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Abstract

This paper deals with the problem of determining of an unknown coefficient in an inverse boundary
value problem. Using a nonconstant overspecified data, it has been shown that the solution to this
inverse problem exists and is unique.
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1. Introduction

In this paper, we consider the problem of determining the unknown coeffifian}
which depends only on the functian(x, y) in the following elligtic inverse nonlinear
fourth order partial differential equation:

V2[div(D(w) gradw)] = ¢(x,y) in £, (1)
wheres2 is a bounded domain @t? with a sufficiently smooth boundapg2 consisting of
the union of the two arc8s21 andd £22 with the common endpointso, yo) and(x1, y1),
V2= % + % is a Laplace operator, ardis given piecewise-continuous functiong.
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Let s; andsy be the arclengths along21 and d£22 measured from the poirtrg, yo),
respectively. Or2, we assume that(x, y) satisfies the condition

diV(D(a)) gradw) = f(x,y), (2)
onads2q,
o(x,y) = f3(s1), (3)
while on thes2,,
o(x,y) = fi(s2), (4)
0
D(w(r.7) 5 (x.3) = f2(s2). (5)

wheren denotes the unit outward normal to the bound®@sy f, f1, f2, and f3 are given
continuous functions on their domains, abBdw) is a Lipschitz continuous function satis-
fying D(w) > Dg > 0, for some constan®g, w, andD(w) are unknown functions which
remain to be determined.

If D(w) is given, then the problem (1)—(4) would be a well-posed problem for the
functionw(x, y). For an unknown functiorD(w), we must therefore provide additional
information, namely (5) to provide a unique solution pdir(w), w) to the inverse prob-
lem (1)—(5).

If we determine a unique solution to the inverse problem (1)—(5), then we have obvious
physical meaning, which asserts that a thin plastic plate lies on the plastic support under a
loadg, D(w), the bending rigidity, and, deflection are given for any given boundary data
f. f1, f2, f3, and loady [9,11].

In many cases, the problem (1)—(5) may leewrs in theory of thin plate and fluid flow
problems. For example, iD(w) is a constant function, and = f1 = f3 =0, thenw in
the problem (1)—(4) will be the bending of the simply supported thin plate under gload
[9,11,14,20,21].

In the next section, we consider the inveeblem (1)—(5), and describes some ex-
istence and unigueness results for the solution phAiw), ) satisfying (1)—(5). The
coefficient D(w) will be determine in terms of, f, f1, f2, and f3. Some conclusion
are given in Section 3.

2. Existence and uniqueness

By demonstrating the following result, we will identify the functiadh(w), when
(D(w), w) is a solution to the inverse problem (1)—(5). For this purpose, we consider some
methods introduced by Cannon [2], Matsuzawa [1], DuChateau [18], Shidfar [5,10], and
Rundell [6,7]. Now, let us purpos¥ (x, y) = div(D(w) gradw), then equivalently, we have
to couple systems of problems

VZM(x,y) =q(x,y) in£, (6)
M(x,y)= f(x,y) onas2, (7)
and
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div[D(w(x, y)) grade(x, y)] = M(x,y) in £, (8)
filx,y) if (x,y) €382,

o,y =: S ’ (©)
f3lx,y) if (x,y) €982,
9

D(w(r.y) 5 (x.3) = falx.y) 0NIS2 (10)

The solution of the problem (6)—(7), following the argument [12] and using Green’s
second formula yields

0G
M(x,y>=// (&, i x. V)q (€. m) d dn + f Fotas, (11)
2 082

whereG is Green’s function for Laplace equation §& subject to Dirichlet condition on
982, that is

VZG(x,y: 6, m)=8(x —& y—n) ing,
Gx,y;€E,7)=0 ong,
whereé is Dirac delta function.
Now, using the transformation
S
Tp(s) = / D(n)dn, s>s0>=0, sgis aconstant numbger
50

which was used by Cannon [2], Shidfar [5], and Rundell [7].

The problem (8)—(10) reduces to one with the unknown coefficient in divergence form.
Note thatT},(s) = D(s) > Do > 0, so that'p (s) is invertible. For any solutiom (x, y) of
the inverse problem (8)-(10),df(xo, yo)is a given nonnegative constant, then we define

o(x,)
V(x,y)=Tp(ox,y) = / D(n)dn. (12)
w(x0,y0)
By this transformatiorV (x, y) satisfies [2]
V2V(x,y)=M(x,y) ing, (13)

v
%(x, y) = fa(s2) 0nds2y, (14)

5oy Dandn ona,
Vix,y)= (15)

h{l@@ D(n)dny onas2,.

Now, we will assume that the Dirichlet boundary datada@ are compatible at the
points (xo, yo) and (x1, y1), that is, fi(xo, yo) = f3(xo, yo) and fi(x1, y1) = fa(x1, y1),
f1 and f3 are strictly monotone functions on the boundatsy, and 021, respectively,
rangg e, f1 C rangg; » and rangg,, f3 C range; o, where the ranges are not a single
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point. Then it will be shown that the problem (13)—(15) leads to the existence and unique-
ness of the coefficiend(w) and functionw (x, y). These ranges conditions may be guar-
anteed by invoking the maximum principle and suitable restricting the functing, f2,
and f3. We also assume that the functignis continuous 01 £2 and without loss of gener-
ality we may assume that the data have been normalizedfiifa, yo) = f3(x0, yo) = 0.

Now, by substituting expression (11) in the problem (13)—(15), and using Green'’s sec-
ond formula, we obtain

fa(s1)
8 *
V(x,y)://G*Mdédn—/G*fzdsz—i—/ 8Gn</ D(n)dn)dsl, (16)
Q

0822 0822 0

whereG*(&, n; x, y) is the Green'’s function for Laplace equationftnsubject to Dirichlet
conditions ord £21 and Neumann 062 [4,12,13].
Thus, from (18) and the overspecified condition (17), we find

f1(s2)

/ D(n)dn=//G*Mdsdn—/G*fzdsz
0 2

0822
. f3(s1)
+ / o ( / D(n)dn> ds1. (17)
0822 0
Putting
W://G*Mdédn— / G* fods3, (18)
2 9827

that is known and for functiop(s1) defined ord §21, define the mapping : 921 — 9522
by

*

G
K[o(s0)] = f -

0§21

@(s1) ds1. (19)

S=52

We may characterize K as a linear operator of Hilbert transform operator kind with the

kernel % which maps the solution of Laplace equationsinwith Dirichlet datag on
d£21 and homogeneous Neumann datajddep to its value ond §2,. Therefore from (12),
(17)—(19), we obtain

Tp(f1(s)) =¥ (s) + K[Tp(f3)]. (20)
Now from invertibility f1 and f3, we find
)
Tp(e) =¥ (f; 1) + f a—nG*(ffl(a), B) f3(f5H(B)) Tn(B) dB. (21)

0§21
or

Tp =¥ + K[Tp], (22)
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wherex = f1(s2) andB = f3(s1). To recover functiorfp from (20), it would be necessary
to make the assumption thgt and f3 are strictly monotone functions on their domains.
This requirement is typical of such recovery problems for partial differential equations that
contain an unknown function @#, this implies that the existence of the coefficiéhiw)
andw [3,8,15-17].

The unicity solution(D(w), w) to the inverse problem (1)—(5) may be obtained from
the following theorem.

Theorem. For any given piecewise-continuous functions ¢, f, fi, f2, and f3 such that
f1(x0, yo) = f3(x0, y0), f1(x1, y1) = fa(x1, y1), rangg e, f3 C rangg, f1, the functions
f1, f3 are strictly monotone, and the inverse problem (1)—(5) has a continuous solution
on £2, the solution pair (D (w), (w)) of the problem (1)—(5)is unique.

Proof. From (11), clearly the continuous solutiov (x, y) to the problem (6)—(7) is
unigue. Now, if(D1, w1) and (D2, wp) to be two pairs of solution of problem (8)—(10),
then by settingD = D1 — D> andV = Vi — V, whereVy = Tp, (w1) andVa = Tp, (w2),

in the problem (13)—(16), we obtain

V2V(x,y)=0 in%, (23)

v

8—(x, y)=0 onos2y, (24)
n

J&Y D@ydn onagy,
Vix,y)= 2 (25)
[ Dapdy onag2,.

Using the strong maximum principl&,(x, y) may not obtain its maximum in the inte-
rior of £2 or on the arcd$2o, whereaa—‘rf = 0. Therefore the maximum values ¥f(x, y)

on £2 must lie in the range of the condition (25) fare 3£21. This assumption implies that
the range oV (x, y) must lie in the range of valugs(x, y) defined by (25) fos, € 92.
The continuity of f1(s2) then demands that (x, y) must attain its maximum o0A£22,
which may only happen iV (x, y) is constant. Since both gf (s2) and f3(s1) may not be
constant functions. Thus, we conclude thdt:, y) = 0, and from (25) the functio® (w)
must be zero for anyg in the range off1. This completes the proof of the theorenta

3. Conclusion

If f1 and f3 are both strictly monotonic functions on their domains and continuous at
the end po_ints{xo, yo) and (x1, y;) that impli_es that rangg,, f1 = rangg, f3, we __find
that there is at most one solution for the inverse problem (1)—(5). The magpiisga
bounded positive operator from the space(di9£21) to C1(3£2,), in fact | K ||oo = 1,
where|| - || denotes the supremum operator norm.
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To see this, not that for any(s) continuous oro§21, K {g} represent the value of the
solution of Laplace equation on the segment of the boundaxy Where%—‘; =0.Asin
the proof of theorem, the maximum principle shows that [19]

supg, IKIs®II _
sup o, 18l

Equality follows from the fact that it = ¢© for some constang©@, thenK[¢©] =
¢@. This shows that if constant functions are admissible then 1 is in the spectrim of
that is,%, has a singularity of the order ofx — £)2+ (y — )2]~1. Due to the difference
in the arguments of the kernel of linear transformation (20)will not in general be a
symmetric operator.

Koo = (26)
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