generalized Quasi-Variational Inequalities*

XIE PING DING

Department of Mathematics, Sichuan Normal University, Chengdu, Sichuan, China

AND

Kok-Keong Tan

Department of Mathematics, Statistics and Computing Science, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5

Submitted by Ky Fan

Received October 25, 1988

A very general minimax inequality is first established. Three generalized variational inequalities are then derived, which improve those obtained by Tan and Browder. By applying a fixed point theorem of Himmelberg, two generalized quasi-variational inequalities are also proved, one of which generalizes those of Shih-Tan to the non-compact case with much weaker hypotheses and in a more general setting. $\[mathbb{C}\]$ 1990 Academic Press, Inc.

1. INTRODUCTION

Throughout this paper, Φ denotes either the real field \mathbb{R} or the complex field \mathbb{C} . For a nonempty set $Y, 2^Y$ will denote the family of all nonempty subsets of Y. Let E and F be vector spaces over $\Phi, \langle , \rangle : F \times E \to \Phi$ be a bilinear functional, and X be a nonempty subset of E. If $S: X \to 2^X$ and $T: X \to 2^F$, the generalized quasi-variational inequality problem for the pair (S, T) is to find $\hat{y} \in X$ satisfying the following properties:

- (i) $\hat{y} \in S(\hat{y})$ and
- (ii) $\inf_{w \in T(\hat{y})} \operatorname{Re}\langle w, \hat{y} x \rangle \leq 0$ for all $x \in S(\hat{y})$.

In this paper, we fist establish a very general minimax inequality, then we improve some generalized variational inequalities of Tan [15,

* This work was partially supported by the NSERC of Canada under Grant A-8096.

497

Theorems 3 and 5] and of Browder [4, Theorem 6]. Next, by applying a fixed point theorem of Himmelberg [8, Theorem 2], we prove two existence theorems on solutions of the generalized quasi-variational inequality problem, one of which improves those of Shih–Tan [11, Theorems 1 and 2] to the non-compact case with much weaker hypotheses.

2. PRELIMINARIES

Let *E* and *F* be two vector spaces over Φ , and \langle , \rangle : $F \times E \to \Phi$ be a bilinear functional. For each $x_0 \in E$, each nonempty subset *A* of *E* and $\varepsilon > 0$, let

$$W(x_0;\varepsilon) := \{ y \in F: |\langle y, x_0 \rangle| < \varepsilon \},\$$
$$U(A;\varepsilon) := \{ y \in F: \sup_{x \in A} |\langle y, x \rangle| < \varepsilon \}.$$

Let $\sigma \langle F, E \rangle$ be the topology on F generated by the family $\{W(x; \varepsilon): x \in E\}$ and $\varepsilon > 0$ as a subbase for the neighborhood system at 0. If E is a topological vector space, let $\delta \langle F, E \rangle$ be the topology on F generated by the family $\{U(A; \varepsilon): A \text{ is a nonempty compact subset of } E \text{ and } \varepsilon > 0\}$ as a base for the neighborhood system at 0. We note then, F when equipped with the topology $\sigma \langle F, E \rangle$ or the topology $\delta \langle F, E \rangle$, becomes a locally convex topological vector space but not necessarily Hausdorff. If X is a nonempty subset of E, then a map $T: X \to 2^F$ is monotone (with respect to the bilinear functional \langle , \rangle) if for any $x, y \in X, u \in T(x)$, and $w \in T(y)$, Re $\langle w-u, v-x \rangle \ge 0$. A subset C of E is said to be $\sigma \langle E, F \rangle$ -compact if C is compact in the $\sigma \langle E, F \rangle$ -topology. If X is a subset of E, the function $h: X \to \mathbb{R}$ is said to be $\sigma \langle E, F \rangle$ -lower semi-continuous if h is lower semicontinuous when X is equipped with the relative $\sigma \langle E, F \rangle$ -topology. If B is a subset of a vector space, co(B) will denote the convex hull of B. If X and Y are two nonempty sets and $F: X \to 2^{Y}$, then the graph of F is the set $\{(x, y) \in X \times Y : y \in F(x)\}.$

The following result is essentially Lemma 2 of Shih-Tan in [14] and its proof is thus omitted.

LEMMA 1. Let E and F be two topological vector spaces over Φ and $\langle , \rangle : F \times E \to \Phi$ be a bilinear functional. Let X be a nonempty subset of E and $T: X \to 2^F$ be an upper semi-continuous map such that for each $x \in X$, T(x) is compact. Let $\psi: X \times X \to \mathbb{R}$ be defined by

$$\psi(x, y) := \inf_{w \in T(y)} \operatorname{Re}\langle w, y - x \rangle.$$

If \langle , \rangle is continuous on compact subsets of $F \times X$, then for each fixed $x \in X$, the map $y \to \psi(x, y)$ is a lower semi-continuous function of y on A for each nonempty compact subset A of X.

The following result can be found in [2, Theorem 1.1.1, p. 41]; as Hausdorff was not needed in its proof, it is omitted in the following statement.

LEMMA 2. Let X and Y be topological spaces, F, G: $X \to 2^Y$ be such that $F(x) \cap G(x) \neq \emptyset$ for each $x \in X$. Suppose that (i) F is upper semi-continuous at $x_0 \in X$, (ii) $F(x_0)$ is compact, and (iii) the graph of G is closed. Then the map $F \cap G: x \to F(x) \cap G(x)$ is upper semi-continuous at x_0 .

Next we prove the following:

LEMMA 3. Let E be a topological vector space over Φ , F be a vector space over Φ , and \langle , \rangle : $F \times E \to \Phi$ be a bilinear functional. Let X be a nonempty convex subset of E, h: $X \to \mathbb{R}$ be a convex function, and T: $X \to 2^F$ be lower semi-continuous along line segments in X to the $\sigma \langle F, E \rangle$ -topology on F. If $\hat{y} \in X$, then the inequality

$$\sup_{u \in T(x)} \operatorname{Re}\langle u, \hat{y} - x \rangle \leq h(x) - h(\hat{y}) \quad \text{for all} \quad x \in X$$

implies the inequality

$$\sup_{w \in T(\hat{y})} \operatorname{Re}\langle w, \hat{y} - x \rangle \leq h(x) - h(\hat{y}), \quad \text{for all} \quad x \in X.$$

Proof. Fix $x \in X$. For each $t \in [0, 1]$, let $x_t = tx + (1-t)\hat{y} = \hat{y} - t(\hat{y} - x)$, then $x_t \in X$ so that $\sup_{u \in T(x_t)} \operatorname{Re}\langle u, \hat{y} - x_t \rangle \leq h(x_t) - h(\hat{y})$ for all $t \in [0, 1]$; thus for all $t \in [0, 1]$, $t \cdot \sup_{u \in T(x_t)} \operatorname{Re}\langle u, \hat{y} - x \rangle \leq h(tx + (1-t)\hat{y}) - h(\hat{y}) \leq th(x) + (1-t)h(\hat{y}) - h(\hat{y}) = t[h(x) - h(\hat{y})]$. Hence

$$\sup_{u \in T(x_t)} \operatorname{Re}\langle u, \hat{y} - x \rangle \leq h(x) - h(\hat{y}) \quad \text{for all} \quad t \in (0, 1]. \quad (*)$$

Let $w_0 \in T(\hat{y})$ be arbitrarily fixed. For each $\varepsilon > 0$, let

$$U(w_0) = \{ w \in F: |\langle w - w_0, \hat{y} - x \rangle| < \varepsilon \},\$$

then $U(w_0)$ is an $\sigma \langle F, E \rangle$ -open neighborhood of w_0 . As $U(w_0) \cap T(\hat{y}) \neq \emptyset$ and T is lower semi-continuous on $L = \{x_t : t \in [0, 1]\}$, there exists an open neighborhood N of \hat{y} in L such that $U(w_0) \cap T(y) \neq \emptyset$ for all $y \in N$. Since $x_t \to \hat{y}$ as $t \to 0^+$, there exists $\delta \in (0, 1)$ such that $x_t \in N$ for all $t \in (0, \delta)$. Choose any $t \in (0, \delta)$ and $u \in U(w_0) \cap T(x_t)$, then we have $|\langle w_0 - u, \hat{y} - x \rangle| < \varepsilon$. Thus

$$\operatorname{Re}\langle w_0, \hat{y} - x \rangle < \operatorname{Re}\langle u, \hat{y} - x \rangle + \varepsilon$$

$$\leq h(x) - h(\hat{y}) + \varepsilon, \qquad \text{by } (*).$$

As $\varepsilon > 0$ is arbitrary, $\operatorname{Re}\langle w_0, \hat{y} - x \rangle \leq h(x) - h(\hat{y})$. As $w_0 \in T(\hat{y})$ is also arbitrary, we have

$$\sup_{w \in T(\hat{y})} \operatorname{Re}\langle w, \hat{y} - x \rangle \leq h(x) - h(\hat{y}) \quad \text{for all} \quad x \in X.$$

This completes the proof.

3. A MINIMAX INEQUALITY

The celebrated 1961 Fan's Lemma [5, Lemma 1], which is an infinite dimensional generalization of the classical Knaster-Kuratowski-Mazurkiewicz theorem [9], asserts the following:

THEOREM B. Let X be an arbitrary set in a topological vector space Y. To each $x \in X$, let a closed set F(x) in Y be given such that the following two conditions are satisfied:

(i) The convex hull of any finite subset $\{x_1, ..., x_n\}$ of X is contained in $\bigcup_{i=1}^{n} F(x_i)$,

(ii) F(x) is compact for at least one $x \in X$.

Then $\bigcap_{x \in X} F(x) \neq \emptyset$.

We remark here that in Fan's proof of the above result, the underlying topological vector space Y need not be Hausdorff. We shall now establish the following minimax inequality:

THEOREM 1. Let X be a nonempty convex set in a topological vector space E. Let ϕ and ψ be two extended real-valued functions on $X \times X$ having the following properties:

(a) $\psi(x, x) \leq 0$ for all $x \in X$;

(b) for each fixed $x \in X$, $\phi(x, y)$ is a lower semi-continuous function of y on A for each nonempty compact subset A of X;

(c) for each fixed $y \in X$, the set $\{x \in X : \psi(x, y) > 0\}$ contains the convex hull of the set $\{x \in X : \phi(x, y) > 0\}$;

(d) there exist a nonempty compact convex subset X_0 of X and a nonempty compact subset K of X such that for each $y \in X \setminus K$, there exists a point $x \in co(X_0 \cup \{y\})$ with $\phi(x, y) > 0$.

Then there exists a point $\hat{y} \in K$ such that $\phi(x, \hat{y}) \leq 0$ for all $x \in X$.

Proof. For each $x \in X$, let

$$K(x) = \{ y \in K : \phi(x, y) \leq 0 \}.$$

By (b), K(x) is closed in K for each $x \in X$. We shall show that the family $\{K(x): x \in X\}$ has the finite intersection property. Indeed, let $x_1, ..., x_m \in X$ be given. Let

$$C \equiv \operatorname{co}(X_0 \cup \{x_1, ..., x_m\}),$$

then C is a compact convex subset of X. For each $x \in C$, let

$$\Phi(x) = \{ y \in C \colon \phi(x, y) \leq 0 \}.$$

Then we have the following:

(i) For each $x \in C$, $\Phi(x)$ is nonempty since $x \in \Phi(x)$ by (a) and (c) and is closed in C by (b).

(ii) $\Phi: C \to 2^C$ has the property that the convex hull of every finite subset $\{u_1, ..., u_n\}$ of C is contained in the corresponding union $\bigcup_{i=1}^n \Phi(u_i)$.

If this were false, there exist $\{u_1, ..., u_n\} \subset C$, $\alpha_1, ..., \alpha_n \ge 0$ with $\sum_{i=1}^n \alpha_i a_i = 1$ such that $\sum_{j=1}^n \alpha_j u_j \notin \bigcup_{i=1}^n \Phi(u_i)$; that is, $\phi(u_i, \sum_{j=1}^n \alpha_j u_j) > 0$ for all i = 1, ..., n. By (c), it would imply $\psi(\sum_{i=1}^n \alpha_i u_i, \sum_{j=1}^n \alpha_j u_j) > 0$ which contradicts (a). Thus by Theorem B, we have $\bigcap_{x \in C} \Phi(x) \neq \emptyset$; that is, there exists $\bar{y} \in C$ with $\phi(x, \bar{y}) \le 0$ for all $x \in C$. By (d), we must have $\bar{y} \in K$ so that $\bar{y} \in \bigcap_{i=1}^m K(x_i)$. This shows that $\{K(x): x \in X\}$ is a family of closed subsets of K which has the finite intersection property. By the compactness of K, $\bigcap_{x \in X} K(x) \neq \emptyset$. Take any $\hat{y} \in \bigcap_{x \in X} K(x)$, then $\hat{y} \in K$ and $\phi(x, \hat{y}) \le 0$ for all $x \in X$.

The above result slightly improves a minimax inequality of Bae-Kim-Tan [3, Theorem 1] and generalizes a minimax inequality of Shih-Tan [13, Theorem 3], both in turn generalize the minimax inequalities of Fan [7, Theorem 6; 6, Theorem 1], Tan [15, Theorem 1], and Allen [1, Theorem 1], etc. We emphasize here again that the topological vector space E in Theorem 1 is not required to be Hausdorff, as should be the case for all minimax inequalities mentioned above.

Equivalent forms (i.e., fixed point version, geometric form) of Theorem 1 similar to those in [12] can be likewise stated and proved and are omitted here.

4. GENERALIZED VARIATIONAL INEQUALITIES

We shall first prove the following generalized variational inequalities:

THEOREM 2. Let E be a topological vector space over Φ , F be a vector space over Φ , X be a nonempty convex subset of E, and \langle , \rangle : $F \times E \to \Phi$ be a bilinear functional. Suppose

(a) $h: X \to \mathbb{R}$ is a $\sigma \langle E, F \rangle$ -lower semi-continuous and convex function.

(b) $T: X \to 2^F$ is lower semi-continuous along line segments in X to the $\sigma \langle F, E \rangle$ -topology on F such that for each $y \in X$, the set $\{x \in X: \inf_{w \in T(y)} \operatorname{Re}\langle w, y - x \rangle + h(y) - h(x) > 0\}$ contains the set $\{x \in X: \sup_{u \in T(x)} \operatorname{Re}\langle u, y - x \rangle + h(y) - h(x) > 0\}$.

(c) There exist a nonempty $\sigma \langle E, F \rangle$ -compact and convex subset X_0 of X and a nonempty $\sigma \langle E, F \rangle$ -compact subset K of X such that for each $y \in X \setminus K$, there is $x \in co(X_0 \cup \{y\})$ with $\sup_{u \in T(x)} \operatorname{Re} \langle u, y - x \rangle + h(y) - h(x) > 0$.

Then there exists a point $\hat{y} \in K$ uch that

 $\sup_{w \in T(\hat{y})} \operatorname{Re}\langle w, \hat{y} - x \rangle \leq h(x) - h(\hat{y}), \quad \text{for all} \quad x \in X.$

Proof. Define $\phi, \psi: X \times X \to \mathbb{R} \cup \{+\infty, -\infty\}$ by $\phi(x, y) = \sup_{u \in T(x)} \operatorname{Re}\langle u, y - x \rangle + h(y) - h(x),$ $\psi(x, y) = \inf_{w \in T(y)} \operatorname{Re}\langle w, y - x \rangle + h(y) - h(x).$

Then we have the following properties:

(i) $\psi(x, x) = 0$ for all $x \in X$.

(ii) For each fixed $x \in X$, $y \to \phi(x, y)$ is a $\sigma \langle E, F \rangle$ -lower semicontinuous function on X.

(iii) For each fixed $y \in X$, it is easy to see that the set $\{x \in X: \inf_{w \in T(y)} \operatorname{Re}\langle w, y - x \rangle + h(y) - h(x) > 0\}$ is convex so that by hypothesis the set $\{x \in X: \psi(x, y) > 0\}$ contains the convex hull of the set $\{x \in X: \phi(x, y) > 0\}$.

(iv) For each $y \in X \setminus K$, there exists $x \in co(X_0 \cup \{y\})$ such that $\sup_{u \in T(x)} \operatorname{Re}\langle u, y - x \rangle + h(y) - h(x) > 0$ so that $\phi(x, y) > 0$.

Now equip E with the $\sigma \langle E, F \rangle$ -topology, we see that all hypothesis of Theorem 1 are satisfied so that there exists $\hat{y} \in K$ such that $\phi(x, \hat{y}) \leq 0$ for all $x \in X$; that is,

 $\sup_{u \in T(x)} \operatorname{Re}\langle u, \hat{y} - x \rangle + h(\hat{y}) - h(x) \leq 0 \quad \text{for all} \quad x \in X.$

By Lemma 3, we have

$$\sup_{w \in T(\hat{y})} \operatorname{Re}\langle w, \hat{y} - x \rangle + h(\hat{y}) - h(x) \leq 0 \quad \text{for all} \quad x \in X. \quad \blacksquare$$

We note that if $T: X \to 2^F$ is monotone with respect to the bilinear functional \langle , \rangle , then for each $y \in X$, the set $\{x \in X: \inf_{w \in T(y)} \operatorname{Re}\langle w, y - x \rangle + h(y) - h(x) > 0\}$ contains the set $\{x \in X: \sup_{u \in T(x)} \operatorname{Re}\langle u, y - x \rangle + h(y) - h(x) > 0\}$. Thus Theorem 2 generalizes Theorem 5 and hence also Theorem 3 (by taking $h \equiv 0$) in [15]. We shall point out here that in stating Theorem 5 in [15], the assumption that " $h: X \to \mathbb{R}$ is a weakly lower semi-continuous convex function" was inadvertently mis-stated as " $h: X \to \mathbb{R}$ is a lower semi-continuous, convex function."

By little modification in the proof of Theorem 2, we have the following:

THEOREM 3. Let E be a topological vector space over Φ , F be a vector space over Φ , X be a nonempty convex subset of E, and $\langle , \rangle : F \times E \to \Phi$ be a bilinear functional such that for each $f \in F$, the map $x \mapsto \langle f, x \rangle$ is continuous on X. Suppose

(a) $h: X \to \mathbb{R}$ is a lower semi-continuous and convex function.

(b) $T: X \to 2^F$ is lower semi-continuous along line segments in X to the $\sigma \langle F, E \rangle$ -topology on F such that for each $y \in X$, the set $\{x \in X: \inf_{w \in T(y)} \operatorname{Re}\langle w, y - x \rangle + h(y) - h(x) > 0\}$ contains the set $\{x \in X: \sup_{u \in T(x)} \operatorname{Re}\langle u, y - x \rangle + h(y) - h(x) > 0\}$.

(c) There exist a nonempty compact convex subset X_0 of X and a nonempty compact subset K of X such that for each $y \in X \setminus K$, there is $x \in co(X_0 \cup \{y\})$ with $\sup_{u \in T(x)} \operatorname{Re}\langle u, y - x \rangle + h(y) - h(x) > 0$.

Then there exists a point $\hat{y} \in K$ such that

$$\sup_{w \in T(\hat{y})} \operatorname{Re}\langle w, \hat{y} - x \rangle \leq h(x) - h(\hat{y}) \quad \text{for all} \quad x \in X.$$

While the map T in Theorems 2 and 3 is assumed to be lower semi-continuous and monotone type, we shall give another generalized variational inequality below where T is assumed to be upper semi-continuous:

THEOREM 4. Let E be a topological vector space over Φ , X be a nonempty convex subset of E, F be a vector space over Φ , and \langle , \rangle : $F \times E \to \Phi$ be a bilinear functional such that for each $f \in F$, $x \mapsto \langle f, x \rangle$ is continuous on X. Equip F with the $\delta \langle F, E \rangle$ -topology. Suppose

(a) $h: X \to \mathbb{R}$ is a lower semi-continuous convex function.

(b) $T: X \to 2^F$ is upper semi-continuous such that for each $x \in X$, T(x) is compact convex.

(c) There exist a nonempty compact convex subset X_0 of X and a nonempty compact subset K of X such that for each $y \in X \setminus K$, there exists $x \in$ $co(X_0 \cup \{y\})$ with $inf_{w \in T(y)} \operatorname{Re}\langle w, y - x \rangle + h(y) - h(x) > 0$.

Then there exist $\hat{y} \in K$ and $\hat{w} \in T(\hat{y})$ such that

$$\operatorname{Re}\langle \hat{w}, \hat{y} - x \rangle \leq h(x) - h(\hat{y})$$
 for all $x \in X$.

Proof. It is easy to see that \langle , \rangle is continuous on compact subsets of $F \times X$. Define $\psi: X \times X \to \mathbb{R}$ by

$$\psi(x, y) = \inf_{w \in T(y)} \operatorname{Re}\langle w, y - x \rangle + h(y) - h(x).$$

Then we have the following properties:

(i) Clearly $\psi(x, x) = 0$ for all $x \in X$.

(ii) By Lemma 1, for each fixed $x \in X$, $y \to \psi(x, y)$ is a lower semicontinuous function of y on A for each nonempty compact subset A of X.

(iii) It is easy to see that for each fixed $y \in X$, the set $\{x \in X: \psi(x, y) > 0\}$ is convex.

(iv) By (c), for each $y \in X \setminus K$, there is $x \in co(X_0 \cup \{y\})$ such that $\psi(x, y) > 0$.

Hence all hypotheses of Theorem 1 are satisfied (with $\phi \equiv \psi$) so that there exists $\hat{y} \in K$ such that $\psi(x, \hat{y}) \leq 0$ for all $x \in X$, i.e.,

$$\sup_{x \in X} \inf_{w \in T(\hat{y})} (\operatorname{Re}\langle w, \hat{y} - x \rangle + h(\hat{y}) - h(x)) \leq 0.$$
 (**)

.

Define $f: X \times T(\hat{y}) \to \mathbb{R}$ by

$$f(x, w) = \operatorname{Re}\langle w, \hat{y} - x \rangle + h(\hat{y}) - h(x),$$

then for each fixed $x \in X$, $w \mapsto f(x, w)$ is an affine function which is continuous on the compact convex set $T(\hat{y})$ and for each fixed $w \in T(\hat{y})$, $x \mapsto f(x, w)$ is a concave function on the convex set X. Hence by Kneser's minimax theorem [10], we have

$$\inf_{w \in T(\hat{y})} \sup_{x \in X} (\operatorname{Re}\langle w, \hat{y} - x \rangle + h(\hat{y}) - h(x))$$

=
$$\sup_{x \in X} \inf_{w \in T(\hat{y})} (\operatorname{Re}\langle w, \hat{y} - x \rangle + h(\hat{y}) - h(x))$$

$$\leq 0, \qquad \text{by } (**).$$

Again, as $T(\hat{y})$ is compact, there exists $\hat{w} \in T(\hat{y})$ such that

$$\sup_{x \in X} (\operatorname{Re}\langle \hat{w}, \hat{y} - x \rangle + h(\hat{y}) - h(x))$$

=
$$\inf_{w \in T(\hat{y})} \sup_{x \in X} (\operatorname{Re}\langle w, \hat{y} - x \rangle + h(\hat{y}) - h(x))$$

Therefore

$$\operatorname{Re}\langle \hat{w}, \hat{y} - x \rangle \leq h(x) - h(\hat{y})$$
 for all $x \in X$.

The above theorem generalizes a generalized variational inequality of Browder in [4, Theorem 6] to the non-compact case in a more general setting.

5. GENERALIZED QUASI-VARIATIONAL INEQUALITIES

In this section we shall prove two generalized quasi-variational inequalities.

THEOREM 5. Let E be a locally convex Hausdorff topological vector space over Φ , F be a vector space over Φ , X be a nonempty convex subset of E, C be a nonempty compact subset of X, and \langle , \rangle : $F \times E \to \Phi$ be a bilinear functional such that for each $f \in F$, the map $x \mapsto \langle f, x \rangle$ is continuous on X. Suppose

(a) $S: X \to 2^X$ is upper semi-continuous such that for each $x \in X$, S(x) is a closed convex subset of C;

(b) $h: X \to \mathbb{R}$ is a lower semi-continuous and convex function;

(c) $T: X \to 2^F$ is lower semi-continuous from line segments in X to the $\sigma \langle F, E \rangle$ -topology on F such that for each $y \in X$, the set $\{x \in X: \inf_{w \in T(y)} \operatorname{Re}\langle w, y - x \rangle + h(y) - h(x) > 0\}$ contains the set $\{x \in X: \sup_{u \in T(x)} \operatorname{Re}\langle u, y - x \rangle + h(y) - h(x) > 0\}$;

(d) there exists a family $\{X(z): z \in X\}$ of nonempty compact convex subsets of X such that for each $z \in X$ and for each $y \in X \setminus S(z)$, there exists an $x \in co(X(z) \cup \{y\})$ for which $\sup_{u \in T(x)} \text{Re}\langle u, y - x \rangle + h(y) - h(x) > 0$.

Then there exists an $\hat{y} \in C$ such that

- (i) $\hat{y} \in S(\hat{y})$ and
- (ii) $\sup_{w \in T(\hat{y})} \operatorname{Re}\langle w, \hat{y} x \rangle \leq h(x) h(\hat{y}), \text{ for all } x \in X.$

Proof. Let $z \in X$. Since S(z) is nonempty compact, by (d) and Theorem 3, there exists $z^* \in S(z)$ such that

$$\sup_{w \in T(z^*)} \mathbb{R}\langle w, z^* - x \rangle + h(z^*) - h(x) \leq 0 \quad \text{for all} \quad x \in X;$$

thus the set $\{z^* \in S(z): \sup_{x \in X} \sup_{w \in T(z^*)} \operatorname{Re}\langle w, z^* - x \rangle + h(z^*) - h(x) \leq 0\}$ is nonempty for each $z \in X$.

Define $F: X \to 2^X$ by

$$F(z) = \left\{ z^* \in S(z): \sup_{x \in X} \sup_{w \in T(z^*)} \operatorname{Re}\langle w, z^* - x \rangle + h(z^*) - h(x) \leq 0 \right\}$$

for each $z \in X$. For any given $z \in X$, by Lemma 3, the set $\{z^* \in S(z): \sup_{x \in X} \sup_{u \in T(x)} \operatorname{Re}\langle u, z^* - x \rangle + h(z^*) - h(x) \leq 0\}\}$ is contained in the set $\{z^* \in S(z): \sup_{x \in X} \sup_{w \in T(z^*)} \operatorname{Re}\langle w, z^* - x \rangle + h(z^*) - h(x) \leq 0\}$. Conversely, if $z^* \in S(z)$ is such that $\sup_{x \in X} \sup_{w \in T(z^*)} \operatorname{Re}\langle w, z^* - x \rangle + h(z^*) - h(x) \leq 0$ for all $x \in X$ so that by (c) $\sup_{u \in T(x)} \operatorname{Re}\langle u, z^* - x \rangle + h(z^*) - h(x) \leq 0$ for all $x \in X$. This shows that the set $\{z^* \in S(z): \sup_{x \in X} \sup_{u \in T(x)} \operatorname{Re}\langle u, z^* - x \rangle + h(z^*) - h(x) \leq 0\}$ also contains the set $\{z^* \in S(z): \sup_{x \in X} \sup_{u \in T(x)} \operatorname{Re}\langle u, z^* - x \rangle + h(z^*) - h(x) \leq 0\}$. Therefore

$$F(z) = \{z^* \in S(z): \sup_{x \in X} \sup_{u \in T(x)} [\operatorname{Re}\langle u, z^* - x \rangle + h(z^*) - h(x)] \leq 0\}$$

which is closed convex by (b) and the assumption that for each $f \in F$, $x \to \langle f, x \rangle$ is continuous on X. Since S is upper semi-continuous and the map $z^* \to \sup_{x \in X} \sup_{u \in T(x)} \operatorname{Re}\langle u, z^* - x \rangle + h(z^*) - h(x)$ is lower semi-continuous on X, we conclude that the graph of F is closed in $X \times X$. Therefore by Lemma 2, F is also upper semi-continuous. Since $F(z) \subset S(z) \subset C$ for each $z \in X$, by Himmelberg's fixed point theorem [8, Theorem 2], there exists $\hat{y} \in X$ such that $\hat{y} \in F(\hat{y})$; that is,

- (i) $\hat{y} \in S(\hat{y})$ and
- (ii) $\sup_{w \in T(\hat{y})} \operatorname{Re}\langle w, \hat{y} x \rangle \leq h(x) h(\hat{y})$ for all $x \in X$.

As $F(\hat{y}) \subset C$, $\hat{y} \in C$. This completes the proof.

THEOREM 6. Let E be a locally convex Hausdorff topological vector space over Φ , X be a nonempty convex subset of E, C be a nonempty compact subset of X, F be a vector space over Φ , and \langle , \rangle : $F \times E \to \Phi$ be a bilinear functional such that for each $f \in F$, the map $x \to \langle f, x \rangle$ is continuous on X. Suppose

(a) $S: X \to 2^X$ is upper semi-continuous such that for each $x \in X$, S(x) is a closed convex subset of C;

(b) $h: X \to \mathbb{R}$ is lower semi-continuous and convex;

(c) $T: X \to 2^F$ is lower semi-continuous from line segments in X to the $\sigma \langle F, E \rangle$ -topology on F such that for each $y \in X$, the set $\{x \in X: \inf_{w \in T(y)} \operatorname{Re}\langle w, y - x \rangle + h(y) - h(x) > 0\}$ contains the set $\{x \in X: \sup_{u \in T(x)} \operatorname{Re}\langle u, y - x \rangle + h(y) - h(x) > 0\}$.

Then there exists $\hat{y} \in C$ such that

- (i) $\hat{y} \in S(\hat{y})$ and
- (ii) $\sup_{w \in T(\hat{y})} \operatorname{Re}\langle w, \hat{y} x \rangle \leq h(x) h(\hat{y}) \text{ for all } x \in S(\hat{y}).$

Proof. For each $z \in X$, define

$$F(z) = \{z^* \in S(z): \sup_{x \in S(z)} \sup_{w \in T(z^*)} \operatorname{Re}\langle w, z^* - x \rangle + h(z^*) - h(x) \leq 0\}.$$

Since S(z) is compact convex, by taking $X \equiv X_0 \equiv K \equiv S(z)$ in Theorem 3, there exists $z^* \in S(z)$ such that

 $\sup_{w \in T(z^*)} \operatorname{Re}\langle w, z^* - x \rangle + h(z^*) - h(x) \leq 0 \quad \text{for all} \quad x \in S(z),$

so that F(z) is nonempty. Thus $F: X \to 2^X$. Similar to the proof of Theorem 5, by (b), (c), and Lemma 3, for each $z \in X$, the set $\{z^* \in S(z): \sup_{x \in S(z)} \sup_{w \in T(z^*)} [\operatorname{Re}\langle w, z^* - x \rangle + h(z^*) - h(z)] \leq 0\}$ coincides with the set $\{z^* \in S(z): \sup_{x \in S(z)} \sup_{w \in T(x)} [\operatorname{Re}\langle u, z^* - x \rangle + h(z^*) - h(x)] \leq 0\}$ so that each F(z) is closed convex as the map

$$z^* \to \sup_{x \in S(z)} \sup_{u \in T(x)} \left[\operatorname{Re}\langle u, z^* - x \rangle + h(z^*) - h(x) \right]$$

is lower semi-continuous and convex. Since S is upper semi-continuous, it is easy to see that the graph of F is closed in $X \times X$. Therefore, by Lemma 2, F is also upper semi-continuous. Since $F(z) \subset C$ for each $z \in X$, by Himmelberg's fixed point theorem [8, Theorem 2], there exists $\hat{y} \in C$ such that $\hat{y} \in F(\hat{y})$; that is

- (i) $\hat{y} \in S(\hat{y})$ and
- (ii) $\sup_{w \in T(\hat{y})} \operatorname{Re}\langle w, \hat{y} x \rangle \leq h(x) h(\hat{y}) \text{ for all } x \in S(\hat{y}).$

Remark 1. We remark here that while Theorem 6 is proved in a more general setting, it also generalizes Theorems 1 and 2 of Shih–Tan in [11] in several ways: (i) the set X need not be compact; (ii) the interacting set Σ_1 in Theorem 1 of [11] is no longer required to be open; (iii) the continuity conditions on S and T are much weaker than those assumed in Theorem 2 of [11].

Remark 2. We would like to point out the difference between the conclusions of Theorem 5 and Theorem 6: In Theorem 5, the variational inequality holds for all $x \in X$ while in Theorem 6, the variational inequality holds for all $x \in S(\hat{y})$.

Remark 3. Himmelberg's fixed point theorem can be recovered from Theorem 5 or Theorem 6 by taking $h \equiv 0$ and $T \equiv 0$.

References

- 1. G. ALLEN, Variational inequalities, complementarity problems, and duality theorems, J. Math. Anal. Appl. 58 (1977), 1-10.
- 2. J. P. AUBIN AND A. CELLINA, "Differential Inclusions," Springer-Verlag, New York, 1984.
- 3. J. S. BAE, W. K. KIM, AND K. K. TAN, Another generalization of Ky Fan's minimax inequality and its applications, submitted for publication.
- 4. F. E. BROWDER, The fixed point theory of multi-valued mappings in topological vector spaces, *Math. Ann.* 177 (1968), 283-301.
- 5. K. FAN, A generalization of Tychonoff's fixed point theorem, Math. Ann. 142 (1961), 305-310.
- K. FAN, A minimax inequality and applications, in "Inequalities, III" (O. Shisher, Ed.), pp. 103-113, Academic Press, New York, 1972.
- 7. K. FAN, Some properties of convex sets related to fixed point theorems, *Math. Ann.* 226 (1984), 519-537.
- 8. C. J. HIMMELBERG, Fixed points of compact multifunctions, J. Math. Anal. Appl. 38 (1972), 205-207.
- 9. B. KNASTER, C. KURATOWSKI, AND S. MAZURKIEWICZ, Ein Beweis des Fixpunksatzes für n-dimensionale Simplexe, Fund. Math. 14 (1929), 132–137.
- H. KNESER, Sur un théorème fondamental de la théorie des jeux, C.R. Acad. Sci. Paris 234 (1952), 2418-2420.
- 11. M. H. SHIH AND K. K. TAN, Generalized quasi-variational inequalities in locally convex topological vector spaces, J. Math. Anal. Appl. 108 (1985), 333-343.
- M. H. SHIH AND K. K. TAN, The Ky Fan minimax principle, sets with convex sections, and variational inequalities, *in* "Differential Geometry, Calculus of Variation, and Their Applications" (G. M. Rassias and T. M. Rassias, Eds.), pp. 471-481, Dekker, New York, 1985.
- M. H. SHIH AND K. K. TAN, A geometric property of convex sets with applications to minimax type inequalities and fixed point theorems, J. Austral. Math. Soc. Ser. A 45 (1988), 169-183.
- 14. M. H. SHIH AND K. K. TAN, Generalized bi-quasi-variational inequalities, J. Math. Anal. Appl. 143 (1989), 66–85.
- 15. K. K. TAN, Comparison theorems on minimax inequalities, variatal inequalities, and fixed point theorems, J. London Math. Soc. 28 (1983), 555-562.