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Single-molecule imaging revealed dynamic GPCR dimerization
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Single fluorescent-molecule video imaging and tracking in

living cells are revolutionizing our understanding of molecular

interactions in the plasma membrane and intracellular

membrane systems. They have revealed that molecular

interactions occur surprisingly dynamically on much shorter

time scales (�1 s) than those expected from the results by

conventional techniques, such as pull-down assays (minutes to

hours). Single-molecule imaging has unequivocally showed

that G-protein-coupled receptors (GPCRs) undergo dynamic

equilibrium between monomers and dimers, by enabling the

determination of the 2D monomer–dimer equilibrium constant,

the dimer dissociation rate constant (typically �10 s�1), and the

formation rate constant. Within one second, GPCRs typically

undergo several cycles of monomer and homo-dimer formation

with different partners.
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Introduction
Despite the importance of G-protein-coupled receptors

(GPCRs) in physiology, pharmacology, and medicine,

GPCR researchers had been, and at certain levels still

are, split into two camps; that is, the monomer camp and

the dimer camp. Many GPCR homo-dimer and hetero-

dimer descriptions have been published since the first

report on this subject [1], thus forming the dimer camp

[2–8]. However, the strengths of evidence for dimer

formation in living cells vary greatly, depending on the

employed method and experimental paradigm.

Open access under CC BY-NC-ND license.
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Meanwhile, many researchers reported that GPCR mono-

mers are functional [6,8–11], forming the monomer camp.

As pointed out by researchers in the monomer camp,

many GPCR dimers reported in the literature might

actually be artifacts due to overexpression, particularly

in the case of the class-A GPCRs [12,13].

In recent years, the debate has focused on whether class-

A GPCRs, which represent the majority of GPCRs (�85%

in human genome), are organized into homo-dimers or

even hetero-dimers or greater oligomers in the plasma

membrane and whether class-A GPCR dimers, if they

exist, play important roles in GPCR functions [6,8]. The

important results reported since 2002 are summarized in

Table 1a. Notably, Schertler and his colleagues were very

careful about making any statements on GPCR mono-

mers and dimers based on their crystallographic results

[14��,15].

Single fluorescent-molecule video imaging is probably

the most suitable method for determining whether

GPCRs form dimers, and, if they do, how long they last

before dissociating into monomers. With this technique,

in ideal cases, we can track all fluorescent GPCR mol-

ecules in the view field as they jostle around in the plasma

membrane, collide with each other, and perhaps bind to

each other and diffuse together for some time until they

become separated. In this article, we hope to show that

the application of single fluorescent-molecule video ima-

ging is now revolutionizing our views of the interactions

of GPCRs with each other and with other signaling

molecules.

Typical single fluorescent-molecule video
imaging of a GPCR
To conduct single fluorescent-molecule imaging for

detecting membrane protein dimer formation (and dis-

sociation), ideally each and every molecule is labeled with

a fluorescent dye molecule, precisely at a 1:1 molar ratio

(not simply an average dye-to-protein ratio of 1). This has

been accomplished previously [16��]. The use of mGFP

and other fluorescent proteins will not achieve these

conditions, because only some fractions of these tag

proteins become fluorescent, although the tag protein

is fused to the target protein at a precise 1:1 molar ratio

[17��]. In these cases, the researcher must determine the

actual percentages of the fluorescent fusion proteins

[17��] (also see Figure 5 and its related text in [18]).

First, we present the results of single fluorescent-mol-

ecule imaging of a GPCR, N-formyl peptide receptor

(FPR), a chemoattractant class-A GPCR, in living

CHO cells, which do not express endogenous FPR, at
www.sciencedirect.com
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Table 1

Dimers and greater oligomers of GPCRs reported since 2002.

Molecule Monomer Homo-dimer Hetero-dimer T (8C) Environment Observation

methods

Remarks Ref.

(a) Results obtained by conventional many-molecule experiments

Class A

b1 adrenergic aeceptor No Yes DU NA Crystal Crystallography Possibly linear aggregates.

Crystal but in a lipid

membrane-like environment

consisting of synthetic lipids

[38�]

Yes Yes Yes (b2-AR) DU Live cell BRET At 1-100x higher

concentrations than

physiological levels

[48]

b2 adrenergic aeceptor Yes Yes DU 25 Reconstituted

membrane

FRET Predominant homo-tetramers

found.

[42]

Yes Never at any

expression levels

DU DU Live cell BRET No homo-tetramers found [12]

Yes Yes Yes (b1-AR) DU Live cell BRET [48]

Yes Yes DU DU Live cell Time-resolved

FRET

[7]

No Yes (very long) DU 23 Live cell FCS No homo-tetramers found [45]

a1b adrenergic aeceptor No Yes (very long) DU 23 Live cell FCS No homo-tetramers found [45]

5-HT2C serotonin receptor No Yes (constitutive) DU 23 Live cell FCS No homo-tetramers found [46]

M1 muscarinic receptor No Yes (very long) DU 23 Live cell FCS No homo-tetramers found [45]

M2 muscarinic receptor No Yes (very long) DU 23 Live cell FCS No homo-tetramers found [45]

CXCR4 DU Yes (constitutive) Yes (CCR2)

(constitutive)

DU Live cell BRET [49]

CCR2 DU Yes (constitutive) Yes (CXCR4)

(constitutive)

DU Live cell BRET [49]

A1 Adenosine receptor Yes Yes DU DU Live cell Time-resolved FRET [7]

A2A Adenosine receptor DU DU Yes (D2R) (probably

constitutive)

DU Fixed cell for FRET,

Live cell for BRET

BRET and FRET [40]

Yes Yes (dominant,

probably constitutive)

Yes (D2R) DU Fixed cell for FRET,

Live cell for BRET

BRET, FRET and

Time-resolved FRET

[39]

D1 dopamine receptor No Yes (very long) DU 23 Live cell FCS No homo-tetramers [45]

D2 dopamine receptor DU Yes (constitutive) DU NA Electrophoresis Crosslinking and

electrophoresis

At least dimers [43]

DU Yes No DU Live cell BiFC, bimolecular

luminescence

complementation, and

chemical crosslinking

[44]

DU DU Yes (adenosine A2A)

(probably constitutive)

DU Fixed cell for FRET,

Live cell for BRET

BRET and FRET [40]

MT1 melatonin receptor DU Yes Yes (MT2R) 23-24 Live cell IP and BRET [47]

Rhodopsin Yes Yes DU NA Detergent complex Negative staining

EM with single

particle analysis

A dimer interacts with a single

transducin molecule

[25�]

V2 vasopressin receptor Yes Yes DU DU Live cell Time-resolved FRET [7]

V1a vasopressin receptor Yes Yes DU DU Live cell Time-resolved FRET [7]
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Table 1 (Continued )

Molecule Monomer Homo-dimer Hetero-dimer T (8C) Environment Observation

methods

Remarks Ref.

Thrombin receptor (protease

activated receptor 1)

Yes Yes DU DU Live cell Time-resolved FRET [7]

Class B/C

Pituitary adenylyl cyclase

activating polypeptide

receptor (class B)

DU Yes DU DU Live cell Time-resolved FRET [7]

GABAB1 receptor (Class C) DU DU Yes (GABAB2R) DU Live cell Time-resolved FRET Hetero-tetramers (GABAB1/2

R + GABAB1/2R) found

[7]

DU DU Yes (GABAB2R)

(stable)

DU Live cell Time-resolved FRET Hetero-tetramers (GABAB1/2

R + GABAB1/2R) found

[41]

GABAB2 receptor (Class C) DU Yes Yes (GABAB1R) DU Live cell Time-resolved FRET Hetero-tetramers (GABAB1/2

R + GABAB1/2R) found

[7]

DU DU Yes (GABAB1R)

(stable)

DU Live cell Time-resolved FRET Hetero-tetramers (GABAB1/2

R + GABAB1/2R) found

[41]

metabotropic glutamate

receptor 1 (mGluR1)

(class C)

DU Yes (constitutive) DU DU Live cell Time-resolved FRET No higher-order oligomers

found

[7]

(b) Results obtained by single fluorescent-molecule video imaging

Class A

b1 adrenergic receptor Yes Yes (5.1 s) DU 20.5 Live cell SFMI Homo-tetramers found [20��]

b2 adrenergic receptor Yes Yes (4.6 s) DU 20.5 Live cell SFMI Homo-tetramers found [20��]

M1 muscarinic receptor Yes Yes (0.7 s) No 23 Live cell SFMI [19]

N-formyl peptide receptor Yes Yes (0.1 s) NA 37 Live cell SFMI [17��]

Class B/C

GABAB1 receptor (Class C) No Yes Yes (GABAB2R) 20.5 Live cell SFMI Predominantly

hetero 2–8mers found

[20��]

GABAB2 receptor (Class C) Yes Yes Yes (GABAB1R) 20.5 Live cell SFMI Monomers � homo-tetramers

found

[20��]

Abbreviations: Yes, detected; No, not detected; DU, description unfound in the paper; NA, not applicable; BRET, bioluminescence resonance energy transfer; FRET, Förster (fluorescence) resonance

energy transfer; FCS, fluorescence correlation spectroscopy; BiFC, bimolecular fluorescence complementation; IP, immunoprecipitation.
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Figure 1

Current Opinion in Cell Biology
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FPR dimers continually form and disintegrate dynamically. A typical

image sequence (recorded at a 4-ms resolution, shown every 12 ms

[every third frame]), showing two diffusing D71A-FPR (bound by

Alexa488-formyl peptide) molecules and their trajectories. Two

molecules (orange and blue arrowheads and trajectories) first became

colocalized in the fourth frame (36 ms), diffused together for �120 ms

(indicated as colocalization; see green trajectories), and then separated

into monomers (dark blue and purple arrowheads and trajectories).

Figure 2

Current Opinion in Cell Biology

Schematic model, showing dynamic equilibrium of the class-A GPCR

between monomers and dimers. Class-A GPCRs continually form

dimers and disintegrate into monomers. In the case of FPR, the

equilibrium has been fully characterized: a 2D equilibrium constant of

3.6 copies/mm2; dissociation and 2D association rate constants of

11.0 s�1 and 3.1 [copies/mm2]�1s�1, respectively. Ligand binding did not

affect the dynamic monomer–dimer equilibrium.
37 8C [17��]. FPR was fluorescently labeled with the

formyl peptide (agonist) conjugated with the fluorescent

dye Alexa594 at a precise 1:1 ratio, and the ligands bound

to FPR molecules located on the bottom cell surface were

observed at the level of single molecules, using TIRF

illumination. Under standard conditions with 6 nM fluor-

escent formyl peptide in the medium, 73% of the cell

surface FPR molecules were bound by the fluorescent

ligand, as determined by a 2D–3D Scatchard plot,

based on single-molecule images. To avoid agonist-

induced concentration of FPR in the clathrin-coated

structures, a non-internalizable D71A-FPR mutant was

employed (D71A; separate experiments confirmed that
www.sciencedirect.com 
the dimerization properties are not affected by this

mutation or by agonist binding).

The still images in Figure 1 display a typical image

sequence, recorded at a rate of every 4 ms (250 Hz, �8

times faster than normal video rate), showing that D71A

molecules undergo diffusion and frequent colocalization

and codiffusion with other D71A molecules. The trajec-

tories are also shown in Figure 1. Each colocalization–
codiffusion event often lasts longer than the incidental

approaches, followed by separation into monomers. Vir-

tually all of the D71A molecules underwent diffusion as

well as frequent transient colocalization and dissociation

throughout the plasma membrane.

These results clearly illustrated that the monomer and

dimer camps were both right and wrong. The GPCRs

appear to rapidly interconvert between monomers and

dimers (Figure 2). Whether monomers and/or dimers are

related to GPCR functions, and how they are linked to

their functions, will be addressed in the next stage of the

research.

Each time a colocalization event was found, its duration

was measured at a time resolution of 4 ms, and the

distribution of colocalization durations was obtained.

The distribution could be fitted by a single exponential

decaying function, providing a lifetime of 91 ms, after

correction for the photobleaching lifetime and subtraction

of the incidental colocalization lifetime. These results

clearly showed that FPR exists in very dynamic equi-

librium between monomers and dimers, with a dimer

lifetime of 91 ms.
Current Opinion in Cell Biology 2014, 27:78–86
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Single fluorescent-molecule video imaging
studies of class-A GPCR dimers
Historically, the single GPCR-molecule imaging result

was first published by Hern et al. [19] with M1 muscarinic

acetylcholine receptor, a class-A GPCR, as the exper-

imental paradigm. Using two-color single molecule ima-

ging, where the receptor molecules were labeled with a

fluorescent antagonist covalently conjugated with green

and orange dyes, they clearly showed that the M1 muscar-

inic receptor molecules form dimers. More importantly,

they found that the receptor dimers quickly dissociate

into monomers, in a matter of 0.7 s, at 23 8C. This result

suggested that GPCR monomers and dimers are in equi-

librium in live cells, although the temperature was lower

and dimer formation must have been enhanced. Whether

the M1 receptor forms dimers in the absence of the

antagonist and/or after the antagonist binds is unknown.

Kasai et al. [17��] were the first to fully characterize the

monomer–dimer dynamic equilibrium of a GPCR (in fact,

the first for any membrane molecules), providing the 2D

equilibrium constant as well as the association and dis-

sociation rate constants. For this study, they developed a

single molecule methodology, termed superquantifica-

tion, to determine these values. FPR was employed as

an experimental paradigm (Figure 1) and observations

were performed at 37 8C.

Both before and after ligation, the dimer–monomer 2D

equilibrium remained unchanged, giving an equilibrium

constant of 3.6 copies/mm2, with dissociation and 2D

association rate constants of 11.0 s�1 and 3.1 [copies/

mm2]�1s�1, respectively. At physiological expression

levels of �2.1 FPR copies/mm2 (in neutrophils,

�6000 copies/cell), these parameters revealed that mono-

mers continually convert into dimers every 150 ms,

dimers dissociate into monomers in 91 ms (exponential

lifetime), and at any moment, 2500 and 3500 receptor

molecules participate in transient dimers and monomers,

respectively. Within one second, FPR molecules undergo

4 cycles of repeated monomer and homo-dimer formation

with different partners.

Although obtaining the monomer–dimer equilibrium

constant is difficult, it is important because firstly, the

very acquisition of the equilibrium constant represents

the eventual proof for the dynamic dimer–monomer

equilibrium in biologically meaningful time scales, sec-

ondly, different GPCR species can be compared in terms

of the monomer–dimer interconversion without the influ-

ence of the expression levels, and thirdly the actual

numbers (or number densities) of monomers and dimers

(at any given instance) can be calculated from the number

density of the GPCR expressed in the plasma membrane.

As such, the equilibrium and expression levels can be

separated, with the knowledge of the equilibrium con-

stant. Note that even under conditions (of higher GPCR
Current Opinion in Cell Biology 2014, 27:78–86 
expression levels) where the dimer population dominates,

the dimer lifetime will remain the same as that under the

conditions where dimers occur rarely (low expression

conditions). Under high expression conditions, only the

monomer lifetime will be shortened.

Longer dimer lifetimes of adrenergic
receptors?
These single-molecule studies were followed by an inves-

tigation by Calebiro et al. [20��], using other class-A

GPCRs, b1-adrenergic and b2-adrenergic receptors

(SNAP-tagged), in live cells at the rather low temperature

of 20.5 8C. They found that both b1-receptors and b2-

receptors form transient homo-dimers (hetero-dimers

were not examined) with lifetimes on the order of

�4 s. This value is about 40 times longer than that of

FPR (37 8C) and about 6 times longer than that of M1

receptor (23 8C). This might be caused by the lower

temperature employed in this study and/or induced by

the quite different molecular interactions in the dimeric

state of adrenergic receptors.

Interestingly, b2 receptors exhibited an apparently

greater tendency to form dimers than b1 receptors. Since

the dimer lifetimes for these receptors are similar to each

other, the authors argued that this difference in the

dimerization tendencies might result from factors such

as different efficiencies in converting a ‘collision’ (col-

lision frequency is simply determined by the diffusion

coefficient and local concentration of molecules) into an

interaction, distinct interactions with other proteins

capable of interfering with dimerization, or localizations

in different microdomains in the plasma membrane (such

as those found in cardiomyocytes [21], in addition to the

molecular differences between these two receptors. Ago-

nist stimulation did not alter receptor dimerization.

Dynamic monomer–dimer interconversion is
probably a general property of class-A GPCRs
As described, four class-A GPCRs, M1 receptor, FPR, and

b1-adrenergic and b2-adrenergic receptors, were found to

undergo dynamic equilibrium between monomers and

homo-dimers in live cells (Table 1b). In addition, the

class-A GPCR neurokinin-1 receptor is likely to undergo

monomer–dimer equilibrium [13]. Taken together, all of

the class-A GPCRs probably undergo dynamic equi-

librium between monomers and homo-dimers. It follows

then that, although GPCRs changed almost all of their

amino acids through evolution, they maintained their

physical property of forming transient homo-dimers, in

addition to the seven membrane spanning structure.

Therefore, dynamic homo-dimers must be crucial for

some GPCR functions.

However, the downstream signaling by the binding of

trimeric G proteins under resting and activated conditions

(Figure 3), and the downregulation of activated GPCRs
www.sciencedirect.com
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Figure 3

Trimeric G proteinTrimeric G protein

Ligand (Agonist)

?

?
?? ?

Current Opinion in Cell Biology

Schematic model, showing possible downstream signaling by (transient) interactions of the trimeric G protein with transient monomers and dimers of

GPCRs in dynamic equilibrium, both before and after agonist binding. The activation of trimeric G proteins by the GPCR may occur by way of GPCR

monomers and/or dimers, under resting (left) and/or activated (right) conditions. The interaction of trimeric G proteins with GPCRs might occur

transiently, on time scales shorter than the lifetimes of GPCR monomers and/or dimers. It may proceed with or without G-protein dissociation into a

and bg subunits (arc-like blue arrows and purple and red arrows, respectively). The latter event may happen even with non-activated GPCRs, because

the GPCRs’ downstream signals occur constitutively, although their intensities are low. How the downstream signaling is linked to the dynamic GPCR

monomer–dimer equilibrium will be the next key issue to resolve in the near future. Similarly, it will be extremely interesting to elucidate the down-

regulation of activated GPCRs by GPCR kinases and the subsequent binding of b-arrestin, which might be differentially induced or even blocked by

GPCR monomers or dimers. These interesting issues, which are difficult to clarify by conventional methods, will be effectively addressed by single

fluorescent-molecule video imaging.
by GPCR kinases and the subsequent binding of b-

arrestin, might be differentially induced or even blocked

by monomers or dimers [22–24,25�,26] (note that these

signaling events might also occur in endosomes [27��,28]).

These questions should be answered, and could be

addressed well by single fluorescent-molecule imaging

of GPCRs and their downstream molecules.

Five single fluorescent-molecule imaging
methods for detecting molecular binding and
interaction
The main problem with the single-molecule imaging

method is the signal-to-noise (background) ratio of the

observed spots of single molecules. It is generally less

than 3 (but greater than 2). Most of the background comes

from cellular autofluorescence or the fluorescent mol-

ecules added to the cell (the concentration of non-bound

fluorescent molecules should generally be lower than

20 nM). Another problem is the fluctuation of the back-

ground signal, which often appears like flickering weak-

intensity (or somewhat broadened) single-molecule spots.

Thus, single fluorescent molecules are generally on the

verge of detection. Therefore, if molecular binding is

found by more than one method, the result would become

more reliable. Furthermore, depending on the expression
www.sciencedirect.com 
levels, background, and molecules, the suitable methods

will differ.

Detection of colocalization of two single molecules for

two frames or longer

(Co-diffusion of two molecules would be better: if two

molecules are diffusing and are still colocalized in several

or many consecutive image frames, the results become

more trustworthy [16��,17��,29]). For determination of

single-color colocalization, see Kasai et al. [17��]. For

two-color single-molecule colocalization, see

[16��,17��,19,30]. Both the single-color and two-color

methods have similar accuracies [17��].

FRET detection at the level of single molecules

If FRET is detected between two single molecules for

several frames, with decreased (increased) signal intensity

of the donor (acceptor) spot (called anticorrelation), it is

likely that these two molecules are located within the

Förster distance, which is typically �5 nm; that is, they

are bound to each other [16��,31]. However, the failure of

FRET detection does not mean the absence of protein

binding. FRET is extremely sensitive to the donor–
acceptor distance, and depending on the locations of

the fluorescent molecules on the proteins, even if proteins
Current Opinion in Cell Biology 2014, 27:78–86
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are bound to each other, the fluorophores might be

located farther than the Förster distance.

Detection of bimolecular fluorescence complementation

(BiFC) at the level of single molecules

In BiFC, two potentially interacting proteins are fused to

N-terminal and C-terminal half-molecules of YFP (YN

and YC), respectively. If these fusion proteins interact,

YFP may be reconstituted [32,33]. Thus, if BiFC is

detected at the level of single molecules (appearing as

a single-molecule spot in the dark background), it would

lend strong support for protein binding [16��,17��]. These

BiFC spots turn on and off, indicating that the BiFC

dimers, formed by interactions of the target proteins and

the YN–YC interactions, are in dynamic equilibrium

between dimers and monomers (YFP formed by YN

and YC is unstable, and dissociates into YN and YC in

�160 ms), which is consistent with the reversible YN/YC

binding as described previously [34,35]. Many researchers

are confused about this point: they believe that the YN–
YC pair forms a stable complex. However, if this were

true, all of the target proteins would appear to interact

because the BiFC occurrence would be dominated by

extremely strong YN–YC interactions.

Observation of the distribution of signal intensities of

individual spots

In the histogram showing the distribution of signal inten-

sity of individual spots, a second peak might appear,

which is a strong indication of the presence of dimers

and greater oligomers [16��,17��].

Detecting two-step photobleaching of individual spots

The time-dependent changes in the fluorescent signal

intensity of each individual spot can reveal whether the

spot represents a monomer or a dimer (single-step or

double-step photobleaching, respectively) [36��]. This

method is quite suitable for immobile molecules, because

tracking their signal intensity is easier.

Conclusions
Single fluorescent-molecule video imaging is particularly

suited to observe molecular interactions in live cells, and

provides an unprecedented method for viewing dynamic

molecular interactions. It has revealed the dynamic equi-

librium between monomers and homo-dimers of GPCRs

(Table 1b). Furthermore, it enables superquantification

of the GPCR monomer–dimer equilibrium, determining

the equilibrium constant, and the dimer formation and

dissociation rate constants (Figures 1 and 2). It is an

extremely powerful method for examining whether the

molecular interactions suggested by in vitro experiments

actually occur in living cells and, if so, for determining

their dynamics.

The application of single fluorescent-molecule video

imaging is not limited to GPCRs. It will become one
Current Opinion in Cell Biology 2014, 27:78–86 
of the most critical methods for studying the interactions

of GPCRs with downstream signaling molecules, in-

cluding trimeric G proteins, GPCR kinases, and arrestins

(Figure 3). Thus far, it has revealed transient homo-

dimers of three glycosylphosphatidylinositol (GPI)-

anchored receptors, which are stabilized by raft-lipid

interactions [16��] (also see [37�]), and homo-dimers of

the ABC-A1 transporter when it is ready to transfer

cholesterol to the Apo-AI protein for nascent HDL for-

mation [36��]. It was also used to observe fluorescent

GTP binding to small G proteins, H-Ras and K-Ras, and

thus can detect not only the location and movement but

also the activation of single molecules [31].

The application of single fluorescent-molecule video

imaging to molecular behavior analyses in living cells

will make important contributions in various fields of cell

biology, and will revolutionize our view of molecular

interactions in living cells.
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