Study on the expression of Runx3 and TGF−β1 protein in the colonic tissue from rats with irritable bowel syndrome

Xiaoning Sun*, Cheng Lan

Department of Gastroenterology, Hainan Provincial People’s Hospital, Haikou 570311, China

ARTICLE INFO

Article history:
Received 29 November 2010
Received in revised form 27 December 2010
Accepted 15 January 2011
Available online 20 February 2011

Keywords:
Runx3 protein
TGF−β1 protein
Irritable bowel syndrome
Rats model
Immunohistochemistry

ABSTRACT

Objective: To investigate the expression of Runx3 and TGF−β1 protein in the colon from rats with irritable bowel syndrome (IBS). Methods: Rat model for IBS was established by intracolonic instillation with acetic acid and restraint stress methods, which was confirmed by determining the visceral sensitivity of the animals, including abdominal withdrawal reflex (AWR) score and the electronic behavior of the abdomen wall. The rats were randomly assigned into three groups: IBS1 group (restraint stress, n=25); IBS2 group (both instillation with acetic acid and restraint stress, n=25) and Control group (n=16). The colonic tissue samples were collected for histological study and the expression of Runx3 and TGF−β1 proteins were detected by immunohistochemistry. Meanwhile, the relationship of these two proteins was calculated. Results: Visceral hypersensitivity (AWR and abdominal electrical activity) was significantly enhanced in IBS1 and IBS2 groups than other groups. The colon tissue in all groups did not show any signs of inflammation. Furthermore, the expression of Runx3 and TGF−β1 protein in the colon from all groups show no significant difference (P>0.05), with no remarkable relevancy between each other (P>0.05). Conclusions: The rat model for IBS was successfully established. We did not find any significant changes in the expression of Runx3 and TGF−β1 protein in the colon tissue from IBS rats, suggesting that the quantitative changes may be not the way by which Runx3 and TGF−β1 protein play their roles in IBS. The accurate roles of Runx3 and TGF−β1 proteins in the pathogenesis of IBS remains to be further studied.

1. Introduction

Irritable bowel syndrome (IBS) is one kind of the dysfunctional intestinal diseases with the characteristic of bellyache, abdomen bulge accompanied with the changing defeating habit and stool character. The precise mechanism underlying this kind of disease remains unclear. Recently, more and more researchers accepted the concept that IBS is a syndrome of dynamical and sensory abnormity induced by multiple factors. It was reported that some patients with IBS show significant inflammation and/or immunological disturbance in their colons[1].

As a novel tumor-suppressor gene, Runx3 was recently proved to play an important role in the development process of immunocytes, especially that of T lymphocyte and dendritic cells[2,3]. Runx3 gene knockout mice show spontaneous inflammation in their colon with the characteristic of the abundant Th1 cells mixed with a few Th2 cells[4].

TGF−β1 could modulate the growth and differentiation of various immunocytes and non-immunocytes, thus could suppress the intestinal inflammation[2,3]. As an important transcription modulator in the signal transduction pathway of TGF−β, Runx3 could activate Smad protein and regulate the transcription of its target gene, thus exert its impact on the modulation of the development and differentiation of various cells including epithelial cells and immunocytes by TGF−β.

The current study aimed to investigate the expression of Runx3 and TGF−β1 proteins in the colon from rats with IBS,
as well as the roles of these proteins in the pathogenesis of this disease.

2. Material and methods

2.1. Animals and grouping

Adult male Wistar rats, weighting about 200 g, purchased from the Center for Diseases Control of Hunan Province, were randomly assigned into 4 groups: IBS\textsubscript{1} group (restraint stress, \(n=15\)); IBS\textsubscript{2} group (both instillation with acetic acid and restraint stress, \(n=15\)); Control group (\(n=15\)).

2.2. Main reagents and apparatus

Rabbit-anti-rat Runx3 multiple clone antibodies purchased from Tiancheng Corp, Shanghai, China; PV-6001 two-step Kit and DAB color-producing reagent Kit purchased from Zhongshan Corp, Beijing, China; multiple-tract biological signal gathering and processing system (Type: RM6280C) and electrode (needle inserting type) purchased from Chengdu Instrument Plant. 8F catheter (diameter 2 mm, sacculus max volume 3 mL, max diameter 2 cm) was used as the sacculus distending duct intra-colon and rectum purchased from Kangkang Medical Limited Corp, Zhejiang, China).

2.3. IBS Modeling

The rats in IBS\textsubscript{1} group were treated for IBS model with restraint stress as previously described by Williams et al\cite{5}. Briefly, the rats fasting for 24 h were anesthetized with aether and tied for 1 h (from their regaining consciousness). The animals in IBS\textsubscript{2} group were treated as described by La et al\cite{6}. The animals were filled with 1ml acetic acid (40 mL/L) by their anus followed by washing with 1 mL PBS (0.01 mol/L). 7 d later, they were treated as their counterparts in IBS\textsubscript{1} group.

2.4. Histological studies

After the determination of the electronic behavior of the abdomen wall’s muscle, the animals were sacrificed by injection of superfluous anesthetic, whose colonic tissues. After fixed in 10% formalin, the slices were studied under light microscope for their histological changes.

2.5. Immunohistochemistry studies

Immunohistochemistry EnVision two-stage method was utilized to detect the expression of Runx3 and TGF-\(\beta\)\textsubscript{1} in colon tissue. Briefly, the slices were treated as usual from dewax to washing followed by immersed in 3% \(\text{H}_2\text{O}_2\) for 10 min and washing in distilled water for three times. The primary antibodies (rabbit anti rat Runx3 and TGF-\(\beta\)\textsubscript{1} multiple clonal antibodies at working solution of 1:400 and 1:100 respectively) were used. PBS was taken to be the substitute for the two primary antibodies as the negative control. EnVision kit was bought from Dako Company. Antigens were repaired by microwaves in sodium citrate damping fluid (pH=6.0). The other procedures were operated strictly according to the manual.

The expression of Runx3 and TGF-\(\beta\)\textsubscript{1} in colon tissue was semi-quantitatively analyzed following the standard of both the percent of the positive cells and the degree of the stained cells as previously described by Yao et al\cite{9}. The percent of the positive cells less than 1% was scored as 0, 2\%–25\% as 1, 26\%–50\% as 2, 51\%–75\% as 3, more than 75\% as 4. For the degree of the staining, no staining was scored as 0, straw yellow as 1, palm yellow as 2, puce as 3. The total score was the percent multiplied by the staining degree ranging from 0 to 12. The total score of 0–1 was considered as negative(\(\text{I}\)), 2–4 as positive(\(\text{II}\)), 5–8 and 9–12 as strong positive(\(\text{III};\ \text{IV}\)).

2.6. Statistical analysis

SPSS 13.0 software was used for statistical analysis. Measurement data was expressed by mean \(\pm\) standard deviation, \(t\) tests was used for group comparison. Spearman correlation analysis was utilized to investigate the correlativity of Runx3 and TGF-\(\beta\)\textsubscript{1}. \(P<0.05\) was considered as being significant.

3. Results

3.1. Comparison of the abdomen wall muscle’s electronic behavior in various groups

Compared with their normal counterparts, the abdomen wall muscle’s electronic behavior of the rats from all three IBS groups increased significantly (\(P<0.05\)), suggesting that there was visceral sensation hypersensitivity in these rats. Unfortunately, no significant difference was observed among the three IBS groups (\(P>0.05\)) (Figure 1).
3.2. Pathological changes of the colon tissues from IBS rats.

Neither tissue damage nor infiltration of inflammatory cells was found in the mucosa membrane from both normal control and IBS groups (Figure 2).

3.3. Expression of Runx3 and TGF–β1 proteins in colon tissue

Runx3 and TGF–β1 protein were found expressed in the colon tissue from all groups (Table 1 & 2). Runx3 positive cells were mainly scattered among epithelium cells, gland cells and lamina propria cell, whose palm granule was located in the nucleus and sometimes in the plasma. The palm granule of TGF–β1 protein was detected in the plasma and cell membrane (Figure 3). Analyzed with Fisher definite probability method, the positive percents of the cells expressing Runx3 and TGF–β1 protein show no significant difference (P>0.05).

3.4. Correlativity of Runx3 and TGF–β1

Spearman correlation analysis was utilized to investigate the correlativity of Runx3 and TGF–β1. There was no significant correlation between the expression of Runx3 and TGF–β1 protein in colon tissue from IBS rats (Table 3, P>0.05).

4. Discussion

IBS is one kind of functional colonic diseases in which multiple and sophisticated factors are involved. The precise mechanism of this disease remains unclear, although a lot of studies suggest that it results from multiple factors such as the abnormal dynamics, the hypersensitive visceral sensation and the light inflammation. Recently, the interest was focused on the role of the intestinal inflammation in IBS[1,10]. Some proofs were reported such as increased mast cells, epithelial lymphocytes, CD3+ cells, CD25+ cells and microphages[11,12]. The intestinal inflammation underlying IBS may be associated with acute gastroenteritis and some genic factors[11,12].

In the current study, we firstly established the rat model for IBS with restraint stress and clysis with acetic acid[5]. Without any pathological changes in the colon from the rats in the restraint stress group, significant histological injury was observed, including edema, engorge and infiltrating inflammatory cells in the restraint stress plus clysis with acetic acid group. The rats in the two groups show the enhanced responsibility to the stimuli within rectum and colon.

As one of the cancer–suppressor genes and a member of the Runx framework region transcript factor family, Runx3 gene plays an important role in the process of functional differentiation of the T lymphocytes, especially cytotoxic
CD8+ T lymphocytes, which exert their protective role in the intestinal mucosal immune barrier against exogenous pathogens[2,14,15]. Runx3 gene also modulates the mucosal immunity by down-regulating Th1/Th2 type immune response[4]. Our results show no changes of the expression of Runx3 protein in the colon from IBS rats, suggesting that the role of Runx3 gene in IBS could be much more complex than expected previously.

Runx3 gene could induce the inhibitory effect of TGF-β1 on the mature process of the dendritic cells[16]. As a member of growth factor superfamily, TGF-β1, could participate in the pro-inflammation type IBS. In the current study, we did not find any remarkable pathological changes in the rectum and colon of the IBS rats. But we also did not find any abnormal expression of this kind of protein. Some authors reported that in the muscle layer from pro-inflammation type IBS, the expression of TGF-β1 significantly increased, which could be involved in the pathogenesis of this type of IBS. On the other hand, Gonsalkorale et al[12] reported unchanged TGF-β1 level in IBS, which was similar with our results. The point is that the quantity may not be parallel with the function. So the role of TGF-β1 remains further study. On the other hand, the data from the animals does not always agree with that from patients, which still remains to be studied.

Conflict of interest statement

We declare that we have no conflict of interest.

References

