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Abstract

Using the method developed by Cherkis and Hashimoto we construct partially localized0382), D4 | D4(2) and
M5 L M5(3) supergravity solutions where one of the harmonic functions is given in an integral form. This is a generalization
of the already known near-horizon solutions. The method fails for certain intersections such d3301) which is consistent
with the previous no-go theorems. We point out some possible ways of bypassing these results.
0 2003 Elsevier B.V.Open access under CC BY license.

1. Introduction been found by further restricting to the near-horizon
of the delocalized brane [8—-11]. Recently Cherkis and
Hashimoto [12] were able to remove this restriction for
D2 L D6(2) intersection which allowed them to ana-
lyze the system in the near-horizon region of D2 in-
stead of D6 which has some important applications in
AdS/CFT duality. This method has been further ap-
plied to construct D1L NS50) intersection in [13]
and D41 D8(4) intersection in [14].

The approach of [12], which we adopt in this Let-
ter, is similar to the technique used in [15—-17] to prove
no-hair theorems fop-branes. It is a generic feature
of intersecting brane configurations that the differen-
tial equations involving the metric functions are lin-
ear and separable. This lets one to apply Fourier trans-
formation techniques which allows the construction of
the harmonic function as an integral expression. This
can be evaluated numerically if desired and it is a gen-
T E-mal addresses: arapoglu@boun.edu.tr (S. Arapoglu), eralization of the near-horizon solutions given in [10].

deger@gursey.gov.tr (N.S. Deger), kaya@gursey.gov.tr (A. Kaya). (See also [18-20].)

There has been considerable interest in construct-
ing intersecting brane solutions in the past (see [1-3]
for review). The problem is completely solvable if
one assumes that the solution depends only on overall
transverse directions. However, relaxing this condition
complicates it considerably. If the metric is chosen to
be in some specific form (which is inspired by har-
monic function rule [4—6]) then it is easy to see that
one of the brane has to be delocalized [7], i.e., its har-
monic function is independent of the directions along
the other brane’s worldvolume. This is not a restric-
tion if the smaller brane is contained in the bigger one;
otherwise these type of solutions are said tophe
tially localized (see Fig. 1). Explicit intersections have

0370-26930 2003 Elsevier B.VOpen access under CC BY license.
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Fig. 1. Delocalized (a) versus partially localized (b) brane intersections. The first brane has the world-volume codrdinatesd the
second one is oriented alorig, z) directions § coordinate is suppressed in the figure). In (a), branes are smearedzaadg coordinates,
respectively. In (b), only the first brane is smeared and the second brane is locatedat

As we will discuss below, this method fails when solution one should have
the overall transverse space,+ 2), is four or higher-
dimensional. Whem > 2, for instance, as in the case _lim Hi— 1, (2
of DO L D4(0), the radial dependence of the metric
functions cannot be determined in terms of elementary 5
or known functions. On the other hand, far= 2 _ ) ) _ )
there is a generic spontaneous delocalization when the The harmonic functions satisfy the following differen-
branes are forced to be placed on top of each other, tidl €quations [7]
This is consistent with the previous no-go results for a

lim H,— 1 ©)

| =00

2 2 - "8z

full localization in such brane systems [15-17]. (07 4 1202 Hy = 410 ()3 0. o
(92 + H102) Ho = q28 ()3 (5, ®)
0z H105Hy = 0, ©)

2. Solutions "
where the branes are assumed to be locatet-at
) i . 7z =0 and7 = y = 0, respectively. The last equation
Let us start with an intersection of two D-branes indicates that eithed: Hy = 0 or 9;H> = 0, i.e., one

which has the following metric of the branes should be delocalized along the other
brane directions. Without loss of generality we take
ds? — H{l/sz’l/zdx“ dx™ + Hl’l/szl/zd} .dy it to be the first brane. Assuming spherical symmetry,

(4) gives (up to an irrelevant numerical factor)

1

1/2
+H;

2H, Y2 a7 . dz + HPHY? dF . dF,

1 H=1+ f—i, )

where(x#, ¥) and(x#, 7) are the world-volume coor-  where (n + 2) is the dimension of the-space and
dinates of the first and the second branes which areq; is the brane charge. For the special intersection
characterized by the “harmonic” function4; (z, 7) where the second brane is located inside the first
and H»>(y, 7). Changing the powers of metric func- one,z coordinates should be ignored. For this case
tions the same metric can be thought to describe in- H; depends only o and (6) is satisfied trivially.
tersection of two M-branes. We follow the usual brane This corresponds to a full localization. WheH;
terminology;x is a common brane coordinatgand is solved as in (7), the solutions of (5) has been
zZ are relative transverse directions andoordinates studied in certain limits. For instance, near horizon
parameterize the overall transverse directions. We as-geometries where one can takig ~ r~" were con-
sume that the brane functions do not depend on the structed in [10]. Following [12], to solve (5) exactly,
corresponding brane coordinates. To have a localizedwe use a Fourier transformation in thespace to
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write

Hy=1+q2 | d"pe'P H,(r),

—

e

o0
1+q2fdp/d9 (sine)m_zp’"_1
0 0

X Q2u-2eP OV H, (), (8)
where g2 is the brane chargepn denotes dimen-
sion of they space, and2,,_> is the volume of the
unit (m — 2)-dimensional sphere witl2g = 1. The
above formula is valid whem > 1 and form =1
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r = 0 since we are mainly interestedsin— 0 limit)

cpror 1K, (pr), r>ro,
dy(royr X, (pr), r <ro,

wherekK, andl, are the modified Bessel function with

v = /14 q1p? and [c,(ro), d,(ro)] are constants.
The continuity at = rg gives

Ho(r) = { (10)

cp(ro) K, (pro) =d,(ro) 1, (pro). (11)

Using this in the condition imposed by the presence of
the delta function source at= rg one obtains

cp(ro)pW{IL,(pro), Kv(pro)} = qarg °I, (pro), (12)

the second step is unnecessary. For technical conve-where W is the Wronskian with respect to the ar-

nience, we first locate the second brané atry and
then takerg — O limit. Then, from (5) and (8) one

finds
2 n+ld an
—+————p*l1+ =) |H
|:dr2+ r dr p(+r” r(r)
5(r —ro)
= qu 9)
For eachm, the 6 integral in (8) can be carried out
easily. Therefore, if one can solve (8) can be de-
termined in an integral form which can be evaluated
numerically if wanted. Now let us discuss possible so-

lutions of (9):

n > 3: It turns out (9) cannot be solved in terms
of elementary functions (at least to our knowledge).
Recalling that(n + 2) is the dimension of the overall

transverse space, this corresponds to the intersection

like DO L D4(0) or M2 L M2(0).

n = 2: The prototype of this case that we will
consider is D1L D5(1) intersection. However, since
our arguments are based on thelependence of
the harmonic functions (which is fixed hy), our
conclusions apply intersections like D2D4(1) and
M2 1 M5(1) as well. Even though, there are no-

go theorems for the existence of a localized solution

[15-17], for completeness we will investigate this case

gument which is equal te-1/(pro). This implies
¢p(ro) = —q21,(pro)/ro. Intherg — O limit ¢, (ro) ~
r&"P — 0 which indicates spontaneous delocaliza-
tion. This is the essence of the trouble in /Db lo-
calized solution. Physically, as the separation goes to
zero the D1-brane charge spreads over the D5-brane.

Now we would like to point out two possible
ways of resolving this difficulty although we could
not establish a clear cut result. Firstly, there may
be a subtlety in takingg — 0 limit. Namely, a
localized intersection when branes are coincident may
not be continously reached from a separated brane
configuration. If so, then one should solve (5) directly
without assuming any separation between the branes.
In this case, one finds thai, () in (8) obeys

|:8;2 - p2(1 + |;1—|12)]H,,(7) — 428(P). (13)
SFourier expandingd, (7) as
H,(7) =/d4v e, (0), (14)
(13) gives
@)} (1517 + |pI1?)hp (0)
+ 4n2p2q1/d4v/flpi:) = —q>. (15)
v —v'|2

too in order to emphasize the origin of the difficulty. Unfortunately, we could not solve this integral equa-
We will also propose some possible ways to resolve tion. However, in principle, there may exist well-

this. The solution to (9) which is both regularrat 0 behaved solutions which might have important impli-
andr = oo can be written as (we demand regularity at cations for the moduli space of the D1/D5 system.
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One possible way is to find a series solution by itera-
tion which would be identical to an expansion in pow-

ers ofg1. Secondly, there may be a smooth solution
away from the delta function source. For this purpose,
we set the right-hand side of Eq. (9) to zero. Then us-
ing the solution forH,(r) which decays as — oo,

(8) becomes

o0

Hy=1+ qu dp cp(yr) " I (py) Ky (pr).
0

(16)

At this point, the constant, is completely arbitrary
(which may also depend og). However, it should
satisfy the following two conditions for a localized so-
lution. Obviously, (16) should yield a finite D1-brane
charge which can be calculated from

/ #(dt Adx AdHYY, 7

)

wherex is the Hodge dual and the integral is taken over
a 7-dimensional closed surfacE surrounding the
D1-brane which can be taken as (lim y323d%r +
lim, 00 r3523d%y), where 23 and 23 are the unit
spheres iry andr spaces, respectively. The other con-
dition onc,, is that forg; =0, i.e.,v = 1, (16) should
give a single D1-brane solution. However, it turns out
to be quite difficult to satisfy both conditions. For ex-
ample, it is easy to see that choosing= p3, (16)
gives Hy ~ 1+ 1/(y2 + r2)3 wheng; = 0 which is
precisely the harmonic function for a single D1-brane.
Moreover, D1-brane is localized inside the D5-brane,
i.e., Ho — 1 asy — oo. Nevertheless, the metric has a

pathologic divergence as one approaches the D5—brane(8) can be calculated easily,

horizon at- = 0. To see this let us consider the integral
(16) for largep. In this casep ~ p./q1. For fixedr,
the modified Bessel function has the following limit-
ing behavior

. /4 n-1/4 _
lim K, (pr) = /5(1+r) e~ P,

wheren(r) =1+ r2+Inr —In(1++/1+r2). One
can see that there is a positive constan{which
depends on the D5-brane chaigg such thaty > 0
whenr > b, n < 0 whenr < b andny =0 whenr = b.
Therefore, the integral (16) converges foe b but
diverges when < b. Note that this is similar to a

(18)
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delta function type singularity. Due to this pathologic
behavior, the total D1-charge diverges.

n =1: Eq. (9) can be solved in terms of confluent
hypergeometric functiong/ (a, b, r) and M(a, b, r).
The solution which decays at largeand regular at
r =0 can be written as

cp(ro)e P"U(L+q1p/2,2,2pr),

r > ro, (19)
dy(ro)e ™ P" M1+ q1p/2,2,2pr),

r <ro.

Hp(r) =

The continuity and discontinuity conditions at= rg
give

Cp(’"O)U = dp(VO)M,
cp(ro)2p)W{M, U} = gory eP™M,

(20)
(21)

whereU andM have the same arguments givenin (19)
andW is the Wronskian. From the last relatiop(ro)
can be fixed as

cp(ro) = —q2(2p) I (1+ q1p/2)Me™ PO, (22)

Unlike D1/D5 case, the constart, has a smooth
ro — O limit in which it becomes (up to an irrelevant
numerical factor)

¢p = q2q1p*T (q1p/2). (23)

Now we focus on specific examples. For D3
D5(2) it is possible to delocalize D3 or D5 branes.
When D5-brane is delocalized inside D3-brane, D5-
brane has the world-volume coordinatés y) and
D3-brane hasgx, 7). H1 is the harmonic function of
the D5-brane. In this case, = 3 and th& integral in
which results

o0

Ho=1+gq; / dp pq1I" (q1p/2)y ™~ tsin(py)e P"
0
x U(l+q1p/2,2,2pr). (24)

Note that, agy — oo, H» — 1, which means that D3-
branes are localized inside D5-branes. On the other
hand, agj1 — oo we have

o0
Hy=1+q2 / dp p2y~tsin(py)e 7" U (L, 2, 2pr)
0

2q2
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Fig. 2. Log-Log plot of the functionf () (28) for D3 L D5(2)
intersection when D5-brane is delocalized along D3.

which is precisely the single D3-brane solution. To
obtain the near horizon geometry, we use the fact

im I'(1+a—b)U(a,b,z/a)
a— 00

= ZZ%_%befl(Z\/E)v (26)

and the three-dimensional Fourier transform Kof.
Defining a new radial coordinaje® = ¢1r and send-
ing g1 — oo while keepingp fixed (which is the near
horizon limit) we obtain

6 g2

H=qg———5+5.
2T G2t 4D

(27)
The overally; factor can be scaled away in the metric
(this is standard in taking near horizon limits) and
this is exactly the near horizon solution constructed in
[10,20]. Therefore, (24) gives a background smoothly
interpolating between the asymptotically flat and near
horizon regions. To see this more explicitly, one can
numerically integrate (24). Let us define

fr)=kr®2[Ha(y =0,r) - 1], (28)

wherek is a normalization constant. From Fig. 2, it
is possible to see the behavior of the functids(y =

0, r) both in the near horizon and asymptotic infinity
which is clearly consistent with (27) and (25).

In the D3_L D5(2) intersection when D3-brane is
delocalized instead of D5-branél; in (7) becomes
the harmonic function of the D3-brane which has the
world-volume coordinateg, y). It is easy to see that

207
From the first line of (8) one obtains
oo
Hy=1+¢g2 / dp p®q1I" (q1p/2) cospy)
0
xe P"UA+q1p/2,2,2pr). (29)

In this solution, delocalization of D5-branes inside
D3-branes, i.e., the fact that > oo, H» — 1, is
guaranteed by the Riemann-Lebesgue theorem. On
the other hand, it is easy to see that @as— 0

one obtainsHs = 1 + ¢2/(y2 + r2) which gives the
solution for a single D5-brane. To obtain the near
horizon limit, we defineo? = q1r, let g1 — 0 while
keepingp fixed and use (26) to get

H 21 q2
2=——5275"
(2 +4p?)3/2

In this expression an overall factor gf is ignored.
Thus (29) gives a solution which interpolates between
the asymptotically flat and near horizon regions.
Finally, we consider M5L M5(3) intersection in
D =11. (The same results also apply to DD4(2)
intersection of type lIA theory). Let us remind that one
of the harmonic functions is given by (7) with= 1
corresponding to a smeared M5-brane. The relative
transverse space of the other M5-brane located inside
the smeared one is two-dimensional. Thus- 2 and
H> can be calculated from (8) to give

(30)

o0
Hy=1+¢q / dp P21l (q1p/2) Jo(py)
0

xe P"U(1+q1p/2,2,2pr). (31)

As y — oo, H» — 1 hence one of the M5-branes is
localized inside the other one. On the other hand, it is
easy to see that g3 — 0 we haveH, = 1+¢2/2(r2 +
y%)® which is the solution for a single M5-brane.
Taking the near horizon limit by keeping? = q1r
fixed asq; — oo we obtain (ignoring an overalj;
factor)

842
Hy=———"F"-=.
2T 2+ 4p)2
This shows that the solution given by the integral (31)

(32)

the space transverse to D5-brane located inside thesmoothly interpolates between the asymptotically flat

D3-brane is one-dimensional thus we have= 1.

and near horizon regions.
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From these examples we see that when the over-which precisely obeys (35) with the source term. Now,
all transverse space is three-dimensional (which corre- recall thatr dependence off; was 1/r2 when the
sponds to: = 1) it is possible to obtain smooth solu- transverse space was flat. So we achieved our goal and
tions in an integral form for partially localized brane reduced the its power by one. To find the harmonic
intersections. Therefore, for higher dimensions with function H, we first put D1-brane at = rg in Taub-

n > 1, it is possible to smear some directions in the

overall transverse space and reduce the problem to the

n =1 case. For instance, in PD5 system smearing
one direction we get

o0
Hy=1+q2 / dp p*q1I (g1p/2)y ™~ Ja(py)
0
xe P"UL+q1p/2,2,2pr). (33)
In the near horizon limit defined by; — oo with
fixed p? = ¢1r, we get
32
Hy— 20
(4p?+ y?)3
which is in agreement with the previously constructed
solution given in [10].
Another way of reducing the power efin H; is to

(34)

consider other Ricci flat spaces in the transverse part, Wherex =1+

however this may not be sufficient alone. For example,
for D1/D5, one can replace four-dimensional ffat
coordinates in (1) with a Taub-NUT space. Note that
no-go theorem does not apply with this modification.
In this case, the field equations (4)—(6) become

(39)
(36)

V2 H1 = 181N,
(Vin + H102) Hz = 428 (3)8Tn,

where V2 is the Laplacian andry is the covariant
delta function of the Taub-NUT space which has the
metric

ds? = [1 + 27’"} (dr? +r?(d6? + sirf 6 d¢?))

—1 2
+ [1+ 27’"] (4m)2(d¢ + % cost d¢> .

(37)

For H1 = Hi(r), away from the source (35) becomes
2n 92 29
1+ — —+-—— |H1=0. 38
|:+r] <8r2+r8r) ! (38)
This has the solution
H=1+%, (39)
r

NUT space. WritingH> as in (8), (36) becomes

 2d a1 2m
a1 ) (1) e

S(r —
I di} (40)

-
This can be solved in terms of confluent hypergeomet-
ric functions, and the solution which decays at large
and regular at = 0 can be found as

Hp(r)

cp(roye Prr1t2 U(mp + LB 0 2pr),
r>ro,

dp(ro)e_p’rflJr%M(mp + W, uw, 2pr),
r <ro,

(41)

v/ 1+ 8mp2q1. Using the conditions
imposed by the delta function source, it is easy to
obtain

+
I[mp + 15 M]r_1+u/2

Ilul 0

cp(ro) =q2 pHIMePro,

(42)
In the ro — O limit, we havec, — 0 implying
spontaneous delocalization. So, even though rthe
dependence off; in (39) is lowered by using Taub-
NUT space, still it is not possible to construct a
localized D1L D5(1) intersection.

3. Conclusions

In this Letter we obtained partially localized super-
gravity solutions for D3L D5(2), D4 1 D4(2) and
M5 1 M5(3) intersections where the overall trans-
verse space is three-dimensional. It is clear that, as in
the case oD2/ D6 intersection studied in [12], our so-
lutions exhibit richer behavior in the decoupling limit
compared to the completely delocalized or partially lo-
calized but near-horizon solutions [10].

When n > 2, we could not succeed in solving
the radial differential equation. Yet the delocalization
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phenomenon is expected to occur [16,17]. For these Acknowledgements

cases smearing the overall transverse dimensions until

n = 1is an option. In principle, intersections with<

We would like to thank A. Hashimoto for an e-

0 can also be analyzed as above. However, since thep, i correspondence on PS5 intersection. We also

asymptotic geometry is not flat they are not considered

in this paper.

For intersections with four-dimensional transverse
space, the primary example being DID5(1), we ob-
served that the method fails, implying a delocalization
which is consistent with the no-go theorems [15-17].
To overcome this problem we highlighted two possi-

ble ways. Namely, one can solve the integral equa-

tion (15) or find a suitable,, in (16). However, these
seem to be quite difficult to come up with. On the other

would like to thank T. Rador for discussions.
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