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ABSTRACT 

A formula is given for the characteristic polynomial of an nth order Toeplitz band 
matrix, with bandwidth k < n, in terms of the zeros of a kth degree polynomial with 
coefficients independent of n. The complexity of the formula depends on the 
bandwidth k, and not on the order n. Also given is a formula for eigenvectors, in 
terms of the same zeros and k coefficients which can be obtained by solving a k x k 
homogeneous system. 

1. I N T R O D U C T I O N  

We consider the eigenvalue problem for Toeplitz band matrices, i.e., 
matrices of the form 

n 
T n = (Cj__i)i,  - 1  j=O'  

where there are integers r and s such that 

r , s > ~ 0 ,  r + s = k < n ,  (1) 

and 

c ~ = 0  if v>r or v < - s .  (2) 
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Thus, the dements of I~, are constant along any stripe parallel to the main 
diagonal, and those more than r positions to the right or s positions to the left 
of the main diagonal are zero. 

Because of their simplicity and importance in many applications, nmch 
has been written about Toeplitz band matrices, and efficient methods have 
been given for inverting them (e.g., [1], [10], [11], [12], [13], [15], [19]) and 
for solving linear systems with such matrices (e.g., [2], [4], [5], [9], [14], [17], 
[18]). However, very little has been published on methods for finding their 
eigenvalues and eigenvectors which take advantage of their peculiar simplic- 
ity. The tridiagonal case is well understood [6, 9], but, to the author's 
knowledge, only the recent paper of Bini and Capovani [3] on the eigenvalues 
of Hermitian Toeplitz band matrices contains any sort of general results along 
these lines. Gnmbaum [7, 8] has considered the eigenvalue problem for 
Toeplitz matrices which are not necessarily banded. 

Since the eigenvalue problem for triangular Toeplitz matrices is essentially 
trivial, we incur no significant loss of generality by assuming that 

rsc~c ~ ~ O. (3) 

It is to be understood that (1), (2), and (3) apply throughout the paper. We 
take the underlying field to be the complex numbers. 

Our main result reduces the evaluation of the characteristic polynomial of 
T n to finding the zeros of the polynomial 

P(z;~)= ~ c~,. u'~ ~ - ) ~ z  ~ , '  (4) 

and evaluating a kth order determinant whose entries are powers of these 
zeros, or simple related functions of the zeros if the equation 

P(:; (5) 

has repeated roots. We also give an explicit formula for the value of this 
determinant which is valid when (5) has k distinct roots. Thus, the complexity 
of this representation depends only on k, the bandwidth of 7",,, and is 
independent of its order. Moreover, we give an explicit formula for the 
eigenvectors of T n corresponding to a given eigenvalue, which contains k 
coefficients that can be obtained by solving a kth order homogeneous system 
with complexity independent of n. 
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We observe that (3) implies that z = 0 is not a root of (5). For notational 
reasons, we introduce the k-dimensional column vector function 

Cn(z ) = col [ l ,  z . . . . .  z , - i ,  Zn+s z n + s + l  . . . . .  z n + k  1], 

and denote its l th derivative by C(~t)(z). 

DEFINITION 1. For a fixed X, let z I . . . . .  zq be the distinct roots of (5), 
with multiplicities m l . . . . .  mq; thus, 

q<~k; mi>~l ( l ~ < / ~ < q ) ;  m l +  ' ' '  +mq=k. 

Define the k × k matrix A .  as follows: the first m I columns of A .  are 
C(~t)(zl) (0 <~ l <~ m 1 - 1), the next m 2 columns are C~(t)(z2) (0 ~< l ~< m 2 - 1), 
and so forth. In  particular, if q = k, so that (5) has distinct roots z 1 . . . . .  z k, 
then 

An 

1 1 - . -  1 

s 1 
- 1  " ' "  z k  

~4- 8 . . .  z k  

_ n + k  I Z~ + k - 1  Z~ + k - I  " ' "  ;~k 

(0) 

There is an obvious ambiguity in this definition, since the distinct zeros of 
(5) can be numbered arbitrarily. However, renumbering the zeros simply 
permutes the columns of A . ,  which does not affect our results, 

In the following, x (~) is the factorial polynomial: 

x (°)= 1, x (~)= x ( x -  1 ) - - "  ( x -  p + 1 ) ,  

THEOREM 1. Let ~ and z 1 . . . . .  zo be as in Definition 1. Then ~ is an 
eigenvalue o f  T n i f  and only i f d e t  A .  = 0, in which case the corresponding 
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eigenvectors 

are given by  

U =  col [u  o, u t . . . . .  u .  1] 

;/  m i  ] 

= ~(")-~' +' " O < ~ i < ~ n - 1 ,  
]'-1 .=(~ 

where the k-vector 

X col[ a o , , . . . ,  a .... , 1 , . . . ,  aoq, . . . ,  a,,,~, ~ 1,q] 

is a nontrivial solution o f  the k x k system 

A, ,X = O. 
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(7) 

(s) 

(,9) 

Prooj. With U as in (7), the equation T.U = ~U is equivalent to the 
following three equations: 

L C']1'U1* .~ i = )kUi, 
]1 = i 

( ) ~ < i ~ s - l ,  

r 

]1, = '," 

s ~ i ~ n - r - 1 ,  

n i 1 

E c.u.+,=~ui, 
]1 = S 

n - r <~ i <~ n - 1 ,  

which are together  equivalent to 

1.~ = - ,y 

O ~ < i ~ < n - 1 ,  (lOa) 

u ~ = O  if - s ~ i ~ < - I  or n ~ < i ~ < n + r - 1 .  ( lOb)  
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Therefore, ~ is an eigenvalue of T n if and only if there is a nonzero 
(n + k)-vector 

0 = col[0 . . . . .  0, u o . . . . .  u ,_  1,0 . . . . .  0], 

with s zeros at the top and r zeros at the bottom, which is a solution of the 
finite difference boundary value problem (10). Our hypotheses imply that for 
every integer i, zj is a zero of ziP(z;  h)  with multiplicity mj; hence, from 
(4), 

.,~(v) i - v  
o =  = z 7 

It = S 

O ~ v ~ < m j - 1 ,  l <~ j <~ q. 

- h ( s  + i)(")z *+i ", 

This means that the k sequences 

( s + '  (") s*i-~ } _ z) z i - s < ~ i < n + r - 1  , O < ~ v < m j  1, l<~j<~q,  

all satisfy (lOa). Since they are linearly independent, the general solution of 
(lOa) is of the form 

q m i 1 

tli E E "O~vj( s -  " (v) s+i v = -~*) zj  , - s < . i < n + r - 1 .  (11) 
j = l  v = O  

On recalling the definition of A. ,  we see that (11) satisfies the boundary 
conditions (10b) if and only if X in (8) satisfies (9). • 

As we will see in Section 3, (5) can have repeated roots for at most k 
values of k. Therefore, it is worthwhile to state the following corollary of 
Theorem 1. 

COROLLARY 1. Suppose (5) has distinct roots z 1 . . . . .  z k. Then )x is an 
eigenvalue o f  T, i f  and only i f  there are constants o~ 1 . . . . .  O~k, not all zero, 
which  satisfy the kth-order system 

k 

%z~ =0, 0~<p<s-1,  
j = l  

k 

" + ' + " = 0 ,  O < < , v ~ r - 1 .  ~_~ a j z  i 
j = l  
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In this case the vector (7), with 

k 

/=1 

is an associated eigenvector. 

Theorem 1 clearly implies that there is a connection between det A, and 
the characteristic polynomial 

p ,~ (h )= de t [ h l ~ , -  7;]. 

The next theorem states this connection precisely. 

THEOREM 2. Let h, z 1 . . . . .  zq, and At, be as in Definition 1. 7hen 

1,, . det A,, 
p,,(h) = ( - 1 )  (" Cr d-e-tA(, ' (12) 

Moreover, there are at most k values o f  h for which q < k. 

In Section 5 we give a more explicit form for (12) for the case where 
q = k. Because of its length, we leave the proof of Theorem 2 to Section 3. 
We now consider the possible dimensions of the eigenspaces of 7~,. To this 
end, let E,,(~) be the eigenspace of T, corresponding to an eigenvalue X, and 

d~(X) = dim E.()~ ). (13) 

From the proof of Theorem 1, 

d,l(X ) = nullity of A, .  (14) 

LEMMa 1. Let h and z 1 . . . . .  Zq be as in Definition 1. Then X is an 
eigenvalue o f  T, i f  and only i f  there are polynomials 

f ( z ) = a o + . . . + a ,  l~ (15) 

and 

g ( z ) = b o + '  ' + b r  i zr L (16) 
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such that the polynomial 

h ( z ) = f ( z ) + z n + ~ g ( z )  (17) 

is not identically zero and has zeros at z 1 . . . . .  zq with multiplicities at least 
ml, . . . ,ma; i.e., 

h(t~(zi)=O, O<<.l<~mi-1, 1<~i<~ q. (18) 

Moreover, i f  H,(A ) is the vector space o f  polynomials which satisfy (15), 
(16), (17), and (18), then 

dim Hn(A) = dn(2t). (19) 

Proof. 
(17) satisfies (18) if and only if the vector 

Y = col[a o . . . . .  a~_ 1, b o . . . . .  b,_,] 

satisfies the system A t y  = 0 (t = transpose). Therefore, 

dim Hn(h) = (nullity of At, ) = (nullity of An), 

so (13) and (14) imply (19). 

It is easy to verify that a polynomial h of the form (15), (16), and 

THEOREM 3. I f  h is an eigenvalue o fT . ,  then d . ( h ) ~  min(r, s). 

Proof. From I.emma 1, it suffices to show that dim H, (X)~  min(r, s). 
Suppose 

h j ( z ) = f i ( z ) + z " ÷ * g i ( z  ), l ~ < / ~ s + l ,  

are any s + l  polynomials in H,(h).  Since degfj  ~ s -  1, we can choose 
constants fix . . . . .  fls+l, not all zero, such that 

+E+1£÷1=o. (20) 
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h = f l t t h  ÷ . . .  + fit + th, , 

is also in Hn(h ) and, from (20), is of the form h ( z ) =  z"+~g(z), where 

Since z / ~ 0  ( l~<j~<q),  (18) implies that g " ) ( z j ) = 0 ,  0~< l~  m / - - l ,  
1 ~< j ~< q; i.e., g has at least k zeros, counting multiplicities. Since deg g ~< s 
- 1 < k, this means that g = 0. Hence, h = 0, and so 

f i t h l  + " " " + fl.~ + lit.,'+ 1 = O. 

Therefore, any s + 1 polynomials in H , ( X )  are linearly dependent, and so 
dim H,,(X ) ~< s. A similar argument shows that dim H,(X ) ~ r. • 

THEOaEM 4. Suppose  k is an e igenvalue  of ' l ) ,  and  d n(X) = m >~ 2. Then 
k is also an e igenva lue  o f  T,, t and  '1~,+ I, 

d,, l( X ) ~ m - 1 ,  (21 

antt  

d , , ,  l ( X ) )  m - 1. ( 2 2 )  

ProoL 
polynomial 

First notice that if h ~ H,,(X) and f (0 )=  0 [see (17)], then the 

h i = )  : + : " "  '¢(.-,) 

is in t t ,  1(~). Now let the polynomials 

h,(z) = £ ( z ) +  z" l ~ i < ~ m ,  

form a basis for H,,(X). If ~(0) = 0 (1 ~< i ~< m), then the argument just given 
implies that d , ,  t(k) >/m, If ~ ( 0 ) #  0 for some l, then the m -  1 polynomials 

h ~ ( z ) = f r ( O ) h , ( z ) - ~ ( O ) h l ( z ) ,  l ~ i ~ < m ,  i ~ l ,  



TOEPLITZ BAND MATRICES 207 

are linearly independent  members of H , ( k )  which vanish at z = 0. This and 
our earlier observation imply (21). 

Now observe that ff h ~ Hn(h ) and g ( 0 ) =  0, then h ~ Hn÷l(h  ), since h 
can be rewritten as 

Because of this, an argument  similar to the one just given proves (22). • 

3. P R O O F  OF  T H E O R E M  2 

We prove Theorem 2 by  means of a series of lemmas. 

LEMMA 2. There are at most k values o f  k for which (5) has fewer than 
k distinct roots. 

Proof. If (5) has a repeated root, then the resultant of P(z; k)  and 
P:(z; k)  must vanish. From a formula given in [20, p. 84], this resultant can be 
written explicitly as a (2k - 1 )×(2k  - 1) determinant with ith row elements 
(from left to right) as follows: 

(a) For 1 ~< i 4 k - 1, there are i - 1 zeros, followed by c r . . . . .  q ,  c o - k, 
c 1 . . . . .  c_ s, and k - i - 1 zeros. 

(b) For k ~ < i ~ < 2 k - 1 ,  there are i - k  zeros, then the coefficients 
kc r . . . . .  (s + 1)c 1, s(c o - k ) , ( s  - 1)c_ 1 . . . . .  c ~+l of P:(z; k), and then 2k - i 
- 1 zeros. 

Since c o - 2~ occurs in exactly k columns of this determinant,  the resultant 
is a polynomial of degree ~< k. • 

Henceforth we will say that a value of k for which (5) has repeated roots 
is a critical point of P(z; ~). All other values of k will be called ordinary 
points of P( z; k ). 

DEFINITION 2. For a fixed h, let z 1 . . . . .  Zq and m 1 . . . . .  mq be as in 
Definition 1. If n I . . . . .  n k are nonnegative integers, let 

nx . . . . .  c o l [ z ° ' ,  z " '  . . . . .  
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Let  D ( z  1 . . . . .  z,~; n t . . . . .  n k )  be the following k × k determinant:  its first m 1 

columns are F°~(Zl; n l . . . . .  nk) (0 ~< l ~< m l -  1); its next m e columns are 
F(/)(z2;/~1 . . . . .  nk)  (0  4 1 <~ m e - 1); and so forth. Now let 

D ( ~ I  . . . . .  Zq; Ii I . . . . .  nk )  
q(A; h i ' " "  n k ) =  D ( z ,  . . . . .  z,/ ;0,1 . . . . .  k -  1) ' (23) 

Observe that  this definition yields 

q ( A :  n l  . . . .  n~) = 

[ .r",] k 
d e t t ~ /  j~ . j=l  

det [z l  ,]k 
i , i = l  

for ordinary values of A, and for a H ~ ,  

det A,, 
q(2t:0 . . . .  s - l , n + s  . . . . .  n + k - 1 ) -  d e t A  0 '  (24) 

where A n is the matrix introduced in Definition 1. 
The  denominator  on the right of (23) cannot  vanish, since it can be shown 

that  

D ( z  1 . . . . .  z, , ;0,  1 . . . . .  k - 1 ) =  K 1F-[ ( z j -  zi)  r'' ( K  = constant) ,  

where  the r i i ' s  are positive integers; if q = k, then rij = 1 for all i, j since this 
is the Vandermonde  determinant.  

W e  deliberately avoid denoting the root z~ a.s z i ( h ) ,  since justifying this 
would require an irrelevant appeal  to the theory of multiple valued algebraic 
analytic functions. Since the columns of both determinants  in (23) are 
p e r m u t e d  in the same way if z l , . . . ,  z ,  are renumbered,  q()~; nj  . . . . .  n k )  is 
well def ined for all )~. 

In  the following we adopt  the convention that the zero polynomial has 
degree  - ~ .  

LEMMA 3. S u p p o s e  n~ . . . . .  n k are  n o n n e g a t i v e  i n t eger s ,  a n d  m = 

m a x  { n t . . . . .  n k }" T h e n  q(  )~; n 1 . . . . .  n k) is  a p o l y n o m i a l  o f  d e g r e e  <~ m - k + 1. 

P r o o f .  We use induction on m. Obviously q ( ~ ;  n 1 . . . . .  n k )  is constant  (0, 
1, or - 1 )  if 0 ~< m .%< k -  1. Now suppose the conclusion is valid for some 
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m >/k - 1, and let max{ n l , . . . ,  n k } = m + 1. Since permuting n 1 . . . . .  n k 
merely changes the sign of q(h; n 1 . . . . .  nk), we may assume that n k = m + 1. 
We may also assume that 

n i < m,  1 < J ~< k -  1, (25) 

since q(X; n l . . . . .  nk) - 0 (two identical rows) if this is not so. 
Now we claim that 

c , D ( z l  . . . . .  z ,~;n l  . . . . .  n k 1 , m + / ~ -  r + 1 )  
,tl, = - -  S 

- ~ D ( z  1 . . . . .  Z q ; n  1 . . . . .  n k 1 , m - r  + l ) = O .  (26) 

To see this, first notice that the determinants in (26) are identical in their first 
k - 1 rows;  h e n c e ,  if R, ,+~,  r+l  d e n o t e s  the  k th  row of 
D ( z  1 . . . . .  Zq; n 1 . . . . .  nk_  l, m + ~ -- r + 1), then the left side of (26) equals a 
determinant  with last row 

['Y1 . . . . .  "{k] = ~ c t ~ R m + l z - r + l - ~ , a m  r+l '  
p . =  - S  

Here a typical 7~ is of the form 

7. = k c ~ ( m + t z - r + l ) ( ' ) z ~ + ~ * - r + l - t - 2 x ( m - r + l ) O ' z }  n r + l  l 

1 1 " =  - -  s 

for some j in {1 . . . . .  q} and 1 in {0 . . . . .  m i - 1  ). Since z i is a zero of 
z m - k + I P ( z ;  h )  w i t h  multiplicity m i, this implies that 3,~=0 (i~< u~< k), 
which in turn implies (26). 

From (23) and (26), 

q (~ ;  nl . . . . .  nk 1, m + 1) = cr -1 [Xq(X; n 1 . . . . .  nk_t ,  m - r + 1) 

r--X )1 c ~ q ( X ; n t  . . . .  n k 1 , m + / x - r + l  . 
p , =  s 

(27) 
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Because of (25), 

m a x { n  1 . . . . .  nk l , m + / ~ - r + l }  ~<m, - s < ~ l ~ < ~ r - - l ,  

so our induction assumption implies that the functions 

q (h ;  n~ . . . . .  n k l , m + g -  r + l ) ,  - - s ~ r - 1 ,  

are polynomials of degree ~< m -  k + 1. Hence (27) implies that 
q(X; n l . . . . .  nk_ l, m + 1) is a polynomial of degree ~< m - k +2 .  This com- 
pletes the induction. • 

LEMMA 4. The p o l ynomia l  

Q m ( h  ) ( 1),r t) ...... , ~  . . . . .  c r q ~ , ; 0  . . . . . .  s - l , m + s  . . . . .  r e + k - 1  (28) 

is m o n i c  and  o f  exact  degree m.  

Proof. We use induction on m. From (23) (with n, = i - 1, 1 ~< i 4%< k) 
and (28), Q0 = i. Now suppose the conclusion is valid for a given m >~ 0. 
From an argument  like that which led to (27), 

q (X;0  . . . . .  s -  1 , m  + s + l . . . . .  m + k -  l , m  + k )  

= c  r 1Xq(X;0 . . . . .  s - l , m + s + l  . . . . .  m + k - l , m + s ) +  . - .  

= ( - 1 ) '  ic r l k q ( k ; O  . . . . .  s - l , m + s , m + s + l  . . . . .  m + k - 1 ) ~  . - .  

(29) 

(with obvious modifications if r = 1), where " . . . "  stands for a polynomial 
of degree ~< m, because of Lemma 3. Multiplying (29) through by 
( _ 1)~ l~(m + 1)Cr,, ~ 1 and recalling (28) shows that 

Q,,,. ,(~,) = hQ,,,(~) + . . . ,  

and so our induction assumption implies that Qm ~1 is monic and of exact 
degree m + 1. • 

For  n >~ k, Theorem 1, (24), and Lemma 4 imply that Pn and Q.  are both 
monic  and of degree n, and that they have the same zeros (the eigenvalues of 
T.). Therefore, certainly Q~ = p.  if T~ has n distinct eigenvalues. We must 
still ride out the possibility that T. has only m ( < n )  distinct eigenvalues 
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h 1 . . . . .  h , , ,  and 

while 

p n ( ~ k )  = ( ~ -  X l )  r '  • • • ( ~ k - -  ~km)  r'~ 

Qn(~ ) = ( ~ -  ~,l) sl . . . ( ~ k - ~ m )  s,., 

with r~ 4: s i for some i. A continuity argument  excludes this possibility. For 
every e > 0 there are constants ~ s . . . . .  Cr such that  ~ f r  4: 0, 

15j -- Cjl 2 < C 2, 
j =  --S 

and the matrix 

. 1 ~'n=(Cj-i)i,j=O 
has n distinct eigenvalues. Let  ~), be  the polynomial defined in L e m m a  4 in 
connect ion with ~ s . . . . .  C~r, and let ~3 n be  the characteristic polynomial of T,,. 
By the proof just given, Qn = 13,. But since the coefficients of Q,  and ~,, are 
continuous functions of ~ s . . . . .  cr we can now let e---) 0 and infer that 
Q,  = ]9, in this case also. 

4. AN EXAMPLE:  T H E  T R I D I A G O N A L  CASE 

Now suppose that  r = s = 1, so that  T, is tridiagonal. Then (4) and (5) 
become  

e ( z ;  x )  = c_1 + (Co - X )z  + 2, (30) 

which has a repeated  root if and only if ~ = c o +_ 2 c 1 ~ _  1 ; however,  we will 
see that  nei ther  these numbers  is an eigenvalue of TT, for any n > 2. 

If ~ is an ordinary point of (30), (6) becomes 

[1 1] 
A n  ~ n + l  + 1  • 

Z I Z~ 
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From Theorem 2. h is an eigenvalue of 7]~ if and only if det A .  = 0. which is 
equivalent to (z ,~ /z l )  '~ + 1 = 1. Since 
convenient  equiv',dent form 

z l C z  2, we can rewrite this in the 

z 1 = 7 ,exp(  qrri - qrri '] ). Zo = y,  exp( ~ I '  !31) 

where  q = 1 . . . . .  n and 7, is to be determined.  Let  h ,  be the eigenvalue for 
which (30) (with ~ = ~ , )  has roots as in (31). Then 

CI z2"+- (C()--  ~ . ) ~ .  + C • 1 - c ~ ( z  - z l ) ( z  - z 2 )  

Matching the coefficients of z and z 2 shows that 

7,, = ~'i: ; ) /~i  ( independent  of q ), 

and 

~ ), l <~ q <~ n. = ,:,, + 2v ,c ;cos(  

( 3 2 )  

From (31). (32). and Corollary 1. it is straightforward to show that  the vector 
U, = [u0,  . . . . .  un 1.,] given by 

C t . n + ]  , '  
0 ~< m ~< n - 1, 

is an eigenvector  corresponding to A q. 
These results have been obtained by  other authors (e.g.. [6]. [9]). 

5. A M O R E  E X P L I C I T  F O R M U L A  FOR p , (h )  

W e  will now write (12) in a form more convenient  for computat ional  
purposes,  for the case where ~ is an ordinary point of (5). 
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DEFINITION 3. Let  q[ be the set o f  all r-tuples u = ( g l  . . . . .  ~ r ) ,  where 
gl  . . . . .  I~ are integers such that 1 <~ gl  < Ix2 < " " " < gr < k. I f  z I . . . . .  z k are 
arbitrary complex numbers, let 1-Iu(z 1 . . . . .  zk)  denote the product o f  all 
factors (z  i - z~), where 1 <~ i < j <~ k and exactly one o f  the integers i, j is 
among gl  . . . . .  g~. Let  ~ denote the sum over all r-tuples u in ql. 

THEOREM 5. Suppose ~ is an ordinary point o f  (5) and  z x . . . . .  z k are its 
~ros.  Then 

p~(h)  = ( - 1 ) ° " c / ' E  ( - 1) g '+ ' +g' ( G , " " "  z,~ ) ' + s  
H~(z~ . . . . .  zk) ' 

(33) 

where 

0, = ( r  - 1)n + r(2s  + r + 1) (34) 
2 

Proof. If u = (g l  . . . . .  g r )  is a given element  of q/, let 0'1 . . . . .  Ps) be  the 
s-tuple of integers in (1 . . . . .  k} that  are not among  g~ . . . . .  gr,  with ~'~ < P2 < 

• • • < u s. Expanding the de terminant  of (6) by  Laplace 's  development  [16, p. 
123] with respect  to the last r rows and removing common factors yields 

d e t A  n ~ (  . ,o(u) ,  , + s  = - 1 )  t Z . ' ' ' Z ~ r )  V(Z., . . . . .  ~ r ) V ( ~  ..... ~ ) ,  (35) 

where  

. ( u ) =  u~+  . - .  + ~ r +  r(2s  + r + 1) (36) 

and the V ' s  are Vandermonde  determinants .  Since det A o = V(z  1 . . . . .  zk) and 

V(z~, . . . . .  z . r ) v ( z .  ~ . . . . .  z~s) 
v ( z l  . . . . .  Zk) = ( 1 - [ u ( Z  1 . . . . .  Zk)) -  1, 

(12), (35), and (36) imply (33) and (34). 
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