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The paper concerns with a nonlinear singular fractional differential equation:

tα
∂αu(t, z)
∂tα

= F

t, z, u,

∂u
∂z


, 0 < α < 1,

where t ∈ J := [0, 1] and z ∈ U := {z ∈ C :| z |< 1}. The existence and the uniqueness
of holomorphic solution are established.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Fractional calculus is a rapidly growing subject of interest for physicists and mathematicians. The reason for this is that
problemsmay be discussed in amuchmore stringent and elegantway than using traditionalmethods. Fractional differential
equations have emerged as a new branch of applied mathematics which has been used for many mathematical models
in science and engineering. In fact, fractional differential equations are considered as an alternative model to nonlinear
differential equations [1–7].

The class of fractional differential equations of various types plays important roles and tools not only in mathematics
but also in physics, control systems, dynamical systems and engineering to create the mathematical modeling of
many physical phenomena. Naturally, such equations required to be solved. Many studies on fractional calculus and
fractional differential equations, involving different operators such as Riemann–Liouville operators, Erdlyi–Kober operators,
Weyl–Riesz operators, Caputo operators and Grünwald–Letnikov operators, have appeared during the past three decades
with its applications in other fields [8–15]. Moreover, the existence and the uniqueness of holomorphic solutions for
nonlinear fractional differential equations such as Cauchy problems and diffusion problems in complex domain are
established and posed [16–20].

The present paper deals with a nonlinear singular fractional differential equation, in sense of the Riemann–Liouville
operators, in the analytic category. The Riemann–Liouville fractional derivative could hardly pose the physical interpretation
of the initial conditions required for the initial value problems involving fractional differential equations. One of the most
frequently used tools in the theory of fractional calculus is furnished by the Riemann–Liouville operators. Moreover, this
operator possesses advantages of fast convergence, higher stability andhigher accuracy to derive different types of numerical
algorithms (see [21–23]).

Definition 1.1. The fractional (arbitrary) order integral of the function f of order α > 0 is defined by

Iαa f (t) =

∫ t

a

(t − τ)α−1

Γ (α)
f (τ )dτ .
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When a = 0, we write Iαa f (t) = f (t) ∗ φα(t),where (∗) denoted the convolution product,

φα(t) =
tα−1

Γ (α)
, t > 0

and φα(t) = 0, t ≤ 0 and φα → δ(t) as α → 0 where δ(t) is the delta function.

Definition 1.2. The fractional (arbitrary) order derivative of the function f of order 0 < α < 1 is defined by

Dαa f (t) =
d
dt

∫ t

a

(t − τ)−α

Γ (1 − α)
f (τ )dτ =

d
dt

I1−αa f (t).

Remark 1.1. From Definitions 1.1 and 1.2, we have

Dαtµ =
Γ (µ+ 1)

Γ (µ− α + 1)
tµ−α, µ > −1; 0 < α < 1

and

Iαtµ =
Γ (µ+ 1)

Γ (µ+ α + 1)
tµ+α, µ > −1; α > 0.

Sufficient conditions to have a unique holomorphic solution for the equation

tα
∂αu(t, z)
∂tα

= F

t, z, u,

∂u
∂z


, (1)

subject to the initial condition u(0, 0) = 0,where t ∈ J := [0, 1], z ∈ U , u(t, z) is an unknown function and F(t, z, u, v) is
a function with respect to the variables (t, z, u, v) ∈ J × U × C2 are given. The result is applied to obtain solution for well
known problems.

We need the following assumptions and lemma which will be useful for the proof of the main result.
(H1) F(t, z, u, v) is a holomorphic function defined in a neighborhood of the origin (0, 0, 0, 0) ∈ J × U × C2.

(H2) F(0, z, 0, 0) ≡ 0 near z = 0.
Thus the function F(t, z, u, v)may be expressed in the form:

F(t, z, u, v) = A(z)t + B(z)u + C(z)v + R2(t, z, u, v), (2)

where

A(z) :=
∂F
∂t
(0, z, 0, 0), B(z) :=

∂F
∂u
(0, z, 0, 0), C(z) :=

∂F
∂v
(0, z, 0, 0),

and the degree of R2(t, z, u, v)with respect to (t, z, u, v) is greater than or equal to 2.
(H3) C(z) := zc(z), c(0) ≠ 0.

Lemma 1.1 ([24]). Let R > 0 and f (x) be a holomorphic function on DR = {x ∈ C : |x| < R}. If for any r > 0, 0 < r < R, f (x)
satisfies

max
|x|≤r

|f (x)| ≤
ρ

(R − r)µ

for some ρ > 0 and µ ≥ 0 then we have

max
|x|≤r

∂ f (x)∂x

 ≤
(µ+ 1)eρ
(R − r)µ+1

.

2. Existence of unique solution

We have the following result.

Theorem 2.1. Let the assumptions (H1)–(H3) hold. If

βk(z) :=
B(z)−

Γ (k+1)
Γ (k+1−α)

c(z)
, k ∈ N

satisfies that 0 < ‖βk‖r < ∞ and ℜ(βk(0)) > 0 for all k ∈ N and 0 < α < 1, then the Eq. (1) has a unique holomorphic
solution u(t, z) near (0, 0) ∈ J × U with u(0, 0) = 0.
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Proof. We realize that Eq. (1) has a formal solution

u(t, z) =

∞−
k=1

uk(z)tk, (t ∈ J). (3)

Then introduce the formal series (3) into the Eq. (1) and compare the coefficients of tk in two sides of the equation yields

u1(z)
Γ (2)

Γ (2 − α)
= A(z)+ B(z)u1(z)+ C(z)

∂u1(z)
∂z

,

u2(z)
Γ (3)

Γ (3 − α)
= B(z)u2(z)+ C(z)

∂u2(z)
∂z

+ φ1


u1,

∂u1(z)
∂z


,

u3(z)
Γ (4)

Γ (4 − α)
= B(z)u3(z)+ C(z)

∂u3(z)
∂z

+ φ2


u1, u2,

∂u1(z)
∂z

,
∂u2(z)
∂z


,

....

(4)

Thus we obtain the following formula

C(z)
∂uk(z)
∂z

+

[
B(z)−

Γ (k + 1)
Γ (k + 1 − α)

]
uk(z) = −φk−1


u1, u2, . . . , uk−1,

∂u1(z)
∂z

,
∂u2(z)
∂z

, . . . ,
∂uk−1(z)
∂z


(5)

where C(z) = zc(z) and φ0(z) = −A(z). Eq. (5) is equivalent to

z
∂uk(z)
∂z

+


B(z)−

Γ (k+1)
Γ (k+1−α)

c(z)


uk(z) =

−φk−1


u1, u2, . . . , uk−1,

∂u1(z)
∂z ,

∂u2(z)
∂z , . . . ,

∂uk−1(z)
∂z


c(z)

:= Φ


u1, . . . , uk−1,

∂u1(z)
∂z

, . . . ,
∂uk−1(z)
∂z


. (6)

Now since

ℜ


B(0)−

Γ (k+1)
Γ (k+1−α)

c(0)


> 0

then the Eq. (6) has a unique holomorphic solution uk(z) near z = 0. Moreover, uk(z) is bounded for all k ∈ N such that

‖uk‖r ≤
‖Φ‖r

‖βk‖r
, (7)

where ‖Φ‖r = max|z|≤r |Φ(.)| and

βk(z) :=
B(z)−

Γ (k+1)
Γ (k+1−α)

c(z)
, k ∈ N.

To prove inequality (7); From Eq. (6) we have

d
dz


e
 z
0
βk(s)

s ds
× uk(z)


= e

 z
0
βk(s)

s ds
×
Φ(z)
z
.

Thus ∫ z

0

d
dy


e
 y
0
βk(s)

s ds
× uk(y)


dy =

∫ z

0
e
 y
0
βk(s)

s ds
×
Φ(y)
y

dy

that is

e
 z
0
βk(s)

s ds
× uk(z)− uk(0) =

∫ z

0
e
 y
0
βk(s)

s ds
×
Φ(y)
y

dy

which equivalents to

uk(z) = e−
 z
0
βk(s)

s ds
×

∫ z

0
e
 y
0
βk(s)

s ds
×
Φ(y)
y

dy.
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Therefore,

‖uk‖r ≤ max
|z|≤r

e−
 z
0
βk(s)

s ds
×

 z
0 e

 y
0
βk(s)

s ds
×

βk(y)
y dy


|βk(z)|

× ‖Φ‖r

≤
‖Φ‖r

‖βk‖r
.

Nowwe proceed to prove that the formal series solution (3) is convergent near (0, 0) ∈ (J,U). We expand the remainder
term R2(t, z, u, v) of (2) into Taylor series with respect to (t, u, v), i.e.

R2(t, z, u, v) =

−
m+n+p≥2

am,n,p(z)tmunvp

such that

(i) am,n,p(z)
c(z) is holomorphic in U .

(ii) |
am,n,p(z)

c(z) | ≤ Am,n,p, Am,n,p > 0 on U .

(iii)
∑

m+n+p≥2 Am,n,ptmV n+p converges in (t, V )where V > 0 satisfies |u| ≤ V and |v| ≤ V .

From the Eq. (5), we observe that[
z
∂

∂z
+ β1

]
u1(z) =

−A(z)
c(z)

,

...[
z
∂

∂z
+ βk

]
uk(z) = −

−
m+n+p≥2

 −
m+k1+···+kn+l1+···+lp=k

am,n,p(z)
c(z)

× uk1 × · · · × ukn ×
∂ul1

∂z
× · · · ×

∂ulp

∂z

 .
(8)

Without loss of generality we may assume that there exists a constant K > 0 such that

|u1(z)| ≤ K , and
∂u1(z)
∂z

 ≤ K .

Denoting C :=
1

‖βk‖r
then we pose the following formula:

V (t) = Kt +
C

1 − r

−
m+n+p≥2

Am,n,p

(1 − r)m+n+p−2
tmV nV p, (9)

where r is a parameter with 0 < r < 1. Since the Eq. (9) is an analytic functional equation in V then in view of the implicit
function theorem, the Eq. (9) has a unique holomorphic solution V (t) in a neighborhood of t = 0 with V (0) = 0. Expanding
V (t) into Taylor series in t we have

V (t) =

−
k≥1

Vktk (10)

where

Vk =
C

1 − r

−
m+n+p≥2

 −
m+k1+···+kn+l1+···+lp=k

Am,n,p

(1 − r)m+n+p−2
× Vk1 × · · · × Vkn × 0!(eVl1)× · · · × (p − 1)!(eVlp)


:=

Ck

(1 − r)k−1
, k ∈ N

> 0, (11)

with C1 = K .
Next our aim is to show that the series

∑
k≥1 Vktk is a majorant series for the formal series solution

∑
k≥1 uktk near z = 0.

For this purpose we will show that

|uk(z)| ≤ Vk on Ur := {z ∈ C : |z| ≤ r, r < 1} (12)
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and ∂uk(z)
∂z

 ≤ (k − 1)!(eVk) on Ur . (13)

Since (1 − r) < 1 implies

1
(1 − r)m+n+p−2

≥ 1, r < 1

then we have

|uk(z)| ≤ C
−

m+n+p≥2

 −
m+k1+···+kn+l1+···+lp=k

Am,n,p × |uk1(z)| × · · · × |ukn(z)| ×

∂ul1(z)
∂z

 × · · · ×

∂ulp(z)
∂z




≤ C
−

m+n+p≥2

 −
m+k1+···+kn+l1+···+lp=k

Am,n,p × Vk1 × · · · × Vkn × 0!(eVl1)× · · · × (p − 1)!(eVlp)


≤ C

−
m+n+p≥2

 −
m+k1+···+kn+l1+···+lp=k

Am,n,p

(1 − r)m+n+p−2
× Vk1 × · · · × Vkn × 0!(eVl1)× · · · × (p − 1)!(eVlp)


≤

Ck

(1 − r)k−2
≤

Ck

(1 − r)k−1
= Vk.

Hence we obtain the inequality (12). Next by using Lemma 1.1, we pose that∂uk(z)
∂z

 ≤ (k − 1)
eCk

(1 − r)k−1
≤ (k − 1)!

eCk

(1 − r)k−1
= (k − 1)!(eVk).

This completes the proof of Theorem 2.1. �

3. Briot–Bouquet equation

As a special case of Eq. (1) is so call the Briot–Bouquet equation. The fractional Briot–Bouquet equation has wide
applications in geometric function theory (see [25–30]).

Let us recall the theory of nonlinear ordinary differential equations of the form

t
du
dt

= f (t, u), f (0, 0) = 0,

which was first studied by Briot–Bouquet and its generalization to partial differential equations takes the form

t
∂u(t, x)
∂t

= F

t, x, u,

∂u
∂x


,

where F satisfies the assumptions (H1) and (H2) with C(z) ≡ 0 (see [31]).
In this section we establish the existence of unique holomorphic solution for fractional Briot–Bouquet equation

tα
∂αu(t, z)
∂tα

= F

t, z, u,

∂u
∂z


, z ∈ U . (14)

Thus F can be expanded into the following formula:

F(t, z, u, v) = A(z)t + B(z)u + R2(t, z, u, v), (15)

where

A(z) :=
∂F
∂t
(0, z, 0, 0), B(z) :=

∂F
∂u
(0, z, 0, 0)

and the degree of R2(t, z, u, v)with respect to (t, z, u, v) is greater than or equal to 2. Then we have the following result.

Theorem 3.1. Let the assumptions (H1), and (H2) hold. If

ℜ(B(z)) ≠
Γ (k + 1)

Γ (k + 1 − α)
, ∀k ∈ N and z ∈ U,

then the Eq. (14) has a unique holomorphic solution u(t, z) near (0, 0) ∈ J × U with u(0, 0) = 0.
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Proof. Consider that Eq. (14) has a formal solution

u(t, z) =

∞−
k=1

uk(z)tk, (t ∈ J). (16)

Then Eq. (16) can decomposed into two equations

u1(z)
[

Γ (2)
Γ (2 − α)

− B(z)
]

= A(z), k = 1

and

uk(z)
[

Γ (k + 1)
Γ (k + 1 − α)

− B(z)
]

=

−
2≤i+j+p≤k

aijp(z)

 −
i+|m|+|n|=k

um1 . . . umj ×
∂un1

∂z
· · ·

∂unp

∂z


, k ≥ 2,

where |m| = m1 + · · · + mj and |n| = n1 + · · · + np. Therefor, if ℜ(B(z)) ≠
Γ (k+1)

Γ (k+1−α) , ∀k ∈ N and z ∈ U then (16) has a
unique holomorphic solution u(t, z) near (0, 0) ∈ (J,U). �

4. Applications

In this section, we illustrate two examples of singularity in t and u to apply Theorem 2.1.

Example 4.1. Consider the following equation t0.5

1.128
∂0.5u(t, z)
∂t0.5

+ 4z
∂u(t, z)
∂z

= (10 + z)t + zt2, t ∈ J = [0, 1]

u(0, z) = 0, in a neighborhood of z = 0
(17)

where u(t, z) is the unknown function. By putting

u(t, z) = µ(z)t + v(t, z) (v(t, z) = O(t2))

as a formal solution. Computations give

t0.5
∂0.5u(t, z)
∂t0.5

= 1.128µ(z)t + t0.5vα(t, z)

and

z
∂u(t, z)
∂z

= zµ′(z)+ zvz(t, z).

Therefore, µ(z) satisfies

µ(z)+ 4zµ′(z)− 10 − z = 0.

Now by letting

µ(z) := p + φ(z),

where p is a constant and φ(z) = O(z)we obtain that p = 10. Hence we have the following equation:
4zφ′(z) = z − φ(z), p = 10
φ(0) = 0, (18)

such that the holomorphic solution φ(z) exists uniquely and converges in a neighborhood of the origin.

Example 4.2. Assume the following equationu(t, z)
1.128

t0.5
∂0.5u(t, z)
∂t0.5

+ 16z
∂u(t, z)
∂z

= zt + (1 + z)t2, t ∈ J = [0, 1]

u(0, z) = 0, in a neighborhood of z = 0
(19)

where u(t, z) is the unknown function. By putting

u(t, z) = µ(z)t + v(t, z) (v(t, z) = O(t2))
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as a formal solution. Therefore, µ(z) satisfies

µ(z)2 + 16zµ′(z)− 1 − z = 0.

Now by assuming

µ(z) := q + ψ(z),

where q is a constant and ψ(z) = O(z)we obtain that q = ±1. Hence we impose the following equations:
16zψ ′(z)+ 2ψ(z) = z − ψ2(z), q = 1
ψ(0) = 0, (20)
16zψ ′(z)− 2ψ(z) = z − ψ2(z), q = −1
ψ(0) = 0 (21)

where the holomorphic solution ψ(z) exists uniquely and converges in a neighborhood of the origin.
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