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A very general minimax inequality is first established. Three generalized varia- 
tional inequalities are then derived, which improve those obtained by Tan and 
Browder. By applying a fixed point theorem of Himmelberg, two generalized 
quasi-variational inequalities are also proved, one of which generalizes those of 
Shih-Tan to the non-compact case with much weaker hypotheses and in a more 
general setting. 0 1990 Academic Press, Inc. 

1. INTRODUCTION 

Throughout this paper, @ denotes either the real field OB or the complex 
field @. For a nonempty set Y, 2’ will denote the family of all nonempty 
subsets of Y. Let E and F be vector spaces over CD, ( , ): F x E + Q, be a 
bilinear functional, and X be a nonempty subset of E. If S: X+ 2X and 
T: X+ 2F, the generalized quasi-variational inequality problem for the pair 
(S, T) is to find 3 E X satisfying the following properties: 

(i) 3 E S(g) and 
(ii) inf,, r(B) Re(w, p-x)<0 for all xoS(F). 

In this paper, we fist establish a very general minimax inequality, then 
we improve some generalized variational inequalities of Tan [ 15, 
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Theorems 3 and 51 and of Browder [4, Theorem 61. Next, by applying a 
fixed point theorem of Himmelberg [S, Theorem 23, we prove two exist- 
ence theorems on solutions of the generalized quasi-variational inequality 
problem, one of which improves those of Shih-Tan [ 11, Theorems 1 and 
21 to the non-compact case with much weaker hypotheses. 

2. PRELIMINARIES 

Let E and F be two vector spaces over @, and ( , ): F x E + @ be a 
bilinear functional. For each x0 E E, each nonempty subset A of E and 
E > 0, let 

~(xo;d:={Y~I;: I(Y,Xo)l<E}, 
l&4;&) := {yEF: sup I(y, x)1 <&}. 

XEA 

Let (T( F, E) be the topology on F generated by the family { W(x; E): x E E 
and E > 0} as a subbase for the neighborhood system at 0. If E is a 
topological vector space, let 6( F, E) be the topology on F generated by 
the family { U(A; E): A is a nonempty compact subset of E and E > 0) as a 
base for the neighborhood system at 0. We note then, F when equipped 
with the topology o(F, E) or the topology 6(F, E), becomes a locally 
convex topological vector space but not necessarily Hausdorff. If X is a 
nonempty subset of E, then a map T: X + 2F is monotone (with respect to 
the bilinear functional ( , )) f f i or any x,y~X,u~T(x), and WET(~), 
Re(w-u, y--x)20. A subset C of E is said to be a(E, F)-compact if C 
is compact in the a(E, F)-topology. If X is a subset of E, the function 
h: X + [w is said to be c( E, F)-lower semi-continuous if h is lower semi- 
continuous when X is equipped with the relative (r( E, F)-topology. If B is 
a subset of a vector space, co(B) will denote the convex hull of B. If X and 
Y are two nonempty sets and F: X+ 2’, then the graph of F is the set 
((x, y)~Xx y: y~F(x)}. 

The following result is essentially Lemma 2 of Shih-Tan in [14] and its 
proof is thus omitted. 

LEMMA 1. Let E and F be two topological vector spaces over @ and 
( , >: F x E + @ be a bilinear functional. Let X be a nonempty subset of E 
and T: X --+ 2F be an upper semi-continuous map such that for each x E X, 
T(x) is compact. Let $: Xx X + R be defined by 

W, ~):=~jnnf~,Re(w,~--x). 
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If ( , ) is continuous on compact subsets of F x X, then for each fixed 
x E X, the map y -+ $(x, y) is a lower semi-continuous function of y on A for 
each nonempty compact subset A of X. 

The following result can be found in [2, Theorem 1.1.1, p. 411; as 
Hausdorff was not needed in its proof, it is omitted in the following 
statement. 

LEMMA 2. Let X and Y be topological spaces, F, G: X + 2’ be such that 
F(x) n G(x) # 0 for each x E X. Suppose that (i) F is upper semi-continuous 
at x0 E X, (ii) F(x,) is compact, and (iii) the graph qf G is closed. Then the 
map Fn G: x -+ F(x) n G(x) is upper semi-continuous at x0. 

Next we prove the following: 

LEMMA 3. Let E be a topological vector space over @, F be a vector 
space over @, and ( , >: F x E + @ be a bilinear functional. Let X be a non- 
empty convex subset of E, h: X -+ R be a convex function, and T: X + 2F be 
lower semi-continuous along line segments in X to the a(F, E)-topology on 
F. If j E X, then the inequality 

sup Re(u,+x)<h(x)-h(j) forall xeX 
u E T(x) 

implies the inequality 

sup Re(w, y--x)<h(x)-h(j), for all x E X. 
)I’E F(j) 

Proof Fix XEX. For each tE[O, 11, let x,=tx+(l-t)j=j- 
t(j - x), then x, E X so that supuc rCx,j Re(u, j-x,) Q h(x,) -h(j) for all 
tE[O, 1];thusforallt~[O,1],t~supuET~x,~Re(u,~-x)~h(tx+(1-t)~) 
-h(j)< th(x)+ (1 -t) h(y)-h(j)= t[h(x)-h(y)]. Hence 

sup Re(u, j-x)<h(x)-h(j) for all t E (0, 11. (*I 
UE m,) 

Let w0 E T(g) be arbitrarily fixed. For each E > 0, let 

U(w,)= {weI? l(w-w,, ~-x)1 <E}, 

then U(w,) is an rr( F, E)-open neighborhood of w,,. As U(w,) n T(j) # 0 
and T is lower semi-continuous on L = (x,: t E [0, l] >, there exists an 
open neighborhood N of j in L such that U(w,) n T(y) # fa for all y E N. 
Since X,-P? as t-+0+, there exists 6 E (0, 1) such that X,E N for all 

409/148.'2-16 
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t E (0, 6). Choose any t E (0, 6) and u E U(w,) n T(x,), then we have 
I(+,-U, j-x)1 <F. Thus 

Re(w,, j-x)<Re(u, j-x)+& 

G h(x) - h(P) + E, by (*I. 

As E >O is arbitrary, Re(w,, j-x) <h(x)-h(j). As W,,E T(j) is also 
arbitrary, we have 

sup Re(w, j-x)<h(x)-h(j) for all xEX. 
WE T(j) 

This completes the proof. 1 

3. A MINIMAX INEQUALITY 

The celebrated 1961 Fan’s Lemma [S, Lemma 11, which is an infinite 
dimensional generalization of the classical Knaster-Kuratowski- 
Mazurkiewicz theorem [9], asserts the following: 

THEOREM B. Let X be an arbitrary set in a topological vector space Y. 
To each x E X, let a closed set F(x) in Y be given such that the following two 
conditions are satisfied: 

(i) The convex hull of any finite subset {x,, . . . . x,} of X is contained 
in UY= 1 t;(Xi), 

(ii) F(x) is compact for at least one XE X. 

Then flxExF(x) + 0. 

We remark here that in Fan’s proof of the above result, the underlying 
topological vector space Y need not be Hausdorff We shall now establish 
the following minimax inequality: 

THEOREM 1. Let X be a nonempty convex set in a topological vector 
space E. Let q5 and II/ be two extended real-valued functions on Xx X having 
the following properties: 

(a) $(x,x)<Ofor allxEX; 

(b) for each fixed x E X, 4(x, y) is a lower semi-continuous function of 

y on A for each nonempty compact subset A of X; 

(c) for each fixed y E X, the set {xe X: $(x, y) > 0} contains the 
convex hull of the set {x E X: 4(x, y) > O}; 
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(d) there exist a nonempty compact convex subset X0 of X and a non- 
empty compact subset K of X such that for each y E X\K, there exists a point 
x~co(X~u {y}) with 4(x, y)>O. 

Then there exists a point Jo K such that 4(x, 9) ~0 for all XE X. 

Proqf: For each x E X, let 

K(x)= {y~K:$(x, y)<O}. 

By (b), K(x) is closed in K for each x E X. We shall show that the family 
(K(x): x E X} has the finite intersection property. Indeed, let xi, . . . . x, E X 
be given. Let 

Crco(X,u {Xl, . ..) x,)), 

then C is a compact convex subset of X. For each XE C, let 

Q(x)= (YEC:qf& y)<O). 

Then we have the following: 

(i) For each x E C, Q(x) is nonempty since x E @J(X) by (a) and (c) 
and is closed in C by (b). 

(ii) 0: C -+ 2= has the property that the convex hull of every finite 
subset { u1 , . . . . un} of C is contained in the corresponding union u:‘= I @(ui). 

If this were false, there exist {ui, . . . . u,,> c C, c~i, . . . . LY, > 0 with z:= I CQ = 1 
such that x7= I CY~U~$ Ur=, @(ui); that is, #(ui, Cy= I UjUj) >O for all i= 
1 , . . . . n. By (c), it would imply I+Q~= r aiui, CT= I ujuj) > 0 which con- 
tradicts (a). Thus by Theorem B, we have n,, c Q(x) # 0; that is, there 
exists j E C with 4(x, j) d 0 for all x E C. By (d), we must have j E K so 
that j E fly= i K(xi). This shows that {K(x): XE X} is a family of closed 
subsets of K which has the finite intersection property. By the compactness 
ofK, n,~,K(x)#@.Takeanyj~n~~,K(x),thenj~Kand~(x,j)QO 
for all x E X. i 

The above result slightly improves a minimax inequality of Bae-Kim-- 
Tan [3, Theorem l] and generalizes a minimax inequality of Shih-Tan 
[13, Theorem 31, both in turn generalize the minimax inequalities of 
Fan [7, Theorem 6; 6, Theorem 11, Tan [ 15, Theorem 11, and Allen 
[ 1, Theorem 11, etc. We emphasize here again that the topological vector 
space E in Theorem 1 is not required to be Hausdorff, as should be the 
case for all minimax inequalities mentioned above. 

Equivalent forms (i.e., fixed point version, geometric form) of Theorem 1 
similar to those in [ 121 can be likewise stated and proved and are omitted 
here. 
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4. GENERALIZED VARIATIONAL INEQUALITIES 

We shall first prove the following generalized variational inequalities: 

THEOREM 2. Let E be a topological vector space over Cp, F be a vector 
space over CD, X be a nonempty convex subset of E, and ( , >: F x E -+ @ be 
a bilinear functional. Suppose 

(a) h: X -+ iw is a o(E, F)-lower semi-continuous and convex function. 
(b) T: X+2F is lower semi-continuous along line segments in X 

to the a(F, E)-topology on F such that for each ye X, the set 
(x E X: inf,.TCrJ Re(w, y - x) + h(y) - h(x) > 0) contains the set 
I--X: suPUEr(,) Re(u, y-x)+h(y)-h(x)>O}. 

(c) There exist a nonempty a(E, F)-compact and convex subset X,, of 
X and a nonempty a(E, F)-compact subset K of X such that for each 
y~x\K, there is x~co(X~u {y]) with supllerCxj Re(u, y-x)+h(y)- 
h(x) > 0. 

Then there exists a point j E K uch that 

sup Re(w, $-x><h(x)-h(y), for all x E X. 
WE T(j) 

Proof Define~,$:XxX+Ru{+co,-co) by 

46, Y)= sup Wu, Y-x)+hb-h(x), 
UE T(x) 

$(x3 Y) = w,flfS,,, Re(w Y-X> + h(y) -h(x). 

Then we have the following properties: 

(i) It/(x, x) = 0 for all XE X. 
(ii) For each fixed XE X, y + 4(x, y) is a a(& F)-lower semi- 

continuous function on X. 
(iii) For each fixed YE X, it is easy to see that the set 

{x~X:inf,~,,, Re(w,y-x)+h(y)-k(x)>O} is convex so that by 
hypothesis the set (x E X ti(x, y) > 0} contains the convex hull of the set 
{XEX fj(x, y)>O}. 

(iv) For each y E X\K, there exists XECO(X~ u (y}) such that 
supue TCxj Re(u, y -x) + h(y) - h(x) > 0 so that 4(x, y) > 0. 

Now equip E with the o(E, F)-topology, we see that all hypothesis of 
Theorem 1 are satisfied so that there exists $ E K such that +4(x, j) 6 0 for 
all XE X; that is, 

sup Re(u, P-x)+h(y)-h(x)<0 for all x E X. 
UE T(x) 
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By Lemma 3, we have 

sup Re(w, j-x)+/r($)-h(x)<0 for all XEX. 1 
WE T(j) 

We note that if T: X+ 2F is monotone with respect to the bilinear func- 
tional ( , ), then for each y E X, the set {x E X: inf,, TCYj Re( w, y - x ) + 
h(y)-h(x)>O} contains the set (x~X:sup~~~~~,Re(u,y--x)+h(y)- 
h(x) >O>. Thus Theorem 2 generalizes Theorem 5 and hence also 
Theorem 3 (by taking h z 0) in [lS]. We shall point out here that in 
stating Theorem 5 in [15], the assumption that “h: X-t iF&’ is a weakly 
lower semi-continuous convex function” was inadvertently mis-stated as 
“h: X-t Iw is a lower semi-continuous, convex function.” 

By little modification in the proof of Theorem 2, we have the following: 

THEOREM 3. Let E be a topological vector space over CD, F be a vector 
space over @, X be a nonempty convex subset of E, and ( , ): Fx E+ @ 
be a bilinear functional such that for each f E F, the map x H (f, x> is 
continuous on X. Suppose 

(a) h: X + [w is a lower semi-continuous and convex function. 

(b) T:X+2F is lower semi-continuous along line segments in X 
to the o( F, E)-topology on F such that for each y E X, the set 
{x E X: infw.,,, Re(w, y - x) + h(y) - h(x) > O> contains the set 
i-=x: SUP,ET(X) Re(u, y-x)+h(y)-h(x)>O). 

(c) There exist a nonempty compact convex subset X0 of X and a 
nonempty compact subset K of X such that for each ye X\K, there is 
x~co(X~u {y}) with sup,,,,,Re(u, y-x)+h(y)-h(x)>O. 

Then there exists a point y E K such that 

sup Re(w,y-x)<h(x)-h(j) forall XEX. 
WE T(j) 

While the map T in Theorems 2 and 3 is assumed to be lower semi-con- 
tinuous and monotone type, we shall give another generalized variational 
inequality below where T is assumed to be upper semi-continuous: 

THEOREM 4. Let E be a topological vector space over @, X be a non- 
empty convex subset of E, F be a vector space over @, and ( , ): F x E-P @ 
be a bilinear functional such that for each f E F, XH (f, x) is continuous on 
X. Equip F with the 6(F, E)-topology. Suppose 

(a) h: X + [w is a lower semi-continuous convex function. 

(b) T: X + 2F is upper semi-continuous such that for each x E X, T(x) 
is compact convex. 
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(c) There exist a nonempty compact convex subset X0 of X and a non- 
empty compact subset K of X such that for each y E X\K, there exists x E 
coWou 1~)) with inL-(,, Re(w, y-x>+h(y)-h(x)>O. 

Then there exist 9 E K and 6 E T(g) such that 

Re(6, j-x)<h(x)-h(P) for all x E X. 

Proof: It is easy to see that ( , ) is continuous on compact subsets of 
FxX. Define $:XxX+lR by 

It/(x, ~)=~j~f~,Re(w Y-x)+h(y)-h(x). 

Then we have the following properties: 

(i) Clearly $(x, x) = 0 for all x E X. 
(ii) By Lemma 1, for each fixed x E X, y + 1+9(x, y) is a lower semi- 

continuous function of y on A for each nonempty compact subset A of X. 
(iii) It is easy to see that for each fixed YE X, the set 

{xEX: I&X, y)>O} is convex. 
(iv) By (c), for each YE X\K, there is x~co(X~u {y}) such that 

4% Y 1’ 0. 

Hence all hypotheses of Theorem 1 are satisfied (with 4 = $) so that 
there exists 5 E K such that +(x, 9) 6 0 for all x E X, i.e., 

sup inf (Re(w, $-x)+h(i)-h(x))<O. 
XE x WE T(j) 

(**I 

Definef:XxT(g)-,R by 

f(x, w)=Re(w, jj-x>+h(Q)-h(x), 

then for each fixed x E X, w H f(x, w) is an affine function which is con- 
tinuous on the compact convex set T(p) and for each fixed w E T(y), 
x ~f(x, w) is a concave function on the convex set X. Hence by Kneser’s 
minimax theorem [lo], we have 

inf sup (Re(w, $-x)+h(g)-h(x)) 
W’ET(.C) XEX 

= sup inf (Re(w, $-x)+h(j)-h(x)) 
xtx WET(p) 

< 0, by (**I. 
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Again, as 7’(j) is compact, there exists R E T(j) such that 

sup (Re(G, j-x) +h(j)-h(x)) 
xtx 

= inf sup (Re(w, j-x)+/r(j)-h(x)). 
WET(j) xsx 

Therefore 

Re(G, j-x)</i(x)-h(j) for all XE X. 1 

The above theorem generalizes a generalized variational inequality of 
Browder in [4, Theorem 63 to the non-compact case in a more general 
setting. 

5. GENERALIZED QUASI-VARIATIONAL INEQUALITIES 

In this section we shall prove two generalized quasi-variational 
inequalities. 

THEOREM 5. Let E be a locally convex Hausdorff topological vector 
space over @, F be a vector space over @, X be a nonempty convex subset 
of E, C be a nonempty compact subset of X, and ( , >: F x E -+ @ be a 
bilinear functional such that for each f E F, the map x H ( f, x) is continuous 
on X. Suppose 

(a) S: X+ 2x is upper semi-continuous such that for each x E X, S(x) 
is a closed convex subset of C; 

(b) h: X + R is a lower semi-continuous and convex function; 

(c) T:X-+2F is lower semi-continuous from line segments in X 
to the a( F, E)-topology on F such that for each y E X, the set 
{x E X: infwE,,, Re(w, y - x) + h(y) - h(x) > 0} contains the set 
Ix E x SUPue T(x) Re(u, y-x)+h(y)-h(x)>O}; 

(d) there exists a family {X( z z E X} of nonempty compact convex ): 
subsets of X such that for each z E X and for each y E X\S(z), there exists 
an x~co(X(z)u{y})for which s~p,,~~~,Re(u, y-x)+h(y)-h(x)>O. 

Then there exists an j E C such that 

(i) j E S(j) and 

(ii) SUP,,~(~) Re(w, y-x)<h(x)-h(j), for all XGX. 
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Proof: Let ZE X. Since S(z) is nonempty compact, by (d) and 
Theorem 3, there exists z* E S(z) such that 

sup R(w,z*-x)+h(z*)-h(x)<0 for ail x E X, 
WE T(z’) 

thus theset {z* ES(Z): s~p,~~sup,,..~(~*) Re(w, z* -x) +h(z*)-h(x) 60) 
is nonempty for each ZEX. 

Define F X-+ 2”’ by 

F(z) = {z* Es(z): sup sup Re(w,z*-x)+h(z*)-h(x)<O) 
xtx WE T(;*) 

for each ZE X. For any given ZE X, by Lemma 3, the set {z* E S(z): 
~~p~~~~~p~~~~~,Re(u,z*-x)+h(z*)-h(x)60}} is containedin the set 
{z* E S(z): supXEX supWZE T(Z*j Re(w, z* - x) + h(z*) - h(x) < 0). Conver- 
sely, if zigs is such that ~up~~~~sup,~,~~(~*)Re(w, z*-x) +h(z*)- 
h(x) 6 0, then inf,, =(-*) Re(w,z*-x)+h(z*)-h(x)60 for all XEX so 
that by (4 SUPS,,,, Re(u,z*-x)+h(z*)-h(x),<0 for all XEX. This 
shows that the set (z* E S(z): sup,,* supUc r(XJ Re(u, z* -x) + h(z*) - 
h(x)<O0) also contains the set {z*ES(Z):SU~~~~SU~~,~~~~.~R~(~,~*-~) 
+ h(z*) -h(x) < 0). Therefore 

F(z)={z*~S(z):sup sup [Re(u,z*-x)+h(z*)-h(x)]<O} 
XEXU.eT(X) 

which is closed convex by (b) and the assumption that for each 
f E F, x + (f; x) is continuous on X. Since S is upper semi-continuous and 
the map z* -, supXEx su~,~~(.~) Re(u, z* - x) + h(z*) - h(x) is lower semi- 
continuous on X, we conclude that the graph of F is closed in Xx X. There- 
fore by Lemma 2, F is also upper semi-continuous. Since F(z) c S(z) c C 
for each z E X, by Himmelberg’s fixed point theorem [S, Theorem 21, there 
exists p E X such that j E F(p); that is, 

(i) j E S(g) and 

(ii) su~~,~ r(p) Re(w, j - x) i h(x) - h(j) for ail x E X. 

As F(p) c C, p E C. This completes the proof. 1 

THEOREM 6. Let E be a locally convex Hausdorff topological vector 
space over @, X be a nonempty convex subset of E, C be a nonempty com- 
pact subset of X, F be a vector space over @, and ( , >: F x E + @ be a 
bilinear functional such that for each f E F, the map x + (f, x > is continuous 
on X. Suppose 

(a) S: X--f 2x is upper semi-continuous such that for each x E X, S(x) 
is a closed convex subset of C; 
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(b) h: X -+ 54 is lower semi-continuous and convex; 
(c) T: X--+2F is lower semi-continuous from line segments in X 

to the a(F, E)-topology on F such that for each ye X, the set 
Ix E X: W.,,) Re(w, y - x) + h(y) - h(x) > 0} contains the set 
ixex: suP,,T(x) Re(u, y-x)+h(y)-h(x)>O}. 

Then there exists j E C such that 

(i) j E S(j) and 
(ii) ~up,~~(~~)Re(w, j-x)<h(x)-h(j)for all x~S(j). 

Proof: For each z E X, define 

F(z) = {z* E S(z): sup sup Re(w,z*-x)+h(z*)-h(x)<O}. 
XES(Z) we T(z*) 

Since S(z) is compact convex, by taking X= X0 = K z S(z) in Theorem 3, 
there exists z* E S(z) such that 

sup Re(w,z*-x)+h(z*)-h(x)<0 for all x E S(z), 
WE T-(2*) 

so that F(z) is nonempty. Thus F: X+2x. Similar to the proof of 
Theorem 5, by (b), (c), and Lemma 3, for each ZE X, the set (z* E 
S(z): suPxcs(r) sup,,,,*, [Re(w z* -x) +h(z*)-h(z)] < 0} coincides with 
the set {z* E S(z): SUP,~~(~) sup,,,,, [Re(u, z* -x) + h(z*)- h(x)] GO} 
so that each F(z) is closed convex as the map 

z* + sup sup [Re(u, z* -x>+h(z*)-h(x)] 
xeS(z) ucT(x) 

is lower semi-continuous and convex. Since S is upper semi-continuous, 
it is easy to see that the graph of F is closed in Xx X. Therefore, by 
Lemma 2, F is also upper semi-continuous. Since F(z) c C for each z E X, 
by Himmelberg’s fixed point theorem [S, Theorem 21, there exists j E C 
such that j E F(j); that is 

(i) PE S(j) and 

(4 sup,, T(F) Re(w, j-x)<h(x)-h(E) for all x~S(j). m 

Remark 1. We remark here that while Theorem 6 is proved in a more 
general setting, it also generalizes Theorems 1 and 2 of Shih-Tan in [ 111 
in several ways: (i) the set X need not be compact; (ii) the interacting set 
C, in Theorem 1 of [11] is no longer required to be open; (iii) the 
continuity conditions on S and T are much weaker than those assumed in 
Theorem 2 of [ll]. 
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Remark 2. We would like to point out the difference between the 
conclusions of Theorem 5 and Theorem 6: In Theorem 5, the variational 
inequality holds for all x E X while in Theorem 6, the variational inequality 
holds for all x E S(p). 

Remark 3. Himmelberg’s fixed point theorem can be recovered from 
Theorem 5 or Theorem 6 by taking h = 0 and T 3 0. 
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