
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
J. Math. Anal. Appl. 337 (2008) 49–60

www.elsevier.com/locate/jmaa

Stability and regularity of weak solutions for a
generalized thin film equation

Meng Xu a,∗,1, Shulin Zhou b,2

a Department of Applied Mathematics, Nanjing University of Science and Technology,
Nanjing, China

b LMAM, School of Mathematical Sciences, Peking University, Beijing, China

Received 19 December 2006

Available online 3 April 2007

Submitted by T.P. Witelski

Abstract

In this paper we establish a stability result and an error estimate of weak solutions for the initial-boundary
value problem of a generalized thin film equation and also obtain some higher regularity results for weak
solutions.
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1. Introduction

Suppose that Ω is a bounded open domain of R
N with smooth boundary ∂Ω . Let p be a

positive number with p > 1. Assume q > 1 and let q ′ be its conjugate Hölder exponent which
satisfies 1/q + 1/q ′ = 1.
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In this paper we consider the following fourth-order parabolic initial-boundary value problem⎧⎨⎩ut + div
(|∇�u|p−2∇�u

) = 0, in Q,

u = 0, �u = 0, on Γ,

u(x,0) = u0(x), on Ω,

(1.1)

where the cylinder Q ≡ Ω × (0, T ), the lateral surface Γ ≡ ∂Ω × (0, T ). In particular, we may
take T = ∞.

The fourth-order parabolic partial differential equations have drawn great interest of the peo-
ple in the fields such as materials science, engineering, biological mathematics, image analysis,
etc. For the background of problem (1.1), we refer to [1–3,7,8,10,12] for details. The thin film
equation

ht + div
(
hn∇�h

) = 0

models thin viscous flows on solid surfaces. When N = 1, Eq. (1.1) is a generalized thin film
equation in [7], which has been extensively studied recently. For example, Bernoff and Witelski
in [1] investigated the stability of compactly-supported source-type self-similar solutions.

When p = 2, Eq. (1.1) is known as a modified version of the Cahn–Hilliard equation (see [2])

ut + div

[
M(u)∇

(
K�u − ∂f

∂u

)]
= 0,

which originally describes the evolution of a conserved concentration field during phase separa-
tion. The Cahn–Hilliard equation has become a pillar of materials science and engineering. The
Cahn–Hilliard equation is also used to improve the sharpness of vague images in image analysis.
Myers in [11] used a general thin film equation

ut + div
(
f (u)∇�u

) = 0

to model the surface tension dominated motion of thin viscous film and spreading droplets.
Liu [9] studied the finite speed of propagation of perturbations and regularity of weak solu-

tions for problem (1.1) in one space dimension with p > 2. In [12] we established the global
existence and uniqueness of weak solutions for problem (1.1) and obtained some higher regular-
ity with respect to the spatial variable for weak solutions of problem (1.1).

In this paper we will establish the stability and regularity of problem (1.1) by proving a sta-
bility theorem, an error estimate, and a higher regularity result with respect to the time variable
for weak solutions of problem (1.1). In the following sections C will represent a generic constant
that may change from line to line even if in the same inequality.

2. Main results

In this paper we assume that

u0 ∈ H 1
0 (Ω). (2.1)

For the convenience of the readers, let us first recall the definition of weak solutions for problem
(1.1) and the main results in [12].

Definition 2.1. A function u : Ω̄ ×[0, T ] → R is a weak solution of problem (1.1) if the following
conditions are satisfied:
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(1) u ∈ C([0, T ];L2(Ω)) ∩ L∞(0, T ;H 1
0 (Ω)) ∩ Lp(0, T ;W 1,p

0 (Ω) ∩ W 2,p(Ω)) with �u ∈
Lp(0, T ;W 1,p

0 (Ω));

(2) For any ϕ ∈ C1(Q̄) ∩ Lp(0, T ;W 1,p

0 (Ω)) with ϕ(·, T ) = 0, we have

−
∫
Ω

u0(x)ϕ(x,0) dx −
T∫

0

∫
Ω

[
uϕt + |∇�u|p−2∇�u · ∇ϕ

]
dx dτ = 0. (2.2)

Theorem 2.2. (See [12, Theorem 2.4].) Under the assumption (2.1), the initial-boundary value
problem (1.1) admits a unique weak solution.

Remark 2.3. Since T is arbitrary, we obtain a unique global weak solution u ∈ C([0,∞);L2(Ω))

∩ L∞(0,∞;H 1
0 (Ω)) ∩ Lp(0,∞;W 1,p

0 (Ω) ∩ W 2,p(Ω)) with �u ∈ Lp(0,∞;W 1,p

0 (Ω)) for
problem (1.1). By choosing a test function �u in Definition 2.1 (indeed we may use the Steklov
averages

[v]h(x, t) = 1

h

t+h∫
t

v(x, τ ) dτ

of the function v(x, t) to replace the corresponding function, and then pass to the limits h → 0),
we obtain an energy type equality

1

2

∫
Ω

∣∣∇u(t)
∣∣2

dx +
t∫

0

∫
Ω

|∇�u|p dx dτ = 1

2

∫
Ω

|∇u0|2 dx, for t > 0. (2.3)

Furthermore, we conclude from (2.1) and (2.3) that

‖u‖L∞(0,T ;H 1
0 (Ω)) � ‖u0‖H 1

0 (Ω), ‖�u||
Lp(0,T ;W 1,p

0 (Ω))
� C‖u0‖2/p

H 1
0 (Ω)

. (2.4)

Now we state our main results as follows.
The first theorem is about the stability of the problem.

Theorem 2.4. Let u be a weak solution of problem (1.1).

(1) If max{1, 2N
N+4 } � p < 2, then there exist two positive numbers C and T0 with

T0 � C‖u0‖2−p

H 1
0 (Ω)

such that

u(x, t) = 0, for x ∈ Ω, t � T0. (2.5)

(2) If p = 2, then there exists a positive constant C such that∥∥u(t)
∥∥

H 1
0 (Ω)

� e−Ct‖u0‖H 1
0 (Ω), for t > 0. (2.6)

(3) If p > 2, then there exists a positive constant C such that∥∥u(t)
∥∥

H 1
0 (Ω)

�
[
Ct + ‖u0‖2−p

H 1
0 (Ω)

] 1
2−p , for t > 0. (2.7)
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Therefore, when p > max{1, 2N
N+4 }, we have

lim
t→∞

∥∥u(t)
∥∥

H 1
0 (Ω)

= 0. (2.8)

The second theorem is an error estimate.

Theorem 2.5. Let the functions u and v be respectively weak solutions of problem (1.1) corre-
sponding to the initial data u0 and v0. Then we have

‖u − v‖L∞(0,T ;H 1
0 (Ω)) � ‖u0 − v0‖H 1

0 (Ω) (2.9)

and

‖u − v‖
Lp(0,T ;W 1,p

0 (Ω)∩W 2,p(Ω))
+ ‖�u − �v‖

Lp(0,T ;W 1,p
0 (Ω))

�

⎧⎨⎩C‖u0 − v0‖2/p

H 1
0 (Ω)

, for p � 2,

C
(‖u0‖H 1

0 (Ω) + ‖v0‖H 1
0 (Ω)

) 2−p
p ‖u0 − v0‖H 1

0 (Ω), for 1 < p < 2,
(2.10)

where C depends only on p, N and Ω .

The third theorem is about the higher regularity of the weak solution with respect to the time
variable.

Theorem 2.6. Let the function u be a weak solution of problem (1.1) with the initial data u0. In
addition, if u0 satisfies

∇�u0 ∈ (
Lp(Ω)

)N
, (2.11)

then we have

Dt∇u ∈ (
L2(Q)

)N
, ∇�u ∈ (

L∞(
0, T ;Lp(Ω)

))N
, (2.12)

where Dt ≡ ∂
∂t

.

3. Proof of Theorem 2.4

Before proving Theorem 2.4, we first prove a lemma which claims the W 2,p-norm of a func-
tion in W 2,p ∩ W

1,p

0 can be controlled by the Lp-norm of its Laplacian.

Lemma 3.1. Suppose that p > 1. Then there exists a positive constant C depending only on
p,N,Ω such that, for every v ∈ W 2,p(Ω) ∩ W

1,p

0 (Ω),

‖v‖W 2,p(Ω) � C‖�v‖Lp(Ω). (3.1)

Proof. It follows from the standard W 2,p-estimate that there exists a positive constant C such
that

‖v‖W 2,p(Ω) � C
(‖�v‖Lp(Ω) + ‖v‖Lp(Ω)

)
. (3.2)

(See [6, Chapter 2] or [4, Chapter 3].)
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In order to prove (3.1), we only need to show that

‖v‖W 1,p(Ω) � C‖�v‖Lp(Ω). (3.3)

If (3.3) is violated, then there exists a sequence {vn}∞n=1 ⊂ W 2,p(Ω) ∩ W
1,p

0 (Ω) such that

‖vn‖W 1,p(Ω) > n‖�vn‖Lp(Ω). (3.4)

Without loss of generality, we assume that

‖vn‖W 1,p(Ω) = 1. (3.5)

Then it follows from (3.2) and (3.4) that

‖vn‖W 2,p(Ω) � C, ‖�vn‖Lp(Ω) � 1

n
.

We draw a subsequence (we still denote it by {vn}∞n=1) and a function v ∈ W 2,p(Ω) ∩ W
1,p

0 (Ω)

such that

vn ⇀ v weakly in W 2,p(Ω),

which implies that

vn → v strongly in W
1,p

0 (Ω).

Therefore, we deduce from (3.5) that

‖v‖W 1,p(Ω) = 1. (3.6)

On the other hand, by the weak convergence of D2vn we know that

‖�v‖Lp(Ω) � lim inf
n→∞ ‖�vn‖Lp(Ω) = 0,

which implies that �v = 0. As we know that v ∈ W
1,p

0 (Ω), we conclude that v = 0 a.e. in Ω .
This is a contradiction to (3.6). Thus (3.3) holds and then (3.1) is true. �
Proof of Theorem 2.4. It follows from (2.3) that ‖∇u(t)‖2

L2(Ω)
is a non-increasing function

with respect to t . Therefore, its derivative with respect to t exists almost everywhere on (0,∞).
After differentiating (2.3) with respect to t , we have

1

2

d

dt

∫
Ω

∣∣∇u(x, t)
∣∣2

dx +
∫
Ω

∣∣∇�u(x, t)
∣∣p dx = 0, a.e. t ∈ (0,∞).

Denote v = ∇u. It follows that
1

2

d

dt

∫
Ω

∣∣v(x, t)
∣∣2

dx +
∫
Ω

∣∣�v(x, t)
∣∣p dx = 0, a.e. t ∈ (0,∞). (3.7)

Recalling �u ∈ Lp(0,∞;W 1,p

0 (Ω)), we obtain �u ∈ Lp(0,∞;Lp∗
(Ω)), where p∗ is the

Sobolev embedding exponent with respect to p. By Lemma 3.1 we have

‖u‖W 2,p∗
(Ω) � C‖�u‖Lp∗

(Ω) � C‖∇�u‖Lp(Ω).

Using Sobolev embedding theorem, we have

‖v‖L2(Ω) � C‖v‖Lp∗∗
(Ω) � C‖∇u‖W 1,p∗

(Ω) � C‖�v‖Lp(Ω)
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for p � max{1, 2N
N+4 }, where p∗∗ is the Sobolev embedding exponent with respect to p∗.

Therefore we obtain from (3.7) that

d

dt

∫
Ω

∣∣v(x, t)
∣∣2

dx + C

(∫
Ω

∣∣v(x, t)
∣∣2

dx

) p
2

� 0, a.e. t ∈ (0,∞). (3.8)

Denote

G(t) =
∫
Ω

∣∣v(x, t)
∣∣2

dx.

Then we get from (3.8) that

G′(t) + CG
p
2 (t) � 0, a.e. t ∈ (0,∞). (3.9)

Case I: max{1, 2N
N+4 } � p < 2.

Denote

T0 = sup
{
t ∈ (0,∞) | G(t) > 0

}
.

Then it follows from (3.9) that[
G1− p

2
]′ + C � 0, a.e. t ∈ (0, T0). (3.10)

Integrating (3.10) over (0, t) with t ∈ (0, T0), we have[
G(t)

]1− p
2 �

[
G(0)

]1− p
2 − Ct,

as long as the right-hand side is nonnegative. Therefore, we conclude that

T0 � C‖u0‖2−p

H 1
0 (Ω)

and

G(t) = 0, t � T0,

which implies that∫
Ω

u2 dx � C

∫
Ω

|∇u|2 dx = 0, t � T0.

That is,

u(x, t) = 0, for x ∈ Ω, t � T0.

Case II: p = 2.
It follows from (3.9) that

G′(t) + CG(t) � 0, a.e. t ∈ (0,∞).

This implies that[
G(t)eCt

]′ � 0, a.e. t ∈ (0,∞).

Integrating the above inequality over (0, t) with t ∈ [0,∞), we have

G(t) � e−CtG(0),
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which implies that∥∥u(t)
∥∥

H 1
0 (Ω)

� e−Ct‖u0‖H 1
0 (Ω), for t > 0.

Case III: p > 2.
It follows from (3.9) that[

G1− p
2
]′ + 2 − p

2
C � 0, a.e. t ∈ (0,∞). (3.11)

Integrating (3.11) over (0, t) with t ∈ [0,∞), we have[
G(t)

]1− p
2 � Ct + [

G(0)
]1− p

2 ,

which implies that∥∥∇u(t)
∥∥

L2(Ω)
�

[
Ct + ‖∇u0‖2−p

L2(Ω)

] 1
2−p , for t > 0.

Therefore, we obtain∥∥u(t)
∥∥

H 1
0 (Ω)

�
[
Ct + ‖u0‖2−p

H 1
0 (Ω)

] 1
2−p , for t > 0.

Thus we complete the proof of the theorem. �
4. Proof of Theorem 2.5

Now, we begin to prove Theorem 2.5.

Proof of Theorem 2.5. We choose �(u − v) as a test function for problem (1.1) corresponding
to the data u0 and v0 respectively (see Remark 2.3), subtract the equations, and obtain

1

2

∫
Ω

|∇u − ∇v|2(t) dx

+
t∫

0

∫
Ω

[|∇�u|p−2∇�u − |∇�v|p−2∇�v
] · (∇�u − ∇�v)dx dτ

= 1

2

∫
Ω

|∇u0 − ∇v0|2 dx. (4.1)

It is obvious that (4.1) implies (2.9). Now we will divide the proof into two cases.
Case I: p � 2.
Recalling an elementary inequality

|ξ − η|p � C
(|ξ |p−2ξ − |η|p−2η

) · (ξ − η), for ξ, η ∈ R
N,

we obtain from (4.1) that

‖∇�u − ∇�v‖p

Lp(Q)
� C‖u0 − v0‖2

H 1
0 (Ω)

.

Noting that u,v = 0 on the boundary ∂Ω , we conclude that

‖u − v‖p

Lp(0,T ;W 1,p
0 (Ω)∩W 2,p(Ω))

� C‖u0 − v0‖2
H 1

0 (Ω)
,

which implies that (2.10) is true in this case.
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Case II: 1 < p < 2.
It follows from (2.4) that

‖∇�u‖Lp(Q) � C‖u0‖2/p

H 1
0 (Ω)

, ‖∇�v‖Lp(Q) � C‖v0‖2/p

H 1
0 (Ω)

. (4.2)

Using an elementary inequality(|ξ |2 + |η|2) p−2
2 |ξ − η|2 � C

(|ξ |p−2ξ − |η|p−2η
) · (ξ − η), for ξ, η ∈ R

N,

we obtain from (4.1) and (4.2) that

t∫
0

∫
Ω

|∇�u − ∇�v|p dx dτ

=
t∫

0

∫
Ω

(|∇�u| + |∇�v|) p(2−p)
2

[ |∇�u − ∇�v|2
(|∇�u| + |∇�v|)2−p

] p
2

dx dτ

�
[ t∫

0

∫
Ω

(|∇�u| + |∇�v|)p
dx dτ

] 2−p
2

[ t∫
0

∫
Ω

|∇�u − ∇�v|2
(|∇�u| + |∇�v|)2−p

dx dτ

] p
2

� C
(‖u0‖H 1

0 (Ω) + ‖v0‖H 1
0 (Ω)

)2−p

×
[ t∫

0

∫
Ω

(|∇�u|p−2∇�u − |∇�v|p−2∇�v
) · (∇�u − ∇�v)dx dτ

] p
2

.

Making use of (4.1), we conclude that (2.10) is true in this case by the same method.
Therefore we complete the proof of the theorem. �
Indeed, we can obtain an error estimate for the following general problem⎧⎨⎩ut + div

(|∇�u|p−2∇�u
) = f − divg, in Q,

u = 0, �u = 0, on Γ,

u(x,0) = u0(x), on Ω,

(4.3)

where the data (u0, f, g) satisfy

u0 ∈ H 1
0 (Ω), f ∈ Lp′(

0, T ;L(p∗)′(Ω)
)
, g ∈ (

Lp′
(Q)

)N
. (4.4)

Remark 4.1. For problem (4.3), we can obtain a similar error estimate. Specifically, if the
functions u and v, respectively, are weak solutions of problem (4.3) corresponding to the data
(u0, f, g) and (v0, f̃ , g̃), then we have

(1) For p � 2,

‖u − v‖L∞(0,T ;H 1
0 (Ω)) � ‖u0 − v0‖H 1

0 (Ω) + C‖f − f̃ ‖p′/2
Lp′

(0,T ;L(p∗)′ (Ω))

+ C‖g − g̃‖p′/2
(Lp′

(Q))N
(4.5)

and
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‖u − v‖
Lp(0,T ;W 1,p

0 (Ω)∩W 2,p(Ω))
+ ‖�u − �v‖

Lp(0,T ;W 1,p
0 (Ω))

� ‖u0 − v0‖2/p

H 1
0 (Ω)

+ C‖f − f̃ ‖
1

p−1

Lp′
(0,T ;L(p∗)′ (Ω))

+ C‖g − g̃‖
1

p−1

(Lp′
(Q))N

. (4.6)

(2) For 1 < p < 2,

‖u − v‖L∞(0,T ;H 1
0 (Ω)) � ‖u0 − v0‖H 1

0 (Ω)

+ C(Λ + Λ̃)1/2(‖f − f̃ ‖1/2
Lp′

(0,T ;L(p∗)′ (Ω))
+ ‖g − g̃‖1/2

(Lp′
(Q))N

)
(4.7)

and

‖u − v‖
Lp(0,T ;W 1,p

0 (Ω)∩W 2,p(Ω))
+ ‖�u − �v‖

Lp(0,T ;W 1,p
0 (Ω))

� C(Λ + Λ̃)
2−p

2 ‖u0 − v0‖H 1
0 (Ω)

+ C(Λ + Λ̃)
3−p

2
(‖f − f̃ ‖1/2

Lp′
(0,T ;L(p∗)′ (Ω))

+ ‖g − g̃‖1/2
(Lp′

(Q))N

)
, (4.8)

where

Λ ≡ ‖u0‖2/p

H 1
0 (Ω)

+ C‖f ‖1/(p−1)

Lp′
(0,T ;L(p∗)′ (Ω))

+ C‖g‖1/(p−1)

(Lp′
(Q))N

,

Λ̃ ≡ ‖v0‖2/p

H 1
0 (Ω)

+ C‖f̃ ‖1/(p−1)

Lp′
(0,T ;L(p∗)′ (Ω))

+ C‖g̃‖1/(p−1)

(Lp′
(Q))N

.

Here C depends only on p,N and Ω .

Remark 4.2. The existence and uniqueness of weak solutions of problem (4.3) under (4.4) is
presented in Theorem 2.4 in [12]. The uniqueness is a direct consequence of Remark 4.1. It
follows from Remark 4.1 that the weak solution is small if the given data are small. This is
a stability result, too. The proof of Remark 4.1 is the same as that of Theorem 2.5. Since the
procedure is long and tedious, we omit the standard proof.

5. Proof of Theorem 2.6

In this section a general result (Theorem 5.1) for problem (4.3) will be proved. Theorem 2.6
for problem (1.1) is only a particular case.

For q, r > 1, denote

W 1,r
(
0, T ;Lq(Ω)

) = {
v(x, t) | v ∈ Lr

(
0, T ;Lq(Ω)

)
, Dtv ∈ Lr

(
0, T ;Lq(Ω)

)}
(see [5, Chapter 5]). From Sobolev embedding theorem, we know that

W 1,r
(
0, T ;Lq(Ω)

)
↪→ L∞(

0, T ;Lq(Ω)
)
. (5.1)

The general result is the following:

Theorem 5.1. Let the function u be a weak solution of problem (4.3) under (4.4) corresponding
to the data (u0, f, g).

(1) If (u0, f, g) also satisfy

∇�u0 ∈ (
Lp(Ω)

)N
, ∇(f − divg) ∈ (

L2(Q)
)N

,
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then we have

Dt∇u ∈ (
L2(Q)

)N
, ∇�u ∈ (

L∞(
0, T ;Lp(Ω)

))N
. (5.2)

Moreover, we obtain

‖Dt∇u‖2
L2(Q)

+ ‖∇�u‖p

L∞(0,T ;Lp(Ω))

� C‖∇�u0‖p

Lp(Ω) + C
∥∥∇(f − divg)

∥∥2
L2(Q)

. (5.3)

(2) If (u0, f, g) also satisfy

∇�u0 ∈ (
Lp(Ω)

)N
, f ∈ W 1,p′(

0, T ;L(p∗)′(Ω)
)
,

g ∈ (
W 1,p′(

0, T ,Lp′
(Ω)

))N
, (5.4)

then we have

Dt∇u ∈ (
L2(Q)

)N
, ∇�u ∈ (

L∞(
0, T ;Lp(Ω)

))N
. (5.5)

Moreover, we obtain

‖Dt∇u‖2
L2(Q)

+ ‖∇�u‖p

L∞(0,T ;Lp(Ω))
� C‖∇�u0‖p

Lp(Ω) + C‖∇u0‖2
L2(Ω)

+ C‖f ‖p′
W 1,p′

(0,T ;L(p∗)′ (Ω))
+ C‖g‖p′

(W 1,p′
(0,T ;Lp′

(Ω)))N
. (5.6)

Proof of Theorem 5.1. (1) Denote

f̃ = f − divg.

Choosing Dt�u as a test function (see Remark 2.3) for problem (4.3), we have

t∫
0

∫
Ω

|Dt∇u|2 dx dτ + 1

p

∫
Ω

|∇�u|p(x, t) dx

= 1

p

∫
Ω

|∇�u0|p dx −
t∫

0

∫
Ω

f̃ Dt�udx dτ. (5.7)

Since ∣∣∣∣∣
t∫

0

∫
Ω

f̃ Dt�udx dτ

∣∣∣∣∣ =
∣∣∣∣∣−

t∫
0

∫
Ω

∇f̃ · Dt∇udx dτ

∣∣∣∣∣
� 1

4

t∫
0

∫
Ω

|Dt∇u|2 dx dτ +
t∫

0

∫
Ω

|∇f̃ |2 dx dτ,

we obtain (5.3).



M. Xu, S. Zhou / J. Math. Anal. Appl. 337 (2008) 49–60 59
(2) We choose the same test function Dt�u as (1) to obtain

t∫
0

∫
Ω

|Dt∇u|2 dx dτ + 1

p

∫
Ω

|∇�u|p(x, t) dx

= 1

p

∫
Ω

|∇�u0|p dx −
t∫

0

∫
Ω

[f Dt�u + g · Dt∇�u]dx dτ. (5.8)

We first estimate the last term on the right-hand side. For the first term involving f , we have∣∣∣∣∣
t∫

0

∫
Ω

f Dt�udx dτ

∣∣∣∣∣ =
∣∣∣∣∣
∫
Ω

f �u(x, t) dx −
∫
Ω

f (0)�u0 dx −
t∫

0

∫
Ω

Dtf �udx dτ

∣∣∣∣∣
�

∣∣∣∣∫
Ω

f �u(x, t) dx

∣∣∣∣ +
∣∣∣∣∫
Ω

f (0)�u0 dx

∣∣∣∣ +
∣∣∣∣∣

t∫
0

∫
Ω

Dtf �udx dτ

∣∣∣∣∣
≡ I1 + I2 + I3. (5.9)

Using Hölder’s, Sobolev’s and Young’s inequalities, we estimate I1 to have

I1 �
(∫

Ω

∣∣�u(x, t)
∣∣p∗

dx

) 1
p∗ (∫

Ω

|f |(p∗)′ dx

) 1
(p∗)′

� C

(∫
Ω

∣∣∇�u(x, t)
∣∣p dx

) 1
p
(∫

Ω

|f |(p∗)′ dx

) 1
(p∗)′

� ε

∫
Ω

∣∣∇�u(x, t)
∣∣p dx + C(ε)

∥∥f (t)
∥∥p′

L(p∗)′ (Ω)
,

where a small positive number ε is to be determined later. Using Hölder’s, Young’s and Sobolev’s
inequalities, we estimate I2 to get

I2 � ‖�u0‖p

Lp∗
(Ω)

+ ∥∥f (0)
∥∥p′

L(p∗)′ (Ω)

� C‖∇�u0‖p

Lp(Ω) + ∥∥f (0)
∥∥p′

L(p∗)′ (Ω)
.

Similarly, we estimate I3 to obtain

I3 � C

t∫
0

∫
Ω

∣∣∇�u(x, t)
∣∣p dx + C‖Dtf ‖p′

Lp′
(0,T ;L(p∗)′ (Ω))

� C‖∇u0‖2
L2(Ω)

+ C‖f ‖p′
Lp′

(0,T ;L(p∗)′ (Ω))
+ C‖g‖p′

(Lp′
(Q))N

+ C‖Dtf ‖p′
Lp′

(0,T ;L(p∗)′ (Ω))
,

where we use the energy type estimate in [12]. Thus, plugging the above three inequalities into
(5.9), we have
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∣∣∣∣∣
t∫

0

∫
Ω

f Dt�udx dτ

∣∣∣∣∣ � ε

∫
Ω

∣∣∇�u(x, t)
∣∣p dx + C‖∇u0‖2

L2(Ω)

+ C‖∇�u0‖p

Lp(Ω) + C‖f ‖p′
W 1,p′

(0,T ;L(p∗)′ (Ω))
+ C‖g‖p′

(W 1,p′
(0,T ;Lp′

(Ω)))N
. (5.10)

For the second term involving g on the right-hand side in (5.8), we have∣∣∣∣∣
t∫

0

∫
Ω

g · Dt∇�udx dτ

∣∣∣∣∣
=

∣∣∣∣∣
∫
Ω

g · ∇�u(x, t) dx −
∫
Ω

g(0) · ∇�u0 dx −
t∫

0

∫
Ω

Dtg · ∇�udx dτ

∣∣∣∣∣
� ε

∫
Ω

∣∣∇�u(x, t)
∣∣p dx + C‖∇�u0‖p

Lp(Ω) + C‖∇u0‖2
L2(Q)

+ C‖f ‖p′
W 1,p′

(0,T ;L(p∗)′ (Ω))
+ C‖g‖p′

(W 1,p′
(0,T ;Lp′

(Ω)))N
. (5.11)

By (5.8), (5.10) and (5.11), we obtain the desired result (5.6).
Thus, we complete the proof of Theorem 5.1. �
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