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The distributions of saccadic reaction times (SRT) often deviate from unimodai normal 
distributions. An excess-mass procedure was used to detect peaks in 963 data sets containing 
90,927 reaction times from 170 subjects. About 55 % showed one, 30 % two, 12 % three and 3 % four 
peaks. According to their clustering along the reaction time scale the modes could be classified into 
express (90-120 msec), fast regular (135-170 msec) and slow regular (200-220 msec) modes. 
Among  the unimodal  distributions 29% had peaks in the range of the express mode and 46% had 
peaks in the range of  the fast regular mode. Therefore, 87 % of  the data sets support the notion of  
saccadic reaction time distributions being the superposition of  three modes. All experimental 
distributions were fitted by as many gamma distributions as determined by the excess-mass test. 
The significance of  the multimodality for saccade generation processes is discussed. © 1997 Elsevier 
Science Ltd. 
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INTRODUCTION 

Reaction time measurements have been used widely to 
understand certain sensory and/or motor functions. In 
particular, saccadic reaction times (SRT), i.e., the time 
between the onset of a target stimulus and the beginning 
of the saccade, have been studied extensively in 
oculomotor research and cognitive sciences. A common 
procedure is to measure a number of reaction times in one 
experimental condition (the control) and to compare 
these data with those obtained in another condition (the 
test). Usually, mean values and standard deviations are 
computed from each set of data and compared statisti- 
cally to evaluate whether or not they are significantly 
different. However, saccadic reaction times almost never 
form gaussian (normal) distributions. Positive skewness 
is often observed and makes it difficult to describe such 
data by calculating the mean and standard deviation, and 
to compare certain test values with the control values. 

Furthermore SRT-distributions can exhibit quite strong 
deviations from normal distributions by forming distinct 
peaks or modes. In some cases these modes can quite 
easily be identified by visual inspection of the SRT- 
distribution, because they occur sufficiently apart from 
each other. These observations have been reviewed by 
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Fischer & Weber (1993) and have been replicated 
recently by Nozawa et al. (1994). The interpretation of 
the reaction time data and their implications for the 
underlying brain functions critically depends on the 
existence of such modes. 

A conservative notion maintains that with changing 
experimental conditions a unimodal distribution would 
be shifted to lower or higher mean values, and two or 
more modes appear by chance rather than being the result 
of a systematic stochastic feature of the system producing 
the data. An alternative notion assumes that one or the 
other mode has more or less weight in the distribution 
depending on the experimental condition, but remaining 
essentially at the same position along the reaction-time 
scale. In extreme cases one mode can be replaced by 
another mode when conditions are changed, or two 
modes may merge into each other. 

Examples for multimodal SRT-distributions have been 
published by several authors in monkeys and in human 
subjects (Fischer & Boch, 1983; Fischer & Ramsperger, 
1984; Jiittner & Wolf, 1992; Munoz & Wurtz, 1992; 
Sommer & Schiller, 1992; Nothdurft & Parlitz, 1993; 
Rohrer & Sparks, 1993; Currie et al., 1993; Priori et al., 
1993; Matsue et al., 1994; Schiller & Lee, 1994; Tam & 
Ono, 1994). Other authors find multimodal distributions 
in some subjects but not in others (Reuter-Lorenz et al., 
1991). Nozawa et al. (1994) report that 23% of their 
subjects produced clearly separate modes and "many 
others did not have clearly defined modes but could still 
have come from a mixture of two distributions". Still 
other groups report problems in finding clear bimodal 
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distributions (Wenban-Smith & Findlay, 1991; Sereno & 
Holzman, 1993). The issue has become controversial 
with respect to the existence of a separate mode of 
express saccades in human subjects (Fischer & Weber, 
1993; Kingstone & Klein, 1993). 

While in the overlap task the fixation point remains 
present, when the target appears, it is turned off in the gap 
task some time (the gap duration) before target onset. 
Saslow was the first to use gap and overlap trials. He 
reported that under gap conditions saccadic reaction 
times are considerably shorter (about 140 msec) than 
under overlap conditions (about 200 msec) (Saslow, 
1967). This phenomenon is called the gap effect. When 
the gap experiment was repeated in monkeys (Fischer & 
Boch, 1983) and in human subjects (Fischer & Ram- 
sperger, 1984), the analysis of the reaction times on the 
basis of their distributions revealed a mode about 
100 msec, which became larger, when the gap duration 
was increased from 0 to 200 msec. When increasing the 
gap duration to 400 msec, this mode became smaller and 
the mode at about 150 msec increased (Weber et  al., 

1995; Weber & Fischer, 1995). 
Reuter-Lorenz et al. (1991) attributed the gap effect to 

a facilitation of premotor programming in the superior 
colliculus. Reulen (1984) attributed the latency reduction 
to facilitated sensory processing. A general shortcoming 
of his facilitation concept is that it cannot explain the 
occurrence of more than one mode in the latency 
distribution; neither can it account for the increase of 
SRT when increasing the gap duration from 200 to 
400 msec. 

A model for saccadic reaction time, which is based on 
the idea that the SRT includes the time consumption for 
the afferent and efferent processes (for example, relays in 
pathway) and central processes such as computation of 
the movement metrics, was presented by Rogal & Fischer 
(1986). 

The three-loop model proposed by Fischer (1987) is 
based on neurobiological findings. Fischer proposed that 
saccades are generated by three main pathways (loops) 
connecting the retina of the eye with the efferent eye 
movement generating system. Each loop is associated 
with a certain brain process that must be accomplished 
during saccade preparation, thus contributing to the 
reaction time. Saccades generated through the shortest 
loop are the express saccades (mean S R T = 1 0 0 -  
135 msec) forming the first peak. If two or three 
processes have to be completed after target onset fast 
regular saccades (140-180 msec) or slow regular sac- 
cades (above 200 msec) are obtained again forming 
separate peaks. Fischer et al. (1995) presented a 
computer simulation of the 3 loop model. It reproduced 
complex experimental reaction time distributions very 
similar to the experimental data by a simple neural 
network. 

Similar to the facilitation model (Reulen, 1984) 
Carpenter and Williams presented a model based on the 
idea that the presence of a target causes a signal in a 
decision unit that rises linearly until it reaches a fixed 

threshold (Carpenter & Williams, 1995). The proposed 
gaussian distribution of the slope leads to a SRT- 
distribution with positive skewness. Carpenter and 
Williams plotted the cumulative distribution of the data 
(overlap task) against the cumulative distribution of the 
model. This method is suitable for data presentation, 
because all data point form one straight line, if the 
assumptions of unimodality and the shape of the 
distribution are correct [see Chambers et al. (1983) for 
an introduction to quantile-quantile plots]. The results 
show that straight lines are only obtained in two segments 
with an "elbow" around 140 msec. The failure of the data 
points to form a single straight line indicates that the 
model assumption of only one mode was wrong. The 
conclusion of the presence of two modes, a small express 
mode and a large mode is compatible with the results of 
Fischer & Boch (1983) for monkeys and Fischer et al. 

(1993) for naive and young persons, and the results of this 
study. 

In this study we have used large numbers of 
distributions, each containing between 75 and 200 single 
reaction times. Saccades directed to the left and right side 
were analyzed separately, because many subjects were 
more or less asymmetric in performing the tasks. Data 
obtained in gap and overlap trials from naive and trained 
adult normal subjects were analyzed. The excess-mass 
procedure (Miiller & Sawitzki, 1991)was used for peak 
detection. This method determines the number and the 
position of different modes in the data. A superposition of 
corresponding gamma distributions with the number and 
position of modes taken from the excess-mass procedure 
was fitted to the data with a least square fitting procedure. 
Fit parameters were the weights, means and standard 
deviations of each mode. 

The results strongly support the view that the 
hypothesis of only one mode must be rejected in 45% 
of cases. The number of modes and their strengths depend 
on the subjects and the experimental conditions. This 
article also provides a statistical tool for handling 
multimodal distributions by describing them by a small 
set of numbers. 

METHODS 

Subjec t s  and  da tabase  

Altogether, 170 normal subjects contributed to the 
database of this study. Ten were adults (age 30-50 yr), 
who in advance performed the gap task (gap = 200 msec) 
until stable distributions were obtained. They are 
considered trained subjects in the sense of Fischer et al. 
(1984). All others were naive (untrained) with respect to 
the scientific purpose of the study and the saccade tasks 
used. Their age ranged from 20 to 62 yr. Each subject 
performed at least 75 trials in one session. In this way 963 
data sets containing 90,927 reaction times were collected 
and analyzed. 

Data  col lect ion 

All reaction time data were collected using the same 
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to the left or right in random order. The size of the white 
target was 0.2 deg × 0.2 deg, the red fixation point was 
0.1 deg × 0.1 deg in size. Both had a luminance of 50 
cd/m 2, while the green background luminance was 10 
cd/m z bright and 2 0 d e g x 1 5  deg in size. Viewing 
distance was 57 cm. 

Types o f  saccade tasks 

The subjects performed the gap task with a gap 
duration of 200 msec (unless otherwise stated) and the 
overlap task. The fixation period prior to target presenta- 
tion was 1.2sec. The targets remained visible for 
800 msec. The intertrial interval was 1 sec. Subjects 
were instructed to fixate the fixation point and to look at 
the target when it appeared. They were not encouraged to 
respond "as fast as possible". No feedback was given. 
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FIGURE 1. (a) The excess-mass is the sum of contributions from the 2- 
clusters, that is, the intervals where f(x) _> 2. (b) The maximal excess- 
mass difference measures the amount of mass to be moved to convert a 
bimodal distribution into a unimodal one. Here the gap between the 
peaks is filled and the unimodal function g is created when the 

shadowed region above 2 is moved to the left. 

methods described in detail earlier (Weber et al., 1995). 
The Iris Scalar system was used for recording the position 
of the left eye. Reaction times were determined off-line 
using a velocity criterion for detecting saccades. The 
latency was defined by the time the velocity reached 15% 
of its maximum in each detected saccade. Latency values 
below 80 msec were considered anticipatory by means of 
the occurrence of direction errors (Wenban-Smith & 
Findlay, 1991) and excluded from this analysis. 

Visual display 

All visual stimuli were generated on a RGB monitor 
using a high resolution graphic interface (Mirograph 
510). Target onset time was synchronized to the screen 
(frame rate 83 Hz) and the position of the target at the 
screen. All saccades were made to targets presented 4 deg 

STATISTICAL METHODS 

Suggest someone draws random numbers rt..rA from a 
bimodal distribution f. His estimate f of this distribution 
may by chance exhibit three or more modes. If the 
number of modes o f f  is unknown, a statistical method is 
necessary to decide how many modes of f are 
significant. 

The excess -mass  test 

The excess-mass test of Mtiller and Sawitzki was used 
for testing the distributions for multimodality (Miiller & 
Sawitzki, 1991). The idea is that a mode is present where 
an excess of probability mass is concentrated. The 
excess-mass E(2) measures the amount of probability 
mass exceeding level 2. Here the reaction times rl..rA are 
considered as realizations of random variables of an 
unknown distribution f and used to form the estimate f. 

An example is shown in Fig. l(a). There are two 
intervals wherefexceeds  the level A. Mfiller and Sawitzki 
call these intervals {x: f(x)_> 2} 2-clusters. As A 
increases, the 2-clusters concentrate on local maxima of 
f, and the amount of excess probability E(A) becomes 
smaller. If 2 decreases, the intervals become larger until 
they contact and fuse to one large interval. 

If the density f(x) has m A-clusters Ca • • Cm, the excess 
E(A) can be expressed as a sum over the different 
contributions: 

j = l  

The index m indicates the modality of the 2-clusters. 
Mtiller and Sawitzki choose An = max~ En+l(2) - E n ( 2 )  
as a test statistic of the excess-mass test for n-modality. It 
measures the minimal amount of probability mass that 
has to be moved in order to convert the (n + 1)modal 
distribution into an n-modal distribution. As shown in 
Fig. l(b) for a bimodal distribution f, the quantity A1 is 
half the total variation distance between f and the closest 
unimodal distribution g: 
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As a further example an analogous interpretation of A2 
1" yields A 2 = ~ t n f g l g  bimodal f - -  g. ~,~ 0.6 

Unfortunately, the distribution of the test statistic A is ,> 
unknown, and depends heavily on differential properties m_ 0.4 
of the underlying unimodal distribution. 

Considering the 2-clusters it is possible to gain o.2 
information about the position of the peak. Here the 
mean /x TM of the probability mass is used as peak o 
position: 

EM % XI(X)  

E s t i m a t i n g  t h e  n u m b e r  o f  m o d e s  

The distribution of the test-statistic A is simulated with 
a smooth bootstrap procedure. Assume the hypothesis is 
that the distribution consists of n modes. The idea is the 
same as in Efron & Tibshirani (1991), section 16.5. 
Contrary to the normal bootstrap procedure, where the 
observed data were resampled, the random numbers were 
drawn from the smooth n-modal estimate of the 
population. Here, the n-modal estimator is constructed 
with the n largest 2-clusters. 

A simulations study not presented here reveals that the 
results obtained for A do not vary when incrementing the 
number of values for ). above 35, opposite to the case 
when using less than 35 different values. Therefore the 2- 
clusters were computed for 35 different values of  2. 

Assume the measurements are q . .  ra and the 
question is whether the underlying distribution f has n 
modes. According to Efron, an n modal estimator o f f  is 
formed from the observed values r l . .  r A .  Data sets 
s l  . . SA consisting of realizations of random variables of 
this distribution f,, are generated, each has the same size A 
as the observed data set r . . . r A .  Then the value A,~I im is 
built in the same way for the simulated data s l  • • • SA as 
the value A,, for the real data r l  • . . r a .  A smaller value 
A~)ii" < A,, contradicts the assumption of n-modality in 
favor of the (n + 1)-modality. This method of reaching 
significance was proposed first by Silverman (1981). 

After simulating 100 data sets Sl  . . SA the fraction of 
simulations p,, is considered, w h e r e  mtsffn< m n. If this 
fraction p,, exceeds a given significance level, the 
hypothesis of n-modality is rejected in favor of the 
alternative of (n + l)-modality. 

In order to investigate the reported p-values of the 
proposed testing procedure, a simulation study was 
conducted. One hundred random numbers are drawn of 
a normal distributed random variable. Then unimodality 
is tested using the test described above. This procedure is 
repeated 1000 times. The 1000 p-values are plotted in a 
quantile~tuantile plot. If  the reported p-values are to be 
accurate (or conservative), the quantiles of these p-values 
from truly unimodal distributions should lie on (or above) 
the line x =y. The results can be seen in Fig. 2. The 
quantiles of the p-values are all well above the line x = y 

. . . . . .  A / ~  

J 

i i i i t i I i 

0.2 0.4 0.6 0.8 

Q u a n t i l e  
1.0 

FIGURE 2. Quantile~tuantile plot of 1000 p-values generated from a 
sample of 100 values of a normal distributed random variable. The 
reported p-values are conservative, because the quantiles of these p- 

values from truly unimodal distributions lie above the line x = y. 

indicating that the probability of obtaininga p-value of 
is less than ~. 

Because of the very conservative p-values, the test- 
procedure described above may detect only one mode in a 
three-modal distribution. Therefore, very often signifi- 
cance levels higher than 5% were chosen in order to 
detect the true number of modes (Silverman, 1981; 
Matthews, 1983; Wong, 1985). 

Here we apply the idea of the excess-mass test in order 
to estimate the number of modes. When estimating the 
number of modes the procedure is the same compared 
with testing the number of modes: the number of modes 
is incremented until the p-value exceeds a threshold level 
P,h,. However, the threshold level P t h r  is fixed in order to 
reproduce the true number of modes via a simulation 
study, when estimating the number of modes. The result 
of this simulation study not presented here is that the 
probability of correct identification becomes maximal, if 
the threshold level Pa, r is set to Pt/,,- = 30%. If a larger 
threshold level Pthr > 30% is chosen, the method detects 
three or more peaks in a sample of  a bimodal distribution, 
and if a smaller threshold level P t h ,  < 30% is chosen, it 
very often detects only one peak in a sample of a bimodal 
distribution. Estimating the number of modes of a data set 
rl . • rA is carried out by sequentially computing p,, for 
n = 1,2,3 . . . .  until p,, < Pa, r. 

A simulation study was performed to systematically 
investigate the quality of the estimation. Figure 3 shows 
the probability of detecting the correct number of peaks 
at the correct position with an error of no more than 
10 msec, detected in a superposition of two identical 
gaussians (standard deviation o- of 10 msec each) with 
increasing difference between their mean values. While 
the superposition of two gaussian functions is unimodal 
for distances below 2or, it becomes bimodal for larger 
distances. From top to bottom the number of data points 
simulated is increased from 100, 200, 400 to 1000. Quite 
clearly, the procedure reveals the existence of two correct 
peaks with a probability of more than 50% only when 
they are separated by more than 35 msec, i.e., more than 
three times their standard deviation. 
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FIGURE 3. The probability of detecting two peaks at the correct 
positions is plotted as a function of the distance of the mean values of 
two gaussian functions. Each gaussian had a standard deviation of 
10 msec. The relative weight of the two functions was 5:5 (thick lines), 
7:3 (thin lines), and 9:1 (dashed lines). The number of simulated data 
points is varied from 100 to 1000 as indicated in each plot. For 100 
simulated data points this probability is greater than 80% only when 

the difference exceeds 4 standard deviations. 

We analyzed the wrong decisions and found, that in 
most cases the number of peaks is underestimated and 
that only in a very few cases the excess-mass estimator 
detects three peaks in these bimodal samples. In 
summary, the analysis of Fig. 3 shows that the propnsed 
procedure is rather conservative, detecting separate peaks 
only in very clear cases. It can accept one peak even when 
the distribution certainly does not look unimodal. 

Fi t t i ng  the  data by  g a m m a  d i s t r ibu t ions  

The Levenberg-Marquardt  fit-procedure (Press et  al.,  
1986) was used to fit the data by a superposition of n 
peaks each having the form of a gamma distribution: 

p(p( t  -- to) )a- le  -p(t to) 
g(t;  p, a, to) =- r(a) 

Its mean is l~ --- ( a l p )  + to, its standard deviation is 
a = v/-a/p and its skewness is s = 2/v / -p .  The parameters 
p, a and to can be calculated from the values of/t ,  a and s: 

4 2 #s - 2or 
a = ~ 5 ;  P = - - ;  t 0 - -  - -  

O'S S 

We present only the values of  p, a and s for the fits, 
with the equation above it is possible to evaluate the 
values of p, a and to. Notice that the mean /t = a/p  is 
greater than the maximum a - 1/p of the distribution, 
because the distribution has a positive skewness. In a n- 

modal mixture distribution, n - i additional parameters 
occur that describe the mixing probabilities. 

The number n of gamma functions that were fitted to 
the data is the number of peaks detected by the excess- 
mass estimator. The mean #i, i = 1 . . n may vary only 
10 msec from the value #EM identified by the procedure. 
The weight and the values 6 i and si of each mode i are 
free parameters of the fitting procedure. 

The data rt • • ra are grouped into bins bl • • bB with 
binwidth 5 msec; B is the largest reaction time divided by 
the binwidth. We performed a least-square minimization. 
Let gi be the fraction of the superposition of the gamma 
functions g( t ;p ,a)  lying in the i-th bin. Then the error of 
the model is: 

B 
X2 = Z (gi ~ bi) 2 

i=1 gi " 

A large error Z 2 indicates that the superposition of 
gamma distributions does not fit the data well. Notice that 
the squared error of  the fit gi is the fit gi itself, because the 
number of  reaction times is multinomial distributed and 
can be approximated with a gaussian distribution, if there 
are more than five events expected in the bin i. The 
gaussian distributed variable with mean gi has an 
standard deviation v/-g~. Therefore, neighboring bins 
were put together until gi _> 5 for all i. 

The e r r o r  X 2 is z2-distributed with the difference 
between the number of  bins and the number of  fitted 
parameters as degrees of freedom. A detailed description 
of the Ze-test is given in Sachs (1982) and Honerkamp 
(1994). Considering the X 2 distributions we calculate the 
probability P, that a larger error occurs by chance, if the 
data rt . • ra are realizations of  a random variable of  the 
fitted function. Because the fit is bad, if P is rather small 
and because the fit is good if P has a large value, the 
probability P indicates the goodness of fit. 

Assume a superposition of n gamma distributions and a 
superposition of (n + 1) gamma distributions are fitted to 
a sample of  a n-modal distribution. Of  course, the error 

2 X,+I is smaller than the error X 2n. Since the number of 
fitted parameters is considered when computing the 
probability P, fitting (n + 1) gamma-distributions may 
result in a smaller probability P,,+I: 

X 2 < Xn b u t  Pn+l < Pn! n+l --  

Using more-gamma distributions, the probability for 
sufficient number of  peaks may decrease although the 
error Z 2 decreases! 

Figure 4 shows an example of real data. The 
distribution of reaction times is estimated using a 
gaussian kernel with bandwidth 3 msec (thick line). 
Multiple peaks can be seen between 100 and 200 msec. 
These data were selected because they most clearly show 
the problem. The excess-mass estimator detected only 
two peaks, for the other peaks the excess-mass was too 
small to be statistically significant. The result of this fit is 
shown by the continuous line in Fig. 4. The dotted lines 
indicate the components of this particular analysis. 
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FIGURE 4. Example of data (thick line). A problematic case was 
selected to show that not all apparent peaks are statistically significant 
from the excess-mass estimator. The thin line is the superposition of 
the two components (dashed lined) found by the excess-mass estimator 
and fitted by two gamma distributions (see text). The weight of the first 
gamma distribution is 0.35, their parameters are p = 9 6 m s e c ,  
a = 7.5 msec and s = 0.35. The other gamma distribution has the 
weight 0.65 and the parameters p =  145 msec, a = 2 8 m s e c  and 

s = 1.47. 

R E S U L T S  

Distribution of  peaks 

T h e  e x c e s s - m a s s  e s t i m a t o r  w a s  a p p l i e d  to a n a l y z e  the  

d a t a  o b t a i n e d  in  g a p  a n d  in o v e r l a p  tasks .  T h e  da ta  f r o m  

t r a i n e d  s u b j e c t s  a n d  n a i v e  s u b j e c t s  a re  t r e a t e d  s e p a r a t e l y .  

F i g u r e  5 s h o w s  the  r e s u l t s  f r o m  the  t r a i n e d  s u b j e c t s  in  

the  g a p  a n d  o v e r l a p  tasks ,  w e r e  w a s  da t a  a v a i l a b l e  f r o m  

g a p  d u r a t i o n s  0, 100,  200 ,  3 0 0  a n d  4 0 0  m s e c  f r o m  10 

t r a i n e d  s u b j e c t s .  B e c a u s e  the  d i s t r i b u t i o n  o f  the  n u m b e r  

o f  p e a k s  fo r  the  181 e x p e r i m e n t s  w i t h  g a p  d u r a t i o n  

2 0 0  m s e c  a re  v e r y  s i m i l a r  to the  o t h e r ,  w e  p r e s e n t  the  
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FIGURE 6. Same as Fig. 5 but data from the naive subjects. 

results for all gap durations. The differences in the 
distribution of the position of the peaks are described 
below. 

Within the 435 distributions analyzed, 692 peaks were 
found in the gap data. The percentage of peaks is plotted 
against the time of their position along the horizontal. 
The smooth curve was obtained using a gaussian kernel 
with a bandwidth of 3 msec. It estimates the probability 
that a distribution exhibits a peak at the position pr:M. 
(For an overview of kernel estimators see Silverman, 
1986) .  

T h e  u p p e r  pa r t  d e p i c t s  the  r e su l t  fo r  gap  da ta ,  t he  l o w e r  

for  o v e r l a p  data .  T h e r e  are  two  r e g i o n s  w h e r e  p e a k s  are  
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left). The thick lines represent the experimental data, the dotted lines 
show the components as determined by the excess-mass estimator and 
fitted by the Levenberg-Marquardt procedure. "+" indicates a good fit 
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average position of the first (and second) peaks that are present in 
several sessions. Note that an express mode was detected together with 
a second mode in the very first session. At the end of training, only the 

express mode can be seen. 

FIGURE 9. Same format as Fig. 8 but for subject JG. An express mode 
together with a second mode was not detected before the second 
session. Note that in a number of cases, either one or the other mode 
remained undetected even though it can be seen and identified by 

comparing the distributions with others from the same subject. 

region we found no peak in the gap task and only a very 
small number  o f  peaks in the overlap task for trained 
subjects. 

found with low probability in both cases: between 120 
and 135 msec, and between 170 and 190 msec. Regions 
with high peak density are 90 -120  msec (express mode) 
and 135-170 msec (fast regular mode) in the gap task. 
The data f rom the overlap are not so clear. An  increased 
incidence o f  peaks around 135-170  msec (fast regular 
mode)  and 200-220  msec (slow regular mode)  can be 
seen, which may correspond to the regions obtained from 
the gap data. Notice that in the overlap data there are also 
modes around 100 msec. 

The results f rom the naive subjects are shown in Fig. 6. 
In this case the gap duration was always 200 msec. As  for 
the trained subjects, detection o f  peaks around 100 msec 
is more c o m m o n  on gap than on overlap trials, but there 
are also peaks in the region of  125 msec. A second region 
of  high peak density is found just above 150 msec and 
above 200 msec, most  clearly in gap and much less clear 
in overlap trials. In the overlap task there is a large 
number  of  peaks between 230 and 300 msec. In this 

Number of peaks 
The incidence o f  multimodality in these data was 

accessed by plotting the percentage of  distributions as a 
function of  the number  o f  peaks found (Fig. 7). 
Regardless of  where the peaks were detected along the 
time scale, only one peak was detected in 55% of  all 
distributions analyzed so far. Three peaks or more were 
detected rarely, and almost never in gap trials. This result 
does not differ greatly between subject groups and tasks. 
The number  of  peaks varies only slightly between gap 
and overlap tasks, because in the gap task an express 
mode often occurs and a slow regular mode rarely occurs, 
while in the overlap task a slow regular mode is 
frequently observed while an express mode is rarely 
observed. 

Analyzing  the peak position of  the unimodal  distribu- 
tions for trained subjects in the different gap tasks reveals 
that the mode about 150 msec is most  frequently present 
for the gap 0 m s e c  paradigm (29 of  39 unimodal 
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FIGURE 10. Same format as Fig. 8 but for subject ND. As for subject 
CA an express mode was identified together with a second mode 
(rightward saccades) and a third mode (leftward saccades) in the first 

session. 

distributions have a peak position between 135 and 
170 msec), while the mode about 100 msec is most 
frequently present in the gap 200 msec paradigm (78 of 
109 unimodal distributions have a peak position between 
90 and 120 msec). 

Among the unimodal distributions 29% had peaks in 
the range of the express mode and 46% had peaks in the 
range of the fast regular mode. Therefore 87% 
(45% + 75% × 55%) of the data sets support the notion 
of saccadic reaction time distributions being the super- 
position of three modes. 

Individual data from subjects under training 

While the analysis has so far concentrated on data from 
either trained or na~'ve subjects, we also applied the peak 
detection method and the fit procedure to the data from 
subjects under training. Figures 8-11 show the data and 
the fitted curves for leftward and rightward saccades 
separately from six training sessions obtained from four 
different subjects. The top two panels were obtained 
when the subjects were still naive (first session). The 
number of peaks fitted to the data is the number of peaks 
estimated by the excess-mass method. We have not 
presented all parameters of the gamma distributions, 

FIGURE 11. Same format as Fig. 8 but for subject UG. This subject 
started without an express mode and never produced one. Instead, two 
additional modes were detected: one around 150 msec and the second 
around 185 msec, predominantly for leftward saccades. Note that this 
mode is present in all distributions for the rightward saccades, but was 
detected only in one case. This demonstrates how conservative the 

excess-mass estimator is. 

because the distributions of one figure contain more than 
50 parameters and they are not necessary to detect the 
agreement of peak occurrence and position of the same 
subject in different sessions. The goodness of fit is 
indicated in each plot using the significance level 0.05. A 
"+" indicates a good fit (P > 0.05) and a " - "  a bad fit 
(p < 0.05). 

For subject CA (Fig. 8) two modes were encountered in 
only three sessions. Interestingly, two were obtained in 
the very first session. In the second session, two modes 
may still be present but did not reach significance. In the 
third session only the data from rightward saccades 
exhibited two modes. The training ends with unimodal 
distributions for either side peaking at 100 msec. 

Subject JG (Fig. 9) started with a bimodal distribution 
for leftward saccades with the first mode below 150 msec 
and the second at about 170 msec. Rightward saccades 
exhibited only one mode at about the same position as the 
first mode to the left. In the second session an early mode 
can be seen on both sides but significance was reached 
only for the right side. The training ended with a bimodal 
distribution to the right side with modes at 100 and 
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FIGURE 12. SRT-distributions from data files containing more than 
280 observations. The leftward and rightward saccades from each of 
the 10 subjects are shown separately. The thick lines represent the 
experimental data, the thin lines show the fit. '%" indicates a good fit 

(P > 0.05) and " - "  a bad fit (P > 0.05). 

130 msec, while for the left side the second mode being 
detected in previous sessions failed to reach significance 
in the final session even though these distributions were 
not statistically different in the Kolmogorov-Smirnov 
test. The example of subject JG shows how conservative 
the excess-mass estimator works, rejecting peaks even 
when they can be seen at positions where they have been 
found in other distributions from the same subject. 

Subject ND (Fig. 10) produced bimodal distributions to 
the right side throughout the training with the modes 
remaining at about the same positions, approx. 100 and 
150 msec. To the left an early mode around 100 msec 
was detected throughout the training, but the second 
mode is not always identified. This subject started with a 
trimodal distribution for leftward saccades. 

Subject UG (Fig. 11) never produced an express mode. 
However, bimodality was found in five cases. Note that 
the right mode just below 200 msec was detected by the 
excess-mass estimator only once, even though it can be 
seen in all distributions. Only on the left side is the 
bimodal distribution of fast and slow regular saccades 
turned into a unimodal fast regular peak throughout the 
time course of training. 

These data suggest that all distributions are produced 
bi- or trimodally, but in some cases the weight of one 
mode is too small and/or its separation from the 
neighboring mode is too small to allow for clear 
separation using the excess-mass method. The shape of 
a mode of a SRT-distribution may change during 
training, but the peak position remains at about the same 
position. 

Analysis of large data sets from individual subjects 
The statistical quality of data derived from stochastic 

processes can be improved by increasing the number of 
observations, given that the process is stationary. 
Stationarity of saccadic reaction time data can be 
obtained by training the subjects. Therefore, in this 
section, we consider distributions from trained subjects, 
when they performed different gap tasks after having 
been trained in the gap 200 msec task until they reached 
stable results. Single sets of data collected in one 
experimental session were put together only after they 
had been tested to be not statistically different by the 
Kolmogorov-Smirnov test (significance level 0.05). Ten 
subjects performed the gap 200 msec task several times 
(3-8) after their training was completed, such that a 
minimum of 280 observations could be collected for each 
side of random target presentation. The distributions were 
then constructed separately for each side using only the 
correct responses, (i.e., saccades going in the direction of 
the target). This way the 20 sets of data presented in Fig. 
12 were obtained. 

The analysis described above was applied to each of 
the distributions. The number of fitted gamma distribu- 
tions was estimated by the excess-mass procedure. The 
resultant fits are shown by the thin lines in the figure. 
Very often the thin line is hidden behind the thick line, 
indicating a perfect fit. The goodness of fit is shown in 
each plot using the significance level 0.05, the "+" 
indicates a good fit (P_> 0.05) and a " - "  a bad fit 
(P < 0.05). The quality of fits was better than the quality 
of the fits of small samples. 

Inspection of these distributions shows: (i) all but three 
distributions (HW-left, UG-left and right) show a first 
mode at about 100 msec. (The express mode of the 
subject HW could, however, be elicited with the left 
target being presented at 8 instead of 4 deg). (ii) The 
maxima of the first mode are almost, but not exactly, at 
the same position. Pooling the data across sides and 
subjects could have destroyed the separation of peaks. 
(iii) Bimodality is clearly present in 10 sets, unimodality 
in the other ones. (iv) In the cases of only one peak it is 
located at about the same positions where the first or the 
second peak in bimodal distributions can be seen. 

These data again suggest that all distributions are 
produced bi- or trimodally but in some cases the weight 
of one mode is too small and/or its separation from the 
neighboring mode is too small to allow for clear 
separation using the excess-mass method. 

To support this view, we analyzed larger data files 
from three subjects using different gap durations between 
0 and 400 msec. Figure 13 shows the data and the fits. 
Leftward and rightward saccades were required in these 
sessions in random order. The subject OK produced bi- or 
trimodal distributions for gap durations between 100 and 
400msec,  where the express peak occurs. For gap 
duration 0 msec there was no indication for an express 
peak and only one mode at about 150 msec can be seen 
similar to subjects BF and DC. At a gap of 100 msec this 
mode became rather weak and the express mode can be 
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seen. For gap durations longer than 200 msec the express 
mode becomes weaker again in favor of the second mode. 
Note that within a few milliseconds the modes tend to 
remain at the same positions. 

Altogether, we had 70 data sets from 10 subjects, each 
containing more than 280 data points. To overcome the 
problem of small data sets with correspondingly high 
errors we applied the excess-mass procedure to these data 
sets. The distributions shown in Figs. 12 and 13 are part 
of this set. 

As a result, in the 70 distributions one peak was found 
in 57% of all cases, two peaks in 34%, and three peaks in 
9%. These numbers closely resemble the results obtained 
from the data sets containing only 75-100 entries (see 
Methods section). Again among the unimodal distribu- 
tions the positions of the modes were not uniformly 
distributed but preferentially around 100 and 150 msec. 

DISCUSSION 

The present study has shown for the first time that 
statistical analysis reveals the existence of several modes 
in saccadic reaction distributions. In about 45% of all 
distributions analyzed more than one mode was detected 
and in about 15% three modes were encountered. The 
procedure for detecting these modes appeared as rather 
conservative and in many cases where the distributions 
clearly deviated from unimodality the second mode 
remained non-significant due to the strong criterion used. 

The fact that 55% of the analyzed distributions exhibit 
only one mode cannot be used as evidence for the 
conclusion that only half of the subjects produce 
multimodality. The detailed analysis of the position of 
the peaks in the unimodal distributions rather support the 
notion that the unimodal distributions are extreme cases 
where only one of several modes dominates the 
distribution. This can be seen in Figs. 8-11, showing 
the development of the peaks during the training sessions. 
A consideration of the peak position of the unimodal 
distributions leads to the conclusion that 87% of the data 
sets support the notion of saccadic reaction time 
distributions being the superposition of three modes. 

The results support the point of view that a SRT- 
distribution is a superposition of three underlying 
distributions (basis functions) that occur with different 
weights in different experiments. Different subjects have 
different sets of basis functions, but each subject has a 
basis function in the express range, one in the fast regular 
range and one in the slow regular range. 

While in this article the number of gamma distributions 
fitted to the data is determined by the excess-mass 
estimator, an alternative method would have been to start 
with n = 1 gamma distributions and increase n until the 
probability P,,, indicating the goodness of fit, exceeds a 
critical value. It is even possible to test whether the 
improvement in the error 2 is worth the added number of 
parameters [see Chapter 5.8 of Flury & Riedwyl (1988) 
for details]. Since a bad fit results, if the assumptions 
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about the number of modes or  the distribution of the 
modes is inappropriate, the results for the distribution of 
the number of modes are more contestable when using a 
multimodality test, where no assumptions are necessary 
about the shape of the distribution of the data. 

The fit procedure applied to the data using the 
previously detected number and positions of the peaks 
gave satisfactory results in 64% of cases. Poor fits were 
mostly due to a failure in identifying deviations from 
unimodality as different modes. We fitted gamma 
distributions to the data. Using different functions may 
have resulted in similar fit qualities because the limited 
number of observations will not allow, in all cases, 
minimization of the error more for one function than for 
another. 

Another approach is to analyze approx. 10 different 
distributions of the same subject at the same time. The 
idea is that a mode is present where neighboring bins 
scaled commonly. Contrary to the excess-mass procedure 
it is possible with this test to detect different modes, even 
if their superposition is unimodal (Gezeck & Timmer, 
1995). The preliminary results have shown that in most 
subjects three basis functions are detected in accordance 
with the present study. 

The experimental data and the statistical analysis 
presented above suggest that the human (and probably 
also the monkey) saccade system reacts in different 
modes. They act in serial, each one adding its time 
consumption to the reaction time. Each mode then can 
add 20-50 msec, an order of magnitude that can be 
accounted for by neural summation time. Which modes 
determine a given SRT-distribution depend on the state 
of activity of the optomotor system (probably at the brain 
stem level) at the time of target appearance, and it is this 
state of activity which is determined by the task. This 
notion circumvents the necessity of selecting one or the 
other mode in a mutually exclusive way. 

We searched for models of saccade generation which 
can explain multimodal distributions of the reaction 
times. The facilitation model of Reulen (1984) can 
explain the gap effect as far as the decrease of the mean 
value of the reaction time is concerned, but it cannot 
produce multimodal distributions. Similarly, Carpenter's 
model relies on unimodal distributions from the start 
(Carpenter & Williams, 1995). Analysis of his data, all 
obtained from overlap trials, shows that the model 
predictions are not fulfilled: instead of a single straight 
line the data form two sections with an "elbow" at about 
140 msec. This indicates that at least two modes can be 
identified in the data and that the second mode begins at 
about 140 msec. This is in close agreement with the 
present analysis because the transition between the 
express and the fast regular mode occurs between 130 
and 140 msec. According to Ruhnau and Haase synchro- 
nized oscillations in the visual cortex produce multi- 
modal distributions (Ruhnau & Haase, 1993; Kirschfeld 
et  al., 1996). 

The early version of  the three-loop-model assumes 
serial processing of three central stages but requires the 
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additional assumption of a probabilistic variable which 
determines the chances of the optomotor system being in 
one or the other state at the time of target presentation 
(Rogal & Fischer, 1986). More recently, a two-stage 
serial model was presented which produces bimodal 
distributions and also takes into account the sensory 
factors such as stimulus intensity and visual-auditory 
integration in saccade generation (Nozawa et  al., 1994). 
When the processes were implemented as assemblages of 
interacting neurons, the probabilistic aspects of being in 
one or the other stage are provided "automatically" in the 
form of the stochastic nature of impulse trains in the 
sensory channels representing the effect of stimulus onset 
and fixation point offset (Fischer et al., 1995). 

A number of authors have published SRT-distributions 
that are bimodal beyond any doubt and without the need 
for statistical approval. Examples can be found for 
normal human subjects in J~ittner & Wolf (1992), Fischer 
et al. (1993), Weber et al. (1995), Nozawa et al. (1994), 
Currie et al. (1993), Cavegn (1993), Reuter-Lorenz et al. 
(1995), Walther-M~iller & Znoj (1994), for patients in 
Matsue et al. (1994), Braun et al. (1992), and for 
monkeys in Fischer & Boch (1983), Munoz & Wurtz 
(1992), Sommer & Schiller (1992) and Schiller & Lee 
(1994). These results support the point of view that SRT- 
distributions are generally the result of a superposition of 
a finite number of modes. From this perspective a 
unimodal distribution is a distribution, where only one 
mode is present and it may be instructive to investigate 
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w h i c h  m o d e  is ac t ive .  E x t r e m e  cases  can  be  seen  in the 

exp res s  s accade  makers .  T h e s e  are subjec ts  w h o  p r o d u c e  

a lmos t  e x c l u s i v e l y  exp res s  s accades  e v e n  in the ove r l ap  

task (Bisca ld i  et al., 1996). O n l y  the exp res s  m o d e s  s e e m  

to be  ac t iva t ed  because  these  subjec ts  m a y  not  have  

e n o u g h  con t ro l  o v e r  their  f ixa t ion  s y s t e m  and the re fo re  

any s t imu lus  ac t iva tes  m o r e  or  less d i rec t ly  the saccade -  

g e n e r a t i n g  s y s t e m  at a re la t ive ly  l ow l eve l  l e ad ing  to a 

s accade  i m m e d i a t e l y .  O the r  subjec ts  m a y  h a v e  e x t r e m e l y  

g o o d  con t ro l  o v e r  thei r  f ixa t ion  sys t em the reby  inh ib i t ing  

the s accade  s y s t e m  such  that  the express  m o d e  has no 

c h a n c e  to d e t e r m i n e  the reac t ion  t ime  alone.  

In conc lu s ion ,  the e x p e r i m e n t a l  data  and their  

s ta t is t ical  ana lys i s  sugges t  that the a s s u m p t i o n  that 

d i sc re te  m o d e s  and thei r  supe rpos i t i ons  f o r m  the 

d i s t r ibu t ion  o f  s accad i c  reac t ion  t imes  appears  to be  

m o r e  a t t rac t ive  than the a s s u m p t i o n  o f  on ly  one  m o d e .  To  

ga in  an i m p r e s s i o n  o f  an a v e r a g e  S R T - d i s t r i b u t i o n  o f  

t ra ined and n a i v e  subjec ts  in gap  cond i t ion ,  Fig .  14 

p resen t s  the c o l l a p s e d  data. Qui te  c lea r ly  these  data  

( h e a v y  l ines)  w i l l  not  be  r e c o g n i z e d  as bi-  or  t r imodal ,  

ne i ther  do they  f o r m  n o r m a l  d is t r ibut ions .  W h e n  f i t ted by 

three  g a m m a  d is t r ibu t ions  (dot ted  l ines)  a lmos t  pe r fec t  

fits ( thin l ines)  are ob ta ined .  N o t e  that the three  m o d e s  

h a v e  peaks  at abou t  the s a m e  pos i t ions  as na ive  and 

t ra ined  subjec ts ,  
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