View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Elsevier - Publisher Connector

JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 148, 497-508 (1990)

Generalized Variational Inequalities and
Generalized Quasi-Variational Inequalities*

XIE PING DING

Department of Mathematics,
Sichuan Normal University, Chengdu, Sichuan, China

AND
Kok-KeEoNG TAN

Department of Mathematics, Statistics and Computing Science,
Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5

Submitted by Ky Fan
Received October 25, 1988

A very general minimax inequality is first established. Three generalized varia-
tional inequalities are then derived, which improve those obtained by Tan and
Browder. By applying a fixed point theorem of Himmelberg, two generalized
quasi-variational inequalities are also proved, one of which generalizes those of
Shih-Tan to the non-compact case with much weaker hypotheses and in a more
general selting. © 1990 Academic Press, Inc.

1. INTRODUCTION

Throughout this paper, @ denotes either the real field R or the complex
field C. For a nonempty set Y, 2” will denote the family of all nonempty
subsets of Y. Let E and F be vector spaces over @,{ , >: FXxE—>® be a
bilinear functional, and X be a nonempty subset of E. If S: X — 2% and
T: X - 27, the generalized quasi-variational inequality problem for the pair
(S, T) is to find y e X satisfying the following properties:

(i) peS(p) and
(i1} inf, c ry Redw, — x> <0 for all xe S(¥).

In this paper, we fist establish a very general minimax inequality, then
we improve some generalized variational inequalities of Tan [15,
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Theorems 3 and 5] and of Browder [4, Theorem 6]. Next, by applying a
fixed point theorem of Himmelberg [8, Theorem 2], we prove two exist-
ence theorems on solutions of the generalized quasi-variational inequality
problem, one of which improves those of Shih-Tan [11, Theorems | and
27 to the non-compact case with much weaker hypotheses.

2. PRELIMINARIES

Let E and F be two vector spaces over @, and ( , »: FxE—->® be a
bilinear functional. For each x,€ E, each nonempty subset 4 of £ and
>0, let

Wixose) = {yeF:|{y x>l <&},
U(A;e):={yeF:sup [{y,x)|<e}.

xeAd

Let 6{F, E) be the topology on F generated by the family { W(x;e): xe E
and ¢>0} as a subbase for the neighborhood system at 0. If £ is a
topological vector space, let §(F, E)) be the topology on F generated by
the family {U(4;¢): 4 is a nonempty compact subset of E and ¢>0} as a
base for the neighborhood system at 0. We note then, F when equipped
with the topology a(F, E) or the topology d{F, E), becomes a locally
convex topological vector space but not necessarily Hausdorff. If X is a
nonempty subset of E, then a map T: X — 2 is monotone (with respect to
the bilinear functional ¢{ , >) if for any x, ye X, ue T(x), and we T(y),
Re{w—u, y—x)»>0. A subset C of E is said to be ¢ (E, F)-compact if C
is compact in the o{E, F)-topology. If X is a subset of E, the function
h: X - R is said to be 6 (E, F)-lower semi-continuous if # is lower semi-
continuous when X is equipped with the relative o { E, F )-topology. If B is
a subset of a vector space, co(B) will denote the convex hull of B. If X and
Y are two nonempty sets and F: X — 27, then the graph of F is the set
{(x, y)eXx Y: ye F(x)}. '

The following result is essentially Lemma 2 of Shih-Tan in [14] and its
proof is thus omitted.

LEMMA 1. Let E and F be two topological vector spaces over ® and
{, Y: Fx E— ® be a bilinear functional. Let X be a nonempty subset of E
and T: X — 2% be an upper semi-continuous map such that for each x e X,
T(x) is compact. Let Y: X x X > R be defined by

Y(x, y):= inf Redlw, y—x).
we T(y)
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If {, ) is continuous on compact subsets of Fx X, then for each fixed
x€X, the map y —Y(x, y) is a lower semi-continuous function of y on A for
each nonempty compact subset A of X.

The following result can be found in [2, Theorem 1.1.1, p. 417]; as
Hausdorff was not needed in its proof, it is omitted in the following
statement.

LEMMA 2. Let X and Y be topological spaces, F, G: X — 2¥ be such that
F(x)nG(x)# & for each x € X. Suppose that (1) F is upper semi-continuous
at xg€ X, (i) F(xy) is compact, and (iii) the graph of G is closed. Then the
map Frn G: x - F(x)n G(x) is upper semi-continuous at x.

Next we prove the following:

LemMMa 3. Let E be a topological vector space over ®, F be a vector
space over @, and { , »: Fx E— ® be a bilinear functional. Let X be a non-
empty convex subset of E, h: X — R be a convex function, and T: X — 2% be
lower semi-continuous along line segments in X to the o {F, E)-topology on
F. If ye X, then the inequality

sup Redw, y —x) < h(x)— h(y) forall xeX

ue T(x)

implies the inequality

sup Redw, y—x) <h(x)— h(p), forall xeX.

we T({})

Proof. Fix xeX. For each te[0,1], let x,=tx+(1—¢f)j=P—
t(y —x), then x, € X so that sup, ., Re{w, —x,)> <h(x,)— h(p) for all
te [0, 1]; thusforallte [0, 1], #-sup,c rx,) Re<y, 7 — x> <h(tx+ (1 —1) §)
—h(P)<th(x) + (1= 1) h($) — h($) = t[h(x) — h($)]. Hence

sup Redu, y—x) <h(x)—h(p) forall re(0,1]. (*)

ue T(x)

Let wye T(¥) be arbitrarily fixed. For each ¢ >0, let

Ulwg) = {weF: [{w—w,, f—x)|<e},

then U(w,) is an o {F, E )-open neighborhood of w,. As U(wy) N T(§) # &
and T is lower semi-continuous on L= {x,:7€[0, 1]}, there exists an
open neighborhood N of y in L such that U(wy) n T(yp) # & for all ye N.
Since x,—» y as r—> 0%, there exists 6€(0,1) such that x,e N for all

409/148/2-16



500 DING AND TAN

t€ (0, 5). Choose any te(0,d) and ue U(wo)nT(x,), then we have
[{wo—u, p—x)| <e& Thus

Red{wg, y— x> <Relu, y—x>+¢
Shix)—h(p)+e by (*).

As ¢>0 is arbitrary, Re{wy, y—x)> <h(x)—h(y). As woe T(7) is also
arbitrary, we have

sup Re{w, p—x) <h(x)—h(P) forall xelX.

we T(¥)

This completes the proof. |

3. A MINIMAX INEQUALITY

The celebrated 1961 Fan’s Lemma [5, Lemma 17, which is an infinite
dimensional generalization of the classical Knaster—Kuratowski—
Mazurkiewicz theorem [9], asserts the following:

THEOREM B. Let X be an arbitrary set in a topological vector space Y.
To each x€ X, let a closed set F(x) in Y be given such that the following two
conditions are satisfied.

(i) The convex hull of any finite subset {x,, .., x,} of X is contained
in U7_ Flx;),
(i) F(x) is compact for at least one x € X.

Then N,y F(x)# .

We remark here that in Fan’s proof of the above result, the underlying
topological vector space Y need not be Hausdorff. We shall now establish
the following minimax inequality:

THEOREM 1. Let X be a nonempty convex set in a topological vector
space E. Let ¢ and  be two extended real-valued functions on X x X having
the following properties:

(a) Y(x,x)<0 forall xe X;

(b) for each fixed x € X, ¢(x, v) is a lower semi-continuous function of
vy on A for each nonempty compact subset A of X,

(¢) for each fixed ye X, the set {xe X:y(x, y)>0} contains the
convex hull of the set {xe X: §(x, y)>0};
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(d) there exist a nonempty compact convex subset X, of X and a non-
empty compact subset K of X such that for each y € X\K, there exists a point
xeco(Xou {y}) with ¢(x, y)>0.

Then there exists a point y € K such that ¢(x, 7} <0 for all xe X.
Proof. For each xe X, let

K(x)={yeK: $(x, y)<O}.

By (b), K(x) is closed in K for each x € X. We shall show that the family
{K(x): xe X} has the finite intersection property. Indeed, let x, ..., x,,€ X
be given. Let

C=co(Xou {X15 .0 X))
then C is a compact convex subset of X. For each xe C, let

B(x)={ye C: §(x, y)<O}.
Then we have the following:

(i) For each xe C, @(x) is nonempty since x € @(x) by (a) and (c)
and is closed in C by (b).

(i) @: C-2¢ has the property that the convex hull of every finite
subset {u,, ..., u,} of C is contained in the corresponding union U7_, @(u;).

If this were false, there exist {uy, .., u,} =C, ay, .., 2,20 with 37_, a,=1
such that 37_, au, ¢, D(u;); that is, ¢(u;, X7, ou,)>0 for all i=
1,..,n By (c), it would imply ¥(X]_, ou;, 27 , au;)>0 which con-
tradicts (a). Thus by Theorem B, we have (), . §(x)# ; that is, there
exists ye C with ¢(x, ) <0 for all xe C. By (d), we must have je K so
that ye (7., K(x,). This shows that {K(x):xe X} is a family of closed
subsets of K which has the finite intersection property. By the compactness
of K, N,cx K(x)# . Take any ye (), _y K(x), then je K and ¢(x, ) <0
for all xe X. |

The above result slightly improves a minimax inequality of Bae—Kim--
Tan [3, Theorem 1] and generalizes a minimax inequality of Shih-Tan
[13, Theorem 3], both in turn generalize the minimax inequalities of
Fan [7, Theorem 6; 6, Theorem 1], Tan [15, Theorem 1], and Allen
[1, Theorem 1], etc. We emphasize here again that the topological vector
space E in Theorem 1 is not required to be Hausdorff, as should be the
case for all minimax inequalities mentioned above.

Equivalent forms (i.e., fixed point version, geometric form) of Theorem 1
similar to those in [12] can be likewise stated and proved and are omitted
here. ‘
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4. GENERALIZED VARIATIONAL INEQUALITIES

We shall first prove the following generalized variational inequalities:

THEOREM 2. Let E be a topological vector space over @, F be a vector
space over @, X be a nonempty convex subset of E, and { , >: FX E— & be
a bilinear functional. Suppose

(a) h: X - RisaolE, F)-lower semi-continuous and convex function.

(b) T:X-2% is lower semi-continuous along line segments in X
to the o{F, E)-topology on F such that for each yelX, the set
{x € X:inf, .7, Re{w, y — x> + h(y) — h(x) > 0} contains the set
{xeX:sup, . ReCu, y—x> +h(y)—h(x)>0}.

(c) There exist a nonempty a{E, F»-compact and convex subset X, of
X and a nonempty o{E, FY-compact subset K of X such that for each
yeX\K, there is xeco(Xou {y}) with sup,.r, Reu, y—x)>+h(y)—
ha(x)>0.

Then there exists a point y € K uch that
sup Redw, §—x> < h(x)—A(p), forall xeX.

we T(p)
Proof. Define ¢, y: X x X >Ru {+0,—0} by
#(x, y)= sup Relu, y—x)+h(y)—h(x),

ue T(x)

Y(x, y)= 1ir;I: )Re<w, y =X +h(y)—h(x).

Then we have the following properties:

(1) Y(x,x)=0 for all xe X.

(ii)) For each fixed xe X, y = ¢(x, y) is a o{E, F)-lower semi-
continuous function on X.

(iii) For each fixed yelX, it is easy to see that the set
{xeX:inf, ., Re{w, y—x> +h(y)—h(x)>0} is convex so that by
hypothesis the set {xe X:(x, y)>0} contains the convex hull of the set
{xeX: é¢(x, y)>0}.

(iv) For each ye X\K, there exists xeco(X,u {y}) such that
SUp, e 7y ReCu, y—x> + h(y)—h(x) >0 so that ¢(x, y)>0.

Now equip E with the o {E, F)-topology, we see that all hypothesis of
Theorem 1 are satisfied so that there exists € K such that ¢(x, y) <0 for
all x e X; that is,

sup Relu, p—x>+h(y)—h(x)<0 forall xelX.

ue T(x)
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By Lemma 3, we have

sup Redw, j—x> +h(J)—h(x)<0 forall xeX. |

we T(y)

We note that if T: X — 2¥ is monotone with respect to the bilinear func-
tional ¢ , ), then for each y e X, the set {xe X:inf, . r,)Re{w, y—x) +
h(y)—h(x)>0} contains the set {xe X:sup,. ., Redu, y—x> +h(y)—
#(x)>0}. Thus Theorem 2 generalizes Theorem 5 and hence also
Theorem 3 (by taking A=0) in [15]. We shall point out here that in
stating Theorem 5 in [15], the assumption that “A: X - R is a weakly
lower semi-continuous convex function” was inadvertently mis-stated as
“h: X - R is a lower semi-continuous, convex function.”

By little modification in the proof of Theorem 2, we have the following:

THEOREM 3. Let E be a topological vector space over &, F be a vector
space over @, X be a nonempty convex subset of E, and { , > FXE—->®
be a bilinear functional such that for each feF, the map x> {f, x> is
continuous on X. Suppose

(a) h: X — R is a lower semi-continuous and convex function.

(b) T:X-2F is lower semi-continuous along line segments in X
to the od(F, E)-topology on F such that for each yeX, the set
{x € Xtinf, .,y Re<w, y — x> + h(y) — h(x) > 0} contains the set
{xeX:sup,c i ReCst, y— x>+ A(y)— h(x)>0}.

(c) There exist a nonempty compact convex subset X, of X and a
nonempty compact subset K of X such that for each ye X\K, there is
xeco(Xou {¥}) with sup, . 7, Re<u, y — x> + h(y) — h(x) > 0.

Then there exists a point y € K such that

sup Re{w, p—x><h(x)—h(p) forall xeX.

we T(9)

While the map T in Theorems 2 and 3 is assumed to be lower semi-con-
tinuous and monotone type, we shall give another generalized variational
inequality below where T is assumed to be upper semi-continuous:

THEOREM 4. Let E be a topological vector space over @, X be a non-
empty convex subset of E, F be a vector space over @, and { , > FXE—- @
be a bilinear functional such that for each fe€ F, xt— {f, x) is continuous on
X. Equip F with the 6 {F, E>-topology. Suppose

(a) h: X > R is a lower semi-continuous convex function.

(b) T:X— 2% is upper semi-continuous such that for each x € X, T(x)
is compact convex.
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(c) There exist a nonempty compact convex subset X, of X and a non-
empty compact subset K of X such that for each y € X\K, there exists x €
co(Xou {y}) with inf, . ,, Re{w, y—x> + h(y)— h(x)>0.

Then there exist ¥ € K and we T(P) such that

Re{w, p—x><h(x)—h(p)  forall xeX.

Proof. 1Tt is easy to see that ( , ) is continuous on compact subsets of
Fx X. Define : X x X - R by

W(x, y)= inf Redw,y—x)+ h(y)— h(x).

Then we have the following properties:

(i) Clearly y(x, x)=0 for all xe X.
(ii) By Lemma 1, for each fixed xe X, y - ¥(x, y) is a lower semi-
continuous function of y on A for each nonempty compact subset A4 of X.
(iii) It is easy to see that for each fixed yelX, the set
{xeX:y(x, y)>0} is convex.
(iv) By (c), for each ye X\K, there is xeco(X,u {y}) such that
¥(x, y)>0.

Hence all hypotheses of Theorem 1 are satisfied (with ¢ =y) so that
there exists € K such that ¥(x, $)<0 for all xe X, ie,

sup inf (Redw, p—x>+h(y)—h(x))<0. (%)

xeX weT(y)
Define f: X x T(y) - R by

Sx, w)=Relw, §— x> +h(§)— h(x),

then for each fixed xe X, w— f(x, w) is an affine function which is con-
tinuous on the compact convex set 7(y) and for each fixed we T(J),
x> f(x, w) is a concave function on the convex set X. Hence by Kneser’s
minimax theorem [10], we have

inf sup (Re{w, —x>+h($)—h(x))
weT(P) xeX

=sup inf (Re{w, §—x)>+h(y)—h(x))

xeX weT(p)

<0, by (**).



GENERALIZED VARIATONAL INEQUALITIES 505

Again, as T(j) is compact, there exists we T( ) such that

sup (Re(w, y— x>+ h(J) — h(x))

xeX

= inf sup (Re<w, —x) + h(F) — h(x)).

weT(p) xeX

Therefore

Redw, p— x> < h(x)—h(p) forall xeX. |

The above theorem generalizes a generalized variational inequality of
Browder in [4, Theorem 6] to the non-compact case in a more general
setting.

5. GENERALIZED QUASI-VARIATIONAL INEQUALITIES

In this section we shall prove two generalized quasi-variational
inequalities.

THEOREM S. Let E be a locally convex Hausdorff topological vector
space over ®©, F be a vector space over @, X be a nonempty convex subset
of E, C be a nonempty compact subset of X, and { , > FXE—->® be a
bilinear functional such that for each f € F, the map x> {f, x) is continuous
on X. Suppose

(@) S:X— 2% is upper semi-continuous such that for each x € X, S(x)
is a closed convex subset of C;

(b) h: X > R is a lower semi-continuous and convex function;

(c) T:X-2F is lower semi-continuous from line segments in X
to the a{F, E)-topology on F such that for each yeX, the set
{x € Xiinf, .,y Re<w, y — x> + h(y) — h(x) > 0} contains the set
{xeX:sup, . Redu, y— x>+ h(y)—h(x)>0};

(d) there exists a family {X(z):z€ X} of nonempty compact convex
subsets of X such that for each z€ X and for each y e X\S(z), there exists
an xeco(X(z)u {y}) for which sup, . 7o Re{u, y— x>+ h(y)— h(x)>0.

Then there exists an y € C such that

(i) 7eS(p)and
(i) sup,ery Redw, y—x) <h(x)—h(p), for all xe X.
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Proof. Let zeX. Since S(z) is nonempty compact, by (d) and
Theorem 3, there exists z* € S(z) such that

sup R{w, z*¥ — x>+ h(z*)—h(x)<0 forall xeX;
we T(z*)
thus the set {z* € S(z): sup, . x SUP, c r(z») RECW, 2% — x> + h(z*) — h(x) <0}
is nonempty for each ze X.
Define F: X — 2% by

F(z)={z*eS(z):sup sup Relw,z*—x)+h(z*)—h(x)<0}

xeX weT(z*)

for each ze X. For any given ze X, by Lemma 3, the set {z*e S(z):
SUP,, ¢ x SUP, c r(x) RECH, 2*¥ — x> + h(z*) —h(x) <0} } is contained in the set
{z* € S(z): Sup, c x SUP,c 7-+) Re{W, 2% — x> + h(z*) — h(x) < 0}. Conver-
sely, if z*e S(z) is such that sup, ., sup, 7.+ Re{w, z* —x) + h(z*) —
h(x) <0, then inf, 7+, Re{w, z* —x) + h(z*) — h(x) <O for all xe X so
that by (c) sup,cr Reu, z* — x> + h(z*) — h(x) <0 for all xeX. This
shows that the set {z*e S(z):sup, .y Sup,c . Redu, z* — x> + h(z*)—
h(x) <0} also contains the set {z* € S(z): sup, . x Sup,,c 7-+) Re<w, z*¥ —x)
+ h(z*)— h(x) < 0}. Therefore

F(z)={z*e S(z):sup sup [Redu,z*—x) +h(z*)—h(x)] <0}

xe X ue T(x)

which is closed convex by (b) and the assumption that for each
feF, x— {f, x> is continuous on X. Since § is upper semi-continuous and
the map z* — sup, . x SUP, c 7o) ReCu, 2% — x ) + A(z*) — h(x) is lower semi-
continuous on X, we conclude that the graph of Fis closed in X x X. There-
fore by Lemma 2, F is also upper semi-continuous. Since F(z)c S(z)= C
for each z e X, by Himmelberg’s fixed point theorem [8, Theorem 2], there
exists y€ X such that j e F(7); that is,

(i) 7eS(y) and
(i) sup,.c ) Redw, y—x) <h(x)—h(y) for all xe X.
As F(y)< C, ye C. This completes the proof. [}

THEOREM 6. Let E be a locally convex Hausdorff topological vector
space over @, X be a nonempty convex subset of E, C be a nonempty com-
pact subset of X, F be a vector space over ®, and { , >: FXE—>® be a
bilinear functional such that for each f € F, the map x — {f, x) is continuous
on X. Suppose

(a) S: X 2% is upper semi-continuous such that for each x € X, S(x)
is a closed convex subset of C;
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(b) h: X >R is lower semi-continuous and convex;

(c) T:X—-2F is lower semi-continuous from line segments in X
to the olF, E>-topology on F such that for each yeX, the set
{x € X:inf, .7, Re<w, y — x> + h(y) — h(x) > O} contains the set
{xeX:sup,. . Reu, y—x) +h(y)—h(x)>0}.

Then there exists y € C such that

(i) peS(y) and

(i) sup, .y Redw, 3 — x> <h(x)—h(¥) for all xe S()).
Proof. For each ze X, define

F(z)={z*€S(z): sup sup Re{w,z*—x)+h(z*)—h(x)<0}.

xeS(z) we T(z*)

Since S(z) is compact convex, by taking X = X, = K= S(z) in Theorem 3,
there exists z* € S(z) such that

sup Redw, z*—x>+h(z*)—h(x)<0 forall xeS(z),

we T(z*)

so that F(z) is nonempty. Thus F:X —2* Similar to the proof of
Theorem 5, by (b), (c), and Lemma 3, for each ze X, the set {z*e
S(2):5UP es(zy SUPwe (o) [RECW, 2% —x > + h(z*)—h(z)] <0} coincides with
the set {z*e S(z): SUp,c s:) SUP, e 1(x) [RECH, 2* — XD + h(z*) — h(x)] <0}
so that each F(z) is closed convex as the map

z* > sup sup [Redu, z*— x>+ h(z*)—h(x)]

xe S(z) ue T(x)

is lower semi-continuous and convex. Since S is upper semi-continuous,
it is easy to see that the graph of F is closed in X x X. Therefore, by
Lemma 2, F is also upper semi-continuous. Since F(z) < C for each ze X,
by Himmelberg’s fixed point theorem {8, Theorem 2], there exists ye C
such that y € F(7); that is

(i) yeS(y)and
(1) sup,.r Redw, §—x) <h(x)—h(P) for all xe S(y).

Remark 1. We remark here that while Theorem 6 is proved in a more
general setting, it also generalizes Theorems 1 and 2 of Shih-Tan in [11]
in several ways: (i) the set X need not be compact; (ii) the interacting set
2, in Theorem 1 of [I11] is no longer required to be open; (iii) the
continuity conditions on § and T are much weaker than those assumed in
Theorem 2 of [11].



508 DING AND TAN

Remark 2. We would like to point out the difference between the

conclusions of Theorem 5 and Theorem 6: In Theorem 3, the variational

n

equality holds for all xe X while in Theorem 6, the variational inequality

holds for all x e S(§).

Remark 3. Himmelberg’s fixed point theorem can be recovered from

Theorem 5 or Theorem 6 by taking /=0 and T'=0.

[ 3]

13.

14.

15.
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