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Abstract

We study the graded polynomial identities of block-triangular matrix algebras with respect to th
grading defined by an abelian groupG. In particular, we describe conditions for theTG-ideal of
a such algebra to be factorable as a product ofTG-ideals corresponding to the algebras defin
the diagonal blocks. Moreover, for the factorableT2-ideal of a superalgebra we give a formula
computing its sequence of graded cocharactersonce given the sequences of cocharacters of theT2-
ideals that factorize it. We finally apply these results to a specific example of block-triangular
superalgebra.
 2004 Elsevier Inc. All rights reserved.

Keywords:Graded polynomial identities; Block-triangularmatrices; Superalgebras; Cocharacters

1. Introduction

A variety of associative algebras over a fieldF is associated to an ideal of the fr
associative algebraF 〈X〉 that is invariant under all the endomorphisms ofF 〈X〉. Such
ideals are called “T-ideals” and they are the ideals of the polynomial identities satisfied
any algebra of the variety. For the study of the T-ideals over a field of characteristic zero
fundamental tool is given by the representation theory of the linear and symmetric g
Moreover, the Kemer’s theorems about the classification of the T-ideals ofF 〈X〉 show that
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the notion of grading of an algebra defined by a group is another key ingredient fo
study. In particular, one has that any proper T-ideal ofF 〈X〉 is the ideal of the polynomia
identities satisfied by the Grassmann envelope of a suitableZ2-graded algebra (also calle
superalgebra) of finite dimension. Recently, the work of Giambruno and Zaicev [11,1
has contributed to clarify why the notion of PI-exponent is crucial for a classificatio
the T-ideals in terms of growth of the sequence of their codimensions. Recall that the
nth codimension of a T-ideal is defined as the degree of the representation of the
Sn on the vector space of the multilinear polynomials ofF 〈X〉 of degreen modulo the
considered T-ideal. In [12] the authors prove that the minimal varieties with respe
a fixed exponent are determined by the T-ideals of the Grassmann envelope of
called “minimal superalgebras”. Over an algebraic closed field, such superalgebras can
realized as graded subalgebras of block-triangular matrix algebras equipped with a s
Z2-grading. Precisely, the blocks along the main diagonal are simple superalgebras o
dimension. Then, by the Lewin’s Theorem [16] one has that the T-ideals of the iden
satisfied by the minimal superalgebras and their Grassmann envelopes are produc
T-ideals corresponding to the diagonal blocks. Such results allow hence to solve
positive a conjecture due to Drensky [6,7] aboutthe factorability of the T-ideals of minimal
varieties as a product of verbally prime T-ideals. Moreover, Berele and Regev [4] p
a formula that relates the sequence of ordinary cocharacters of a product of T-ideal
sequences of cocharacters of these ideals.

The present paper intends to contribute to this line of research by studying the g
structure of the mentioned algebras. In particular, over an infinite field, we consider b
triangular matrix algebras endowed with an elementary grading defined by any
abelian groupG. Precisely, in Section 2 we summarize the basic definitions about gr
algebras and their polynomial identities. InSection 3 we recall the Lewin’s Theorem a
we show how it can be applied for studying theTG-ideals of the graded identities of bloc
triangular matrix algebras. In Section 4, for any graded subalgebraA of a complete matrix
algebra we describe the notion of “G-regularity” in terms of suitable projections defin
on the graded generic algebra associated toA. For the block-triangular matrix algebras
type:

R =
[

A U

0 B

]

whereA,B are graded subalgebras of matrix algebras, we prove:TG(R) = TG(A)TG(B),
provided that at least one of the algebrasA,B is G-regular. In Section 5 we give a
effective characterization of the property ofG-regularity for complete matrix algebra
For instance, for the superalgebraA = Mk,l(F ) it holds thatA is Z2-regular if and
only if k = l. For suitable groupsG and for A,B complete matrix algebras we pro
also that theG-regularity ofA or B is a necessary condition for the idealTG(R) to be
factorable. In Section 6, assuming char(F ) = 0, we prove a formula that allows to compu
the sequence of graded cocharacters of a superalgebraR such thatT2(A) = T2(A)T2(B)

starting from the corresponding sequences ofA andB. Such formula is based on the noti
of convolution of two sequences of characters. We apply these results for computi
graded cocharacters of a concrete example.
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2. G-graded structures

Let F be an infinite field and(G,+) an abelian group. LetA be an associativ
F -algebra. We say thatA is a G-graded algebraif A = ⊕

g∈G Ag , where Ag ⊂ A

are subspaces andAgAh ⊂ Ag+h holds for anyg,h ∈ G. The subspaceAg is called
the homogeneous component ofA of degreeg. We say that the elementsa ∈ Ag are
homogeneous of degreeg and we denote their degrees as|a| = g. One definesG-graded:
subspaces ofA, A-modules, homomorphisms and so on, in a standard way, se
example [1].

Let nowX = {x1, x2, . . .} be a countable set of variables. We denote byF 〈X〉 the free
associative algebra generated byX. Given a map| | :X → G, we can define aG-grading on
F 〈X〉 by putting|w| = |xj1| + · · · + |xjn | for any monomialw = xj1 · · ·xjn ∈ F 〈X〉. Then,
the homogeneous componentF 〈X〉g ⊂ F 〈X〉 is the subspace spanned by all monomial
degreeg. If the groupG is finite, we assume that the fibers of the map| | are all infinite.

If A is aG-graded algebra, we denote byTG(A) the intersection of the kernels of a
G-graded homomorphismsF 〈X〉 → A. ThenTG(A) is a graded two-sided ideal ofF 〈X〉
and its elements are calledG-graded polynomial identitiesof the algebraA. Note that
TG(A) is stable under the action of anyG-graded endomorphism of the algebraF 〈X〉.
Any G-graded ideal ofF 〈X〉 which verifies such property is said to be aTG-ideal. Clearly,
any TG-ideal I is the ideal of theG-graded polynomial identities of the graded algebr
F 〈X〉/I . Note also that for aG-graded algebraA, the quotient algebraF 〈X〉/TG(A) is the
relatively free algebra for the variety of graded algebras generated byA.

If the algebraA is graded by the groupG = Zm and any homogeneous elementa ∈ A

has degree∂(a) ∈ Nm we say thatA is m-multigraded. In this case, we can define th
Hilbert–Poincaré series ofA as the power series HPm(A) = ∑

ᾱ dimF (Aᾱ)t
α1
1 · · · tαm

m

where them-tupleᾱ = (α1, . . . , αm) ranges overNm.
Let Xm = {xi1, . . . , xim} be any ordered subset ofX with m elements and let∂ :Xm →

Zm be any map. Anm-multigrading onF 〈Xm〉 is defined by putting∂(w) = ∂(xj1)+· · ·+
∂(xjn) for all monomialsw = xj1 · · ·xjn ∈ F 〈Xm〉. In what follows we always assume th
∂ is thenatural multigradingthat is we put∂(xi1) = (1,0, . . . ,0), ∂(xi2) = (0,1, . . . ,0),
etc.

Consider nowA be an algebra graded by any abelian groupG. The idealTG(A) ∩
F 〈Xm〉 is m-multigraded and so is the quotient algebra:

ÃXm = F 〈Xm〉/(TG(A) ∩ F 〈Xm〉).
Then, we can define HPXm(A) = HPm(ÃXm) and we call such series theHilbert–Poincaré
series of theG-graded algebraA associated to the set of variablesXm. Given two finite
subsetsXm,X′

m ⊂ X, note that the series HPXm(A) and HPX′
m
(A) coincide if there is a

bijectionσ :Xm → X′
m such that|σ(xik )| = |xik |, for all xik ∈ Xm.

If G = Z2, theZ2-graded algebrasA are usually calledsuperalgebras. In this case, the
notationT2(A) is used for denoting the ideal of theZ2-graded polynomial identities ofA.
Moreover, note that the Hilbert–Poincaré series HPXm(A) associated to a subsetXm ⊂ X is
uniquely determined by the pair of integersk, l that counts the number of variables inXm

of degree respectively 0,1. We denote such series by HPk,l(A).
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Since the idealT2(A) is stable underZ2-graded endomorphisms, a natural action
the product group GLk(F ) × GLl (F ) is defined for the quotient algebrãAXm . Assuming
char(F ) = 0, it follows that the series HPk,l(A) can be decomposed as a sum of produ
of Schur functions defined on distinct sets of variables:

HPk,l(A) =
∑
µ,ν

mµ,νsµ(ξ1, . . . , ξk)sν(η1, . . . , ηl) (1)

where the heights of the partitionsµ,ν are bounded respectively by the integersk, l.
Note now that the groupSk × Sl acts on the multilinear component of the algebrãAXm .
We denote byχk,l(A) the character of such representation and we call it theZ2-graded
cocharacter of the superalgebraA or equivalentlyof the idealT2(A). Denoteχµ and
χν (µ � k, ν � l) the irreducible characters of the groups respectivelySk and Sl . For
simplifying the notation, we putχµ,ν = χµ ⊗ χν . Then, if Eq. (1) holds, we have als
(see [3,8]):

χk,l(A) =
∑
µ,ν

mµ,νχµ,ν. (2)

Let E = E0 ⊕ E1 be the Grassmann (or exterior) algebra of a vector space of coun
dimension equipped with its naturalZ2-grading. For any superalgebraA, theGrassmann
envelopeof A is defined as the following superalgebraG(A) = (A0 ⊗ E0) ⊕ (A1 ⊗
E1). The relationship between the graded identities of the superalgebrasA,G(A) is
described in [15] by means of an involutionI �→ I∗ defined on the lattice of theT2-
ideals of the free superalgebraF 〈X〉. Note that this map satisfies also the prope
(IJ )∗ = I∗J ∗. Using the language of the representation theory, one has the follo
relationship between the sequences of graded cocharacters ofA and G(A): χk,l(A) =∑

µ,ν mµ,νχµ,ν if and only if χk,l(G(A)) = ∑
µ,ν mµ,νχµ,ν ′, whereν′ � l is the conjugate

partition of ν. These results, together with the classification of the simple superalg
of finite dimension, allow us to reduce the study in this paper to the matrix algebras w
entries in the fieldF .

3. Lewin’s Theorem for G-graded algebras

Let A,B beG-graded algebras andU be aG-gradedA–B-bimodule. We denote byR
the block-triangular matrix algebra defined as follows:

R =
[

A U

0 B

]
.

Typically, we may considerA = Mm, B = Mn the complete matrix algebras andU =
Mm×n the vector space ofm × n rectangular matrices. In this case,R is the algebra
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UT(m,n) of block-triangular matrices. The algebraR is G-graded in a natural way b
putting:

Rg =
[

Ag Ug

0 Bg

]

for any g ∈ G and we haveTG(A)TG(B) ⊂ TG(R). One of the main results of th
paper consists in describing suitable conditions for the structures ofA,B,U so that
TG(A)TG(B) = TG(R). For this purpose, one of the main tools is the Lewin’s T
orem [16].

Let I and J be any two-sided ideals ofF 〈X〉. Consider the quotient algebr
F 〈X〉/I,F 〈X〉/J and letU be aF 〈X〉/I -F 〈X〉/J -bimodule. We define:

R =
[

F 〈X〉/I U

0 F 〈X〉/J
]
.

Fix {ui} a countable set of elements ofU . Thenϕ :xi �→ ai defines an algebra homomo
phism, where:

ai =
[

xi + I ui

0 xi + J

]
.

If f (x1, . . . , xn) ∈ F 〈X〉 one has thatf (x1, . . . , xn) �→ f (a1, . . . , an), where:

f (a1, . . . , an) =
[

f (x1, . . . , xn) + I δ(f )

0 f (x1, . . . , xn) + J

]

andδ(f ) is some element ofU . ThenIJ ⊂ ker(ϕ) = I ∩ J ∩ ker(δ) andδ :F 〈X〉 → U is
anF -derivation.

Theorem 3.1(Lewin [16]). If {ui} is a countable free set of elements of the bimodulU

then for the homomorphismϕ defined by{ui}, we haveker(ϕ) = IJ .

Suppose now that the free algebraF 〈X〉 is G-graded by some map| |. ConsiderI, J
two TG-ideals and letU be aG-gradedF 〈X〉/I -F 〈X〉/J -bimodule. ClearlyIJ ⊂ TG(R).
Moreover, if the free elementsui ∈ U are all homogeneous and such that|xi| = |ui | for all
i � 1, thenϕ :F 〈X〉 → R is aG-graded homomorphism. HenceTG(R) ⊂ ker(ϕ) and by
the Lewin’s Theorem we have that ker(ϕ) = IJ . We conclude:

Corollary 3.2. If theG-graded bimoduleU contains a countable free set{ui} of homoge-
neous elements such that|xi | = |ui | for anyi � 1, thenTG(R) = IJ .
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4. G-regularity and factorable TG-ideals

In this section we will consider gradings over matrix algebras. In [1,2] allG-gradings
overMm(F) are classified for the case thatF is an algebraically closed field. In particula
the so-calledelementary gradingsare proved to be very important.

From now on, we assume that the abelian groupG is finite. LetMm = Mm(F) be the
algebra of matrices of orderm with entries inF and fix a map| | : {1,2, . . . ,m} → G.
Then| | induces a grading onMm by setting|eij | = |j |− |i|, for all matrix unitseij ∈ Mm.
We leave to the reader the verification that this is indeed the elementary grading d
by (|1|, . . . , |m|) ∈ Gm. We write (Mm, | |) for the matrix algebraMm endowed with
the G-grading defined by the map| | : {1,2, . . . ,m} → G. For G = Z2, the superalgebr
(Mm, | |) is simply denoted asMk,l(F ) if |i| = 0 for 1� i � k and|i| = 1 for k + 1 � i �
k + l = m.

Let (Mm, | |m) and (Mn, | |n) be two G-graded matrix algebras. Define the m
| | : {1,2, . . .,m + n} → G by putting |i| = |i|m for i � m and |i| = |i − m|n for i > m.
We consider then the matrix algebraMm+n endowed with theG-grading defined by the
map | |. Let U = Mm×n and letA,B be G-graded subalgebras respectively ofMm,Mn.
Then

R =
[

A U

0 B

]
⊂ (Mm+n, | |)

is aG-graded subalgebra. We will prove that under suitable assumptions for the algeA

or B it holds TG(R) = TG(A)TG(B). The notion of “generic algebra” is very useful f
this purpose.

Let Ω be anyG-graded algebra. We denote by GenG(Ω) eachG-graded algebra
isomorphic toF 〈X〉/TG(Ω) and we call it aG-graded generic algebra associated toΩ .
In particular, this implies thatTG(Ω) = TG(GenG(Ω)).

If Ω has finite dimension, one has a canonical way to define a graded generic a
Let {e1, . . . , en} be anF -linear basis ofΩ whose elements are all homogeneous. Den
P(Ω) = F [t(h)

i | 1 � i � n,h � 1] the polynomial ring in the countable set of commut

variablest
(h)
i . We call P(Ω) the polynomial ring associated to the finite dimensio

algebraΩ . Note that the tensor productΩ ⊗ P(Ω) = ⊕
g∈G Ωg ⊗ P(Ω) over the fieldF

is aG-graded algebra such that:

TG

(
Ω ⊗ P(Ω)

) = TG(Ω).

If xh are the variables of theG-graded free algebraF 〈X〉, then we consider inΩ ⊗ P(Ω)

the graded subalgebraΩ ′ generated, for allh � 1, by the homogeneous elementsah =∑
|ei |=|xh| t

(h)
i ei where the indexi ranges over 1� i � n. We can easily prove:

Ω ′ = GenG(Ω).

Note that ifΩ = Mm then we choose canonically asF -linear basis the one given by th
matrix unitseij (for the non-graded case, see for instance [19]).
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We consider now as an homogeneous linear basis ofR the disjoint union of some base
of A,B and the canonical basis{eij } (1 � i � m,m + 1 � j � m + n) of U . If P = P(R)

then the algebraR ⊗ P containsA′ = GenG(A),B ′ = GenG(B) and R′ = GenG(R).
Denote byR ⊂ R ⊗ P the followingG-graded subalgebra:

R =
[

A′ U ′
0 B ′

]
(3)

whereU ′ is theG-gradedA′–B ′-bimodule contained inR⊗P and generated, for allh � 1,
by the following homogeneous elements:

uh =
∑

|eij |=|xh|
t
(h)
ij eij (4)

with 1 � i � m, m + 1 � j � m + n. We have then:

Proposition 4.1.

TG

(
R′) = TG(R) = TG

(
R

)
.

Proof. It is sufficient to note thatTG(R′) = TG(R) = TG(R ⊗P) and moreoverR′ ⊂ R ⊂
R ⊗ P . �

Now we want to show that the homogeneous elementsuh defined in (4) form a free se
of the bimoduleU ′ under suitable conditions. For thispurpose we introduce the notion
“G-regularity” of a matrix subalgebra.

Let A be anyG-graded subalgebra of (Mm, | |). DenoteP = P(A) the polynomial ring
associated toA. For anyg ∈ G we consider theF -linear mapπg :Mm ⊗ P → Mm ⊗ P

defined as follows: ∑
i,j

aij eij �→
∑

|i|=g,j

aij eij

where 1� i, j � m. Since GenG(A) ⊂ A ⊗ P ⊂ Mm ⊗ P we define also the map̂πg :
GenG(A) → Mm ⊗ P as the restriction ofπg to GenG(A). Define π∗

g :Mm ⊗ P →
Mm ⊗ P theF -linear map

∑
i,j aij eij �→ ∑

i,|j |=g aij eij and denote bŷπ∗
g its restriction

to GenG(A).

Proposition 4.2.The mapŝπg are all injective if and only if the mapŝπ∗
g are such, for all

g ∈ G.

Proof. PutA′ = GenG(A) and letϕ : F 〈X〉 → A′ be the canonicalG-graded epimorphism
such that ker(ϕ) = TG(A). Suppose that the map̂πg is not injective that is there is a matr
a′ 
= 0 of A′ such thatπg(a

′) = 0. Since the mapπg is graded, we can assume that
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elementa′ is homogeneous of degreeh ∈ G. We want to prove thatπ∗
g+h(a

′) = 0 that is
π̂∗

g+h is not a monomorphism.
Let f ∈ F 〈X〉, f /∈ TG(A) be an homogeneous polynomial of degree|f | = h such that

ϕ(f ) = a′. Denote byπ̄g and π̄∗
g the F -linear maps defined onMm which correspond

respectively toπg andπ∗
g . The conditionπg(a

′) = 0 is equivalent toπ̄g(a) = 0, where
a = ν(f ) and ν :F 〈X〉 → A is any G-graded evaluation. We prove that one has a
π̄∗

g+h(a) = 0 that is aij = 0 for any i, j = 1,2, . . . ,m with |j | = g + h. In fact, if
|j | − |i| 
= h thenaij = 0 since the matrixa ∈ A is homogeneous of degreeh. Otherwise,
if |j | − |i| = h and hence|i| = g, thenaij = 0 sinceπ̄g(a) = 0. As ν varies over the
evaluations, we getπ∗

g+h(a
′) = 0. �

Definition 4.3.A G-graded subalgebraA ⊂ Mm is said to beG-regular if the mapsπ̂g (or
equivalently theπ̂∗

g ) are all injective, for anyg ∈ G.

If the map| | : {1,2, . . . ,m} → G is not surjective, clearly all the graded subalgeb
of Mm are notG-regular since there is someπg = 0. For this reason, from now on w
assume that the map| | is surjective and thus the finite groupG has order� n. Moreover
note that for the ordinary case, that is forG = {0}, all the subalgebras ofMm are regular.
With the notation of definitions (3) and (4), we have:

Proposition 4.4.Let A,B be G-graded subalgebras respectively ofMm, Mn. If one of
these subalgebras isG-regular then the homogeneous elementsuh of the gradedA′–B ′-
bimoduleU ′ form a countable free set such that|uh| = |xh|, for all h � 1.

Proof. We assume thatB is aG-regular subalgebra ofMn. Since the non-zero entries
the matricesuh are distinct variables for all the indicesh, clearly it is sufficient to prove
that each elementuh is torsion-free. Then, let

∑
s asubs = 0 with as ∈ A′, bs ∈ B ′. Suppose

that the matricesbs are linearly independent and thatas 
= 0 for any indexs. For any pair
of indices(i, q) we have: ∑

s

∑
j,p

(as)ij ujp(bs)pq = 0.

Note thatujp 
= 0 if and only if |p| − |j | = |u|. Moreover, the entriesujp 
= 0 are
variables that are distinct from those of the polynomials(as)ij and(bs)pq . It follows that∑

s(as)ij (bs)pq = 0, for any quadruple of indices(i, j,p, q) such that|p| − |j | = |u|.
Sincea1 
= 0, there are indicesi1, j1 such that(a1)i1,j1 
= 0. By puttingg = |j1| + |u| we
have then

∑
s(as)i1j1(bs)pq = 0, for any indicesp,q with |p| = g. By multiplying now

this equation forepq and by summing over the indicesp,q , we finally obtain:∑
s

(as)i1j1π̂g(bs) = 0.

Note that the matriceŝπg(bs) are linearly independent sinceπ̂g is a monomorphism. Sinc
(a1)i1j1 
= 0, we get then a contradiction. We argue in a similar way ifA is a G-regular
subalgebra ofMm. �
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Theorem 4.5.LetR be theG-graded block-triangular matrix algebra defined as follow:

R =
[

A U

0 B

]

whereA ⊂ Mm,B ⊂ Mn are graded subalgebras andU = Mm×n. If one ofA andB is
G-regular then theTG-idealTG(R) factorizes as:

TG(R) = TG(A)TG(B).

Proof. By Proposition 4.1 we haveTG(R) = TG(R). SinceA′ ≈ F 〈X〉/TG(A) andB ′ ≈
F 〈X〉/TG(B), by Corollary 3.2 and Proposition 4.4 we obtainTG(R) = TG(A′)TG(B ′) =
TG(A)TG(B). �

5. G-regularity for compl ete matrix algebras

In this section we give some examples ofG-regular graded subalgebras and characte
such notion for complete matrix algebras in terms of fibers of the map| | that defines
theG-grading. Moreover, for a block-triangular matrix algebraR whose blocks along th
diagonal are complete matrix algebras, under some assumptions for the groupG we prove
that the idealTG(R) is factorable if and only if some of the algebras on the diagon
G-regular.

Proposition 5.1.Let (Mm, | |m) be aG-graded matrix algebra. If|G| = n then there is a
G-grading ofMmn such that the following monomorphism is graded:

ϕ :Mm → Mmn, a �→ diag(a, . . . , a) =




a 0 . . . 0
0 a . . . 0

. . .

0 0 . . . a


 .

Moreover, if A is any G-graded subalgebra ofMm then ϕ(A) is G-regular as graded
subalgebra ofMmn.

Proof. SayG = {g0, g1, . . . , gn−1}. The required map| | : {1,2, . . . ,mn} → G is defined
as|i + km| = |i|m + gk, for all i = 1,2, . . . ,m andk = 0,1, . . . , n − 1. Let nowA ⊂ Mm

be aG-graded subalgebra and putP = P(A) = P(ϕ(A)). Note that for the generic algeb
GenG(ϕ(A)) one has the following chain of immersions:

GenG
(
ϕ(A)

) ⊂ ϕ(A) ⊗ P ⊂ ϕ(Mm) ⊗ P.

Therefore, it is sufficient to note that the restrictions of theF -linear mapsπgj :Mmn ⊗P →
Mmn ⊗ P to the subspace:

ϕ(Mm) ⊗ P = {
diag(a, . . . , a) | a ∈ Mm ⊗ P

}
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are injective since all the entries of a matrixa ∈ Mm ⊗P occur in the rows of degreegj of
diag(a, . . . , a), for anygj ∈ G. �
Proposition 5.2. Let Mm be any matrix algebra andG = Zn the cyclic group of
order n. Consider theG-graded algebraB = ⊕n−1

i=0 t iMm, wheretn = 1 and t iMm is
the homogeneous component of degreei ∈ G. Let ϕ :B → Mmn be the monomorphism
defined as follows:

n−1∑
i=0

t iai �→




a0 a1 . . . an−2 an−1
a1 a2 . . . an−1 a0
...

...
...

...

an−1 a0 . . . an−3 an−2


 .

Then, aG-grading ofMmn is given such thatϕ is graded and ifA ⊂ B is anyG-graded
subalgebra thenϕ(A) is G-regular as graded subalgebra ofMmn.

Proof. The required grading ofMmn is defined by the map|i + km| = k, for all i =
1,2, . . . ,m and k = 0,1, . . . , n − 1. The remaining part of the proof is similar to t
corresponding part of the proof of the previous proposition.�

By the classification of the finite dimensional simple superalgebras over an algebr
closed field of characteristic different from 2(see [21]), it holds that there are exactly tw
classes of such superalgebras up to isomorphisms:Mk,l(F ) with k � l � 0, k 
= 0 and
Mm ⊕ tMm with m > 0, t2 = 1. From the previous proposition we have that the la
superalgebra isZ2-regular as embedded inM2m. We prove now that the superalgeb
Mk,l(F ) is Z2-regular as subalgebra of itself if and only ifk = l. Actually, we prove a
general result for complete matrix algebras graded by any finite abelian groupG.

Proposition 5.3.Let A = (Mmn, | |) be aG-graded matrix algebra. Assume that|G| = n

and each fiber of| | has exactlym elements. PutP = P(A) = F [t(h)
ij | 1 � i, j � mn,

h � 1] and fix any integer1 � i � mn. Define theF -linear map: ρi :A ⊗ P → A ⊗ P ,
a �→ ∑

j aij eij , where1 � j � mn. Then, the restriction̂ρi : GenG(A) → A ⊗ P is an
injective map.

Proof. PutA′ = GenG(A) and letϕ :F 〈X〉 → A′ be the canonicalG-graded epimorphism
such that ker(ϕ) = TG(A). Let a′ be a matrix ofA′ such thatρi(a

′) = 0. Moreover, let
f ∈ F 〈X〉 be a polynomial such thatϕ(f ) = a′. We have to prove thatf ∈ TG(A) that
is ν(f ) = 0, for anyG-graded evaluationν :F 〈X〉 → A. Fix an evaluationν and put
a = ν(f ). Sinceρi(a

′) = 0 we have thataij = 0, for anyj = 1,2, . . . ,mn.
Let nowg ∈ G. We call a permutationσ ∈ Smn homogeneous of degreeg if |σ(k)| =

|k| + g. Such a permutation induces aG-graded conjugation automorphism̂σ :A → A,
epq �→ eσ(p)σ (q). Sinceσ̂ ν is still a graded evaluation we haveaσ(i)j = 0 for any j =
1,2, . . . ,mn.

Because all fibers of| | have the same number of elements, for any couple of ind
1 � h, k � mn there exists an homogeneous permutationσ such thatσ(h) = k. Then, the
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indexσ(i) can assume all the values 1,2, . . . ,mn and thereforeν(f ) = a = 0 since all the
rows of this matrix have zero entries.�

It is convenient to recall here the definitions ofstandard polynomialand Capelli
polynomialwhich are respectively:

sn(u1, . . . , un) =
∑
σ∈Sn

sgn(σ )uσ(1) · · ·uσ(n),

dn(u1, . . . , un, v1, . . . , vn+1) =
∑
σ∈Sn

sgn(σ )v1uσ(1)v2 · · ·vnuσ(n)vn+1.

We define also the functionω :G → N, whereω(g) is the cardinality of the fiber ofg ∈ G

for the map| | : {1, . . . ,m} → G.

Theorem 5.4.LetA = (Mm, | |) be aG-graded complete matrix algebra. ThenA is G-re-
gular if and only if the map| | is surjective and all its fibers are equipotent.

Proof. The sufficient condition follows a fortiori by Proposition 5.3. For the necessa
condition, note that for the homogeneous componentA0 we have the following decompo
sition:

A0 =
⊕
g∈G

A
(g)

0 (5)

where the subspaceA(g)
0 = 〈eij : |i| = |j | = g〉 is canonically isomorphic toMω(g). Assume

now that there isg ∈ G such thatω(g) < ω(g′), for someg′ ∈ G. Put d = ω(g) and
consider the polynomials2d(y1, . . . , y2d) ∈ F 〈X〉, where theyi are variables of degree
of the setX. Fix ν :F 〈X〉 → A an arbitraryG-graded evaluation. Then, the matrixν(s2d )

is homogeneous of degree 0, and the Amitsur–Levitzki theorem implies thatν(s2d) has
zero component inA(g)

0 as direct summand of the decomposition (5). Moreover, the s
theorem provides that there exists a graded evaluationν′ such thatν′(s2d ) is a matrix of
degree 0 which has non-zero component inA

(g′)
0 . Thus,s2d defines a matrixa′ ∈ GenG(A),

a′ 
= 0 such that̂πg(a
′) = 0. �

Note that theG-regularity ofA = (Mm, | |) is verified in particular when the order ofG

is exactlym and the map| | is bijective. This is the case,for instance, when we consid
the naturalZm-grading ofMm (see [20]).

We want to prove now that, under some assumptions, theG-regularity is a necessar
condition for block-triangular matrix algebras to have a factorableTG-ideal. For this
purpose, we need the following lemmas.

Lemma 5.5.Let ak = (a
(k)
ij ) be matrices ofMm, for any k = 1,2, . . . , n. Then, for any

indexj and pairs of indices(i1, j1), . . . , (in, jn) of the set{1,2, . . . ,m}, we have:

dn(a1, . . . , an, eji1, ej1i2, . . . , ejn−1in , ejnj ) = det(b)ejj
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whereb ∈ Mn is defined asbhk = a
(k)
ihjh

. In particular, if ak = eikjk are distinct matrix units
for anyk, thendet(b) = 1.

Proof. Straightforward computation.�
Lemma 5.6.The standard polynomialst (u1, . . . , ut ) is a polynomial identity for the block
triangular matrix algebraUT(m,n) if and only ift � 2(m + n).

Proof. Putk = m + n. If t � 2k the polynomialst (u1, . . . , ut ) is an identity of UT(m,n)

by the Amitsur–Levitski theorem. Moreover, the algebra UT(m,n) contains the staircas
{e11, e12, . . . , ek−1k, ekk} and therefore it has no polynomial identity of degree strictly l
than 2k. �

With the notation of the decomposition (5), it holds:

Proposition 5.7.Let G be a finite group of prime order and considerA = (Mm, | |) a
G-graded matrix algebra which is notG-regular. Fix t ∈ G such thatω(t) = maxω(G).
Then, there is a multilinear polynomialf ∈ F 〈X〉, f /∈ TG(A) such thatν(f ) ∈ A

(t)
0 for

anyG-graded evaluationν :F 〈X〉 → A.

Proof. Let k = ω(t) = maxω(G) and put T = {g ∈ G | ω(g) = k}. Consider also
s2k−1(u1, . . . , u2k−1) the standard polynomial of degree 2k − 1. Assuming that|ui | = 0,
then for each graded evaluationν onA one has:

ν(s2k−1) ∈
⊕

ω(g)=k

A
(g)

0 ⊂ A. (6)

In fact, the polynomials2k−1 is an identity for any matrix algebra of order< k and hence for
A

(g)

0 , whenω(g) < k. If T = {t1, t2, . . . , tr }, for anyi = 1,2, . . . , r andj = 1,2, . . . ,2k−1
let uij be distinct variables whoseG-degree is zero. By puttingci = s2k−1(ui1, . . . , ui2k−1)

we claim that the required polynomial isf = w1c1z1 · · ·wrcrzr , wherewi and zi are
variables of degree|wi | = −|zi | = ti − t , for anyi. Sayt = t1 and denotefi = wicizi . For
each evaluationν, by (6) one hasν(fi) ∈ ⊕

g A
(g)
0 where the elementsg ∈ G are such tha

ti − t1 + g ∈ T . Therefore, it holds:

ν(f ) = ν(f1) · · ·ν(fr) ∈
⊕

g

A
(g)

0

whereg satisfy ti − t1 + g ∈ T for all i = 1,2, . . . , r, that is T − t1 = T − g. Then
T = T + (t1 − g) and thusT is union of cosets of the subgroupH = 〈t1 − g〉 ⊂ G. Since
A is not G-regular we have thatT 
= G and henceH 
= G. Because the order ofG is
prime, it follows thatH = 0 that isg = t1 = t and henceν(f ) ∈ A

(t)
0 . We prove finally that

f /∈ TG(A).
Note that we haves2k−1(e11, e12, . . . , ek−1k, ekk) = e1k in the matrix algebraMk . For

any ti ∈ T , denote byai, bi respectively the minimal and maximal element of the
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{j | 1 � j � m, |j | = ti}. Then, there exists an evaluationµi on A
(ti)
0 ≈ Mk such that

µi(ci) = eaibi . Fix s ∈ {1,2, . . . ,m} of degree|s| = t and definew̄i = esai ∈ Ati−t ,
z̄i = ebis ∈ At−ti . Since{wi, zi} and{uij } are disjoint sets of variables, we have a gra
evaluationν onA such thatν(ci) = µi(ci), ν(wi) = w̄i , ν(zi) = z̄i . Clearly we have:

ν(f ) = ess. � (7)

We can finally prove the following result:

Theorem 5.8.LetR be theG-graded algebra defined as follows:

R =
[

A U

0 B

]

where A = (Mm, | |m),B = (Mn, | |n) are G-graded complete matrix algebras an
U = Mm×n. If the finite groupG has prime order then theTG-ideal of R factorizes as
TG(R) = TG(A)TG(B) if and only if one of the algebrasA or B is G-regular.

Proof. Assume that the algebrasA andB are both non-regular ones. We want to defin
polynomialf ∈ F 〈X〉 such thatf ∈ TG(R) but f /∈ TG(A)TG(B). Recall that the map
| | : {1,2, . . .,m + n} → G that provides theG-grading ofR is obtained as|i| = |i|m
for i � m and |i| = |i − m|n for i > m. Note that for any fixed elementg ∈ G, we can
obtain a newG-grading for the algebraR by defining a new map| |∗ as |i|∗ = |i| for
i � m and |i|∗ = |i| + g for i > m. We say that| |∗ is obtainedby translation of| |n
by means ofg. We denote byR∗ the graded algebra obtained byR using theG-grading
defined by| |∗. SinceR,R∗ differ only for the degree of the matrix units inU one has tha
TG(A)TG(B) ⊂ TG(R∗). Hence, it is sufficient to prove thatf ∈ TG(R) \ TG(R∗).

Denote byωA andωB the functions corresponding to the maps| |m and | |n. Owing
to Theorem 5.4, we have thath = maxωA(G) > minωA(G) and k = maxωB(G) >

minωB(G). We consider two cases. The first one is that there is nog ∈ G such that
ωA(g) = h andωB(g) = k. In this case, we have thath+k > ωA(g)+ωB(g) for anyg ∈ G.
If we putp = 2(h + k) − 1, then the required polynomial isf = sp(y1, . . . , yp) where the
variablesyi have allG-degree equal to zero. In fact, the homogeneous componentR0 can
be decomposed as the following direct sum of subalgebras:

R0 =
⊕
g∈G

R
(g)

0

whereR
(g)

0 = 〈eij : |i| = |j | = g〉. Such subalgebras are canonically isomorphic to
block-triangular matrix algebras UT(ωA(g),ωB(g)) and hencef ∈ TG(R) by virtue of the
Lemma 5.6.

Let nowa, b ∈ G such thatωA(a) = h,ωB(b) = k and putc = a −b. Let | |∗ be the map
obtained by translation of| |n by means ofc and denote byR∗ the correspondingG-graded
algebra. Similarly to what we have forR, for the decomposition of the homogeneo



O.M. Di Vincenzo, R. La Scala / Journal of Algebra 279 (2004) 260–279 273

ies:

e

al
s

at

re

se

units.

e

t

componentR∗
0 one has that the direct summand corresponding to the degreea is

canonically isomorphic to UT(h, k). Then, still by Lemma 5.6 it follows thatf /∈ TG(R∗).
We consider now the case that there existst ∈ G such thatωA(t) = h = maxωA(G)

andωB(t) = k = maxωB(G). Then, by Proposition 5.7 there are multilinear polynomials
fA,fB ∈ F 〈X〉 defined on disjoint sets of variables which verify the following propert

(a) fA /∈ TG(A), fB /∈ TG(B);
(b) for anyG-graded evaluationsνA :F 〈X〉 → A, νB :F 〈X〉 → B one hasνA(fA) ∈ A

(t)
0 ,

νB(fB) ∈ B
(t)
0 .

Suppose now thatd is a multilinear polynomial whose variables are different from thos
of fA,fB . Suppose also that theG-degree ofd is different from zero andν(d) ∈ U ,
for any graded evaluationν :F 〈X〉 → R. We will prove later that such a polynomi
exists. In this case, we can define the polynomialf = fAdfB and prove that it belong
to the idealTG(R) but not toTG(R∗). By contradiction, assume that there is aG-graded
evaluationν :F 〈X〉 → R such thatν(f ) 
= 0. Becausef is multilinear we can assume th
all variables are evaluated byν at matrix units. Since we have:

AB = BA = BU = UA = U2 = 0

and ν(d) ∈ U , this implies thatν maps the variables offA and fB respectively into
elements ofA and B. Thus, by means of the property (b) we have thatν(fA) ∈ A

(t)
0 ,

ν(fB) ∈ B
(t)
0 .

Consider now anya ∈ A
(t)
0 ⊂ R andb ∈ B

(t)
0 ⊂ R, and leteij ∈ U . Note that if the

productaeij b 
= 0 then|i| = |j | = t and hence|eij | = 0. Sinceν(d) is an element ofU
whoseG-degree is different of zero, byν(f ) 
= 0 we get a contradiction and therefo
f ∈ TG(R).

We define now the required polynomiald . Fix g ∈ G, g 
= 0 and consider the
homogeneous componentsAg,Bg . If we putp = max(dimF Ag,dimF Bg) + 1 thend is a
Capelli polynomialdp(u1, . . . , up, v1, . . . , vp+1) whose variables are different from tho
of fA,fB , the totalG-degree is different from zero and|ui | = g for any i. Let ν be an
arbitraryG-graded evaluation onR. We show thatν(d) ∈ U .

Sinced is multilinear we can assume that all variables are evaluated at matrix
Note that ifν(ui) ∈ A or ν(ui) ∈ B for all i thenν(d) = 0, sinced is alternating for thep
variablesui . Thus, ifν(d) 
= 0 thenν(d) ∈ U sinceAB = BA = 0 andU is an ideal ofR.

It remains to be proved thatf /∈ TG(R∗) for some map| |∗. We show that for a suitabl
choice ofG-degrees for the variablesv1, . . . , vp+1 of d = dp(u1, . . . , up, v1, . . . , vp+1),
there is a graded evaluationν :F 〈X〉 → R∗ such thatν(f ) 
= 0.

Say dimF Ag � dimF Bg that isp −1 = dimF Ag . Denote bya1, . . . , ap−1 theF -linear
basis ofAg given by matrix units. Owing to Lemma 5.5, for anyi = 1,2, . . . ,m there
are suitable matrix unitsa′

1, . . . , a
′
p in A such thatdp−1(a1, . . . , ap−1, a

′
1, . . . , a

′
p) = eii .

For j > m, we putap = eij anda′
p+1 = ejj . Sinceap is an element ofU one has tha

dp(a1, . . . , ap, a′
1, . . . , a

′
p+1) = eij . In particular, we may choose indicesi, j such that

|i| = |j | = t . Consider now the map| |∗ obtained by translating| |n by means ofg and
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let R∗ be the correspondingG-graded algebra. InR∗ we have then|aq |∗ = |aq | = g for
q = 1,2, . . . , p − 1 and|a′

q |∗ = |a′
q | for q = 1,2, . . . , p. Moreover, it holds:

|ap|∗ = |j |∗ − |i|∗ = t + g − t = g.

By putting|vq | = |a′
q |∗ for anyq = 1,2, . . . , p + 1, a graded evaluationν onR∗ is clearly

given such thatν(dp) = eij . By using Eq. (7) withs = i, s = j for the polynomialsfA,fB

respectively, we conclude thatν(f ) 
= 0. �

6. Cocharacters of superalgebras with factorableT2-ideal

In this section we assume that the fieldF has characteristic zero. We generalize to
Z2-graded algebras the results of Berele–Regev [4] about the sequence of the coch
of ordinary PI-algebras whose T-ideal is factorable as a product of two T-ideals.
generalization can be further extended to anyG-grading, but we avoid to do this to kee
the notations reasonably simple and since we apply these results just to superalgebras.
start with the following basic result:

Theorem 6.1 (Formanek [9,13]).Let I, J be m-multigraded ideals of the free algeb
P = F 〈Xm〉. Then, we have:

HPm(P/IJ ) = HPm(P/I) + HPm(P/J ) − HPm(P/I)HPm(P/J )

HPm(P)
.

In what follows it is useful to note that the Hilbert–Poincaré series of the algebraF 〈Xm〉
is HPm(F 〈Xm〉) = 1/(1− t1 −· · ·− tm). Moreover, in terms of Schur functionssλ one has:

−1/HPm

(
F 〈Xm〉) = t1 + · · · + tm − 1 = ξ1 + · · · + ξk + η1 + · · · + ηl − 1

= s(1)(ξ1, . . . , ξk)s(0)(η1, . . . , ηl) + s(0)(ξ1, . . . , ξk)s(1)(η1, . . . , ηl) − 1

where we denote by(i) the row-partition of lengthi.
Let now χ ′

k,χ
′′
k (k � 0) be two sequences of characters of the groupSk. We define

(χ ′ ◦χ ′′)k to be the following sequence of characters obtainedby convolutionfrom χ ′
k,χ

′′
k :

(
χ ′ ◦ χ ′′)

k
=

k∑
i=0

χ ′
i ⊗̂ χ ′′

k−i

where⊗̂ denotes the outer tensor product of the characters ofSk . In a similar way, if
χ ′

k,l, χ
′′
k,l (k, l � 0) are two sequences of characters of the product groupSk ×Sl , we define

(χ ′ ◦ χ ′′)k,l to be the following sequence of characters:

(
χ ′ ◦ χ ′′)

k,l
=

k∑ l∑
χ ′

i,j ⊗̂χ ′′
k−i,l−j
i=0 j=0
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where⊗̂ is now the outer tensor product of the characters ofSk × Sl . Explicitly, for the
irreducible charactersχµ′,ν ′ , χµ′′,ν ′′ one has thatχµ′,ν ′ ⊗̂ χµ′′,ν ′′ = (χµ′ ⊗̂ χµ′′) ⊗ (χν ′ ⊗̂
χν ′′). We are ready to prove the following result:

Theorem 6.2.Let I, J be T2-ideals of the superalgebrasA,B respectively. Denote b
R any superalgebra whoseT2-ideal factorizes as the productIJ . Then, theZ2-graded
cocharactersχk,l(R) of this algebra verify:

χk,l(R) = χk,l(A) + χk,l(B) + χ(1),(0) ⊗̂ (
χ(A) ◦ χ(B)

)
k−1,l

+ χ(0),(1) ⊗̂ (
χ(A) ◦ χ(B)

)
k,l−1 − (

χ(A) ◦ χ(B)
)
k,l

.
(8)

Proof. By (1) and (2) it is sufficient to argue for the Hilbert–Poincaré series HPk,l(R). By
Theorem 6.1 we get:

HPk,l(R) =
∑
µ,ν

mµ,ν(R)sµ(ξ)sν(η)

= α + β ×
∑
µ′,ν ′

mµ′,ν ′(A)sµ′(ξ)sν ′(η) ×
∑
µ′′,ν ′′

mµ′′,ν ′′(B)sµ′′ (ξ)sν ′′ (η)

= α + β ×
∑
µ,ν

[ ∑
µ′,µ′′,ν ′,ν ′′

mµ′,ν ′(A)mµ′′,ν ′′(B)c
µ

µ′,µ′′cν
ν ′,ν ′′

]
sµ(ξ)sν(η)

whereα = ∑
µ,ν[mµ,ν(A) + mµ,ν(B)]sµ(ξ)sν(η), β = −1/HPm(F 〈Xm〉) and cλ

λ′λ′′ are
the Littlewood–Richardson numbers that is:

sµ′(ξ1, . . . , ξk)sµ′′ (ξ1, . . . , ξk) =
∑
µ

c
µ

µ′,µ′′sµ(ξ1, . . . , ξk),

sν ′(η1, . . . , ηl)sν ′′(η1, . . . , ηl) =
∑
ν

cν
ν ′,ν ′′sν(η1, . . . , ηl).

For the outer product of irreducible characters ofSk ×Sl we have also thatχµ′,ν ′ ⊗̂χµ′′,ν ′′ =
(χµ′ ⊗̂ χµ′′ ) ⊗ (χν ′ ⊗̂ χν ′′) = ∑

µ,ν c
µ

µ′,µ′′cν
ν ′,ν ′′χµ,ν and hence:

(
χ(A) ◦ χ(B)

)
k,l

=
∑
µ,ν

[ ∑
µ′,µ′′,ν ′,ν ′′

mµ′,ν ′(A)mµ′′,ν ′′(B)c
µ

µ′,µ′′cν
ν ′,ν ′′

]
χµ,ν.

Sinceβ = s(1)(ξ)s(0)(η) + s(0)(ξ)s(1)(η) − 1, we get finally Eq. (8). �
It is important to study how the convolution product of sequences of chara

decomposes as sum of irreducibles (see for instance [18]). By the previous th
such study is needed for computing thecocharacters of superalgebras whoseT2-ideal is
factorable. In particular, the convolution of characters of row-partitions are relevant f
matrix algebras.
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For a fixed integeri � 0, denote byχ(i) the irreducible character ofSk associated to th
row-partition(i). We writeφ = {χ(i)}i�0 for the corresponding sequence of characters
define:

Y(n)
k = ( φ ◦ · · · ◦ φ︸ ︷︷ ︸

n

)k =
∑
µ

χ(µ1) ⊗̂ · · · ⊗̂ χ(µn)

whereµ = (µ1, . . . ,µn) is anyn-tuple of integersµi � 0 such thatµ1 + · · ·+µn = k. We
call Y(n)

k thenth Young characterof the symmetric groupSk . In the terminology used b
Regev in [18], the sequence of characters Y(n)

k (k � 0) is said to beYoung-derivedn times
by the sequence of charactersψ0 = 1 andψk = 0 for k > 0. Clearly Y(n)

k is the character o
the representation ofSk on the tensor power T(k)(V ) of a vector spaceV of dimensionn.
We refer the reader to the books [10,14,17] for the knowledge on algebraic combina
and representation theory of symmetric and general linear groups.

Let µ = (µ1, . . . ,µn) be an-tuple of non-negative integers whose sum is equal tk.
Then, we may think ofµ as thecontentin n letters of a semistandard tableaux of shapλ,
whereλ is any partition of the integerk. By definition, theKostka numberKλµ is the
number of semistandard tableaux of shapeλ and contentµ. By means of the Pieri–Youn
rule, such number is the multiplicity of the irreducible characterχλ in the decomposition
of the characterχ(µ1) ⊗̂ · · · ⊗̂ χ(µn), that is:

χ(µ1) ⊗̂ · · · ⊗̂ χ(µn) =
∑
λ

Kλµχλ

where the partitionsλ are all of height� n. By summing over all thek-contentsµ in n

letters, we have:

Proposition 6.3.The decomposition ofnth Young characterY(n)
k is the following:

Y(n)
k =

∑
λ

K
(n)
λ χλ

whereλ ranges over all the partitions ofk with height at mostn and the multiplicity
K

(n)
λ = ∑

µ Kλµ is equal to the total number of semistandard tableaux of shapeλ and
content inn letters.

It is well known that the numberK(n)
λ is equal to the value of the Schur functi

sλ(t1, . . . , tn) in n variables fort1 = · · · = tn = 1. It can be proved (see [10, Chapter
that:

K
(n)
λ = sλ(1, . . . ,1) =

∏
1�i<j�n

λi − λj + j − i

j − i
(9)

whereλ is any partition of height at mostn.
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which
We apply now the previous results to compute the cocharacters of a superalgebra
has a factorableT2-ideal.

Example 6.4.Consider the block-triangular matrix superalgebra:

R =
[

A U

0 B

]

whereA = M1,0(F ), B = M1,1(F ) andU = M1×2. Denotemµ,ν (µ � k, ν � l) the non-
zero multiplicities of theZ2-graded cocharacterχk,l(R). For l > 1, these multiplicities are
given by the following table:

µ/ν (u) (u, v) (u,u) (u, v,1)

(a, b) α β α γ (a, b,0)

(a, b, c) 3γ 4γ 3γ γ

(a, b, c,1) γ γ γ

whereb can be equal to zero, the integersc, v 
= 0 andu 
= v for the partition(u, v).
Moreover, we denote byα,β, γ the following polynomials:

α = 1/2 · (a − b + 1)(2ab + a + 3b + 2),

β = 1/2 · (a − b + 1)(3ab + 2a + 5b + 4),

γ = K
(3)
(a,b,c) = 1/2 · (a − b + 1)(b − c + 1)(a − c + 2).

For l = 0, the table of themµ,ν is the following:

µ/ν (0)

(a) 1
(a, b) α

(a, b,1) α

whereb 
= 0 andα = K
(2)
(a,b) = a − b + 1. Finally, forl = 1 we have:

µ/ν (1)

(a) α(a,0)

(a, b) α

(a, b, c) 2β

(a,b, c,1) β

where the integersb, c 
= 0 and the polynomialsα,β are the following:

α = 1/2 · (a − b + 1)(ab + b + 2), β = K
(3)
(a,b,c).
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For

01)

a-

J.

or

th.

dv.

55

15.
l.,

h.

08.
For computing the multiplicitiesmµ,ν note thatB = M1,1(F ) is a Z2-regular algebra
and henceT2(R) = T2(A)T2(B) by Theorem 4.5. Then, we can apply the formula (8).
the superalgebraA we have clearly:

χk,l(A) =
{

Y(1)
k ⊗ χ(0) if l = 0,

0 otherwise.

Moreover, theZ2-graded cocharacter ofB has been computed in [5] as:

χk,l(B) =
{

Y(1)
k ⊗ χ(0) if l = 0,

Y(2)
k ⊗ ∑

ν χν otherwise,

where ν � l ranges over all the partitions with height� 2. By using the property
Y(i)

k ◦ Y(j)
k = Y(i+j)

k we obtain therefore:

(
χ(A) ◦ χ(B)

)
k,l

=
{

Y(2)
k ⊗ χ(0) if l = 0,

Y(3)
k ⊗ ∑

ν χν otherwise.

Then, we get the multiplicitiesmµ,ν by applying the formula (9).
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