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Abstract

We study the graded polynomial idities of block-triangular maix algebras with respect to the
grading defined by an abelian grodp In particular, we describe conditions for thig;-ideal of
a such algebra to be factorable as a productgfideals corresponding to the algebras defining
the diagonal blocks. Moreover, for the factoralfleideal of a superalgebra we give a formula for
computing its sequence of graded cocharaatece given the sequences of cocharacters ofjhe
ideals that factorize it. We finally apply these results to a specific example of block-triangular matrix
superalgebra.
0 2004 Elsevier Inc. All rights reserved.
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1. Introduction

A variety of associative algebras over a fididis associated to an ideal of the free
associative algebr& (X) that is invariant under all the endomorphismsrfX). Such
ideals are called “T-ideals” and they are theals of the polynomial identities satisfied by
any algebra of the variety. For the study oéffrideals over a field of characteristic zero, a
fundamental tool is given by the representation theory of the linear and symmetric groups.
Moreover, the Kemer’s theorems about the classification of the T-ide#&l$Xf show that
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the notion of grading of an algebra defined by a group is another key ingredient for such
study. In particular, one has that any proper T-ideat'¢X) is the ideal of the polynomial
identities satisfied by the Grassmann envelope of a suifabiraded algebra (also called
superalgebra) of finite dimension. Retlgnthe work of Giambruno and Zaicev [11,12]

has contributed to clarify why the notion of Pl-exponent is crucial for a classification of
the T-ideals in terms of growth of the seaque of their codimenens. Recall that the

nth codimension of a T-ideal is defined as the degree of the representation of the group
S, on the vector space of éhmultilinear poynomials of F(X) of degreen modulo the
considered T-ideal. In [12] the authors prove that the minimal varieties with respect to
a fixed exponent are determined by the T-ideals of the Grassmann envelope of the so-
called “minimal superalgebras”. Over an algai closed field, such superalgebras can be
realized as graded subalgebras of block-triangular matrix algebras equipped with a suitable
Z,-grading. Precisely, the blocks along the main diagonal are simple superalgebras of finite
dimension. Then, by the Lewin’s Theorem [16] one has that the T-ideals of the identities
satisfied by the minimal superalgebras and their Grassmann envelopes are products of the
T-ideals corresponding to the diagonal blocks. Such results allow hence to solve in the
positive a conjecture due to Drensky [6,7] abting factorability of the Jideals of minimal
varieties as a product of verbally prime T-ideals. Moreover, Berele and Regev [4] proved
a formula that relates the sequence of ordinary cocharacters of a product of T-ideals to the
sequences of cocharacters of these ideals.

The present paper intends to contribute to this line of research by studying the graded
structure of the mentioned algebras. In particular, over an infinite field, we consider block-
triangular matrix algebras endowed with an elementary grading defined by any finite
abelian groups. Precisely, in Section 2 we summarize the basic definitions about graded
algebras and their polynomial identities. $ection 3 we recall the Lewin's Theorem and
we show how it can be applied for studying the-ideals of the graded identities of block-
triangular matrix algebras. In Section 4, for any graded subalgélofea complete matrix
algebra we describe the notion afi*regularity” in terms of suitable projections defined
on the graded generic algebra associated.tbor the block-triangular matrix algebras of

type:
A U
RZ[O B]

whereA, B are graded subalgebras of matrix algebras, we priyeR) = T¢(A) TG (B),
provided that at least one of the algebrtésB is G-regular. In Section 5 we give an
effective characterization of the property 6fregularity for complete matrix algebras.
For instance, for the superalgebsa= M; ;(F) it holds thatA is Zp-regular if and
only if k ={. For suitable group& and for A, B complete matrix algebras we prove
also that theG-regularity of A or B is a necessary condition for the ide&} (R) to be
factorable. In Section 6, assuming ctfy = 0, we prove a formula that allows to compute
the sequence of graded cocharacters of a superalgebwah thatl>(A) = T2(A)T2(B)
starting from the corresponding sequences ahdB. Such formula is based on the notion
of convolution of two sequences of characters. We apply these results for computing the
graded cocharacters of a concrete example.
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2. G-graded structures

Let F be an infinite field and G, +) an abelian group. Le# be an associative
F-algebra. We say tha# is a G-graded algebraif A = @gec Ag, where A, C A
are subspaces andl, A, C A, holds for anyg,h € G. The subspace!, is called
the homogeneous component 4fof degreeg. We say that the elementse A, are
homogeneous of degrgeand we denote their degreesjas= g. One defineg;-graded:
subspaces ofA, A-modules, homomorphisms and so on, in a standard way, see for
example [1].

Let now X = {x1, x2, ...} be a countable set of variables. We denoteFlfX) the free
associative algebra generated¥yGivenamap | : X — G, we can define &-grading on
F(X) by putting|w| = |x;,|+ - - - + |xj,| for any monomiak = x, ---x;, € F(X). Then,
the homogeneous componeitX), C F(X) is the subspace spanned by all monomials of
degreeg. If the groupG is finite, we assume that the fibers of the mag@re all infinite.

If A is aG-graded algebra, we denote By (A) the intersection of the kernels of all
G-graded homomorphisms(X) — A. ThenTg(A) is a graded two-sided ideal &f(X)
and its elements are callgd-graded polynomial identitiesf the algebraA. Note that
Tc(A) is stable under the action of any-graded endomorphism of the algebrax).
Any G-graded ideal of" (X) which verifies such property is said to b&a-ideal. Clearly,
any Tg-ideal I is the ideal of theG-graded polynomial identiteeof the graded algebra
F(X)/I.Note also that for &-graded algebra, the quotient algebr& (X)/ T (A) is the
relatively free algebra for the variety of graded algebras generatdd by

If the algebraA is graded by the groug = Z™ and any homogeneous elemeart A
has degre®(a) € N we say thatA is m-multigraded In this case, we can define the
Hilbert—Poincaré series ofA as the power series HRA) = > dimF(Ag)tfl---t,%"’
where then-tuplea = (g, .. ., o) ranges oveN™.

Let X, = {x;,, ..., x;,} be any ordered subset &f with m elements and let: X, —
Z™ be any map. Am:-multigrading onF (X,,) is defined by puttin@ (w) = a(x;,) +-- -+
d(xj,) forallmonomialsw = x;, - - -xj, € F(X,,). In what follows we always assume that
d is thenatural multigradingthat is we pu (x;;) = (1,0,...,0), d(x;,) = (0,1,...,0),
etc.

Consider nowA be an algebra graded by any abelian graupThe ideal7g(A) N
F{X,) is m-multigraded and so is the quotient algebra:

Ax,, = F(Xm)/(Tc(A) N F({Xy)).

Then, we can define HP (4) = HPm(Axm) and we call such series tllbert—Poincaré
series of theG-graded algebraA associated to the set of variablés,. Given two finite
subsetsX,,, X, C X, note that the series HP(4) and HB (A) coincide if there is a
bijectiono : X, - X/, such thato (x;,)| = |x;, |, for all x;, € X.

If G =7, theZy-graded algebrag are usually calleduperalgebrasin this case, the
notationT>(A) is used for denoting the ideal of tt#&-graded polynomial identities of.
Moreover, note that the Hilbert—Poincaré seriesH®) associated to a subskEf, C X is
uniquely determined by the pair of integétd that counts the number of variablesXy,
of degree respectively 0,1. We denote such series hy &8.
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Since the ideall>(A) is stable undef,-graded endomorphisms, a natural action of
the product group GL(F) x GL;(F) is defined for the quotient algebpﬁxm. Assuming
charF) = 0, it follows that the series HR(A) can be decomposed as a sum of products
of Schur functions defined on distinct sets of variables:

HPe1(A) =) " myusu(Er, - EDsv (1, ) (1)
n,v

where the heights of the partitions, v are bounded respectively by the integérs.
Note now that the grouf; x S; acts on the multilinear coponent of the algebréxm.
We denote byx ;(A) the character of such representation and we call itZihgraded
cocharacter of the superalgebra or equivalentlyof the ideal7>(A). Denotey, and
xv (u bk, v 1) the irreducible characters of the groups respectiglyand S;. For
simplifying the notation, we pug, ., = x. ® xv». Then, if Eq. (1) holds, we have also
(see [3,8]):

Xk,l(A) sz,u,vx,u,w (2)

v

Let E = Eo ® E1 be the Grassmann (or exterior) algebra of a vector space of countable
dimension equipped with its naturdp-grading. For any superalgebsg the Grassmann
envelopeof A is defined as the following superalgebtaA) = (Ao ® Ep) @ (A1 ®
E1). The relationship between the graded identities of the superalgehr@gA) is
described in [15] by means of an involutidn— I* defined on the lattice of th&>-
ideals of the free superalgebra(X). Note that this map satisfies also the property
(I1J)* = I*J*. Using the language of the representation theory, one has the following
relationship between the seaques of graded cocharacters #fand G(A): xx(A) =
ZM My, Xu,v if and only if xx 1 (G(A)) = ZN My X, Wherev' =1 is the conjugate
partition of v. These results, together with the classification of the simple superalgebras
of finite dimension, allow us to reduce theidy in this paper to the matrix algebras with
entries in the fieldr.

3. Lewin’s Theorem for G-graded algebras

Let A, B be G-graded algebras arid be aG-gradedA—B-bimodule. We denote bR
the block-triangular matrix algebra defined as follows:

Rz[g ’;}

Typically, we may considedA = M,,, B = M, the complete matrix algebras afd=
M, «, the vector space afz x n rectangular matrices. In this cask,is the algebra
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UT(m, n) of block-triangular matrices. The algebrais G-graded in a natural way by
putting:

— Ag Ug
el )

for any ¢ € G and we havelg(A)Tg(B) C Tg(R). One of the main results of this
paper consists in describing suitable conditions for the structures, &, U so that
Tg(A)Tg(B) = Tg(R). For this purpose, one of the main tools is the Lewin’s The-
orem [16].

Let 1 and J be any two-sided ideals of(X). Consider the quotient algebras
F(X)/I, F(X)/J and letU be aF(X)/I-F(X)/J-bimodule. We define:

R | FXO/I U
- 0 F(X)/J |

Fix {u;} a countable set of elements Gf Theng : x; — a; defines an algebra homomor-
phism, where:

= xi+1 u;
' 0 xi+J |

If f(x1,...,x,) € F{X)one hasthaf(x1,...,x,)~ f(a1,...,a,), where:

[ fG e x) + 5(f)
f(“l’“"“”)_[ 0 f(xl,...,xn)+1}

ands(f) is some element dff. ThenlJ C ker(p) =1 N J Nkerl§) ands: F(X) — U is
an F-derivation.

Theorem 3.1(Lewin [16]). If {«;} is a countable free set of elements of the bimodule
then for the homomorphismpdefined byu; }, we haveker(p) =1J.

Suppose now that the free algelfdX) is G-graded by some map|. Considerl, J
two Tg-ideals and leU be aG-gradedF (X)/I-F{X)/J-bimodule. Clearly J C Tg(R).
Moreover, if the free elements € U are all homogeneous and such that = |u;| for all
i > 1,theng: F(X) — R is aG-graded homomorphism. Hen@g (R) C ker(p) and by
the Lewin’s Theorem we have that key = I.J. We conclude:

Corollary 3.2. If the G-graded bimoduld/ contains a countable free sgt;} of homoge-
neous elements such that| = |u;| foranyi > 1, thenTg(R) =1J.
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4. G-regularity and factorable Tg-ideals

In this section we will consider gradings over matrix algebras. In [1,2Fadiradings
overM,,(F) are classified for the case thiétis an algebraically closed field. In particular,
the so-callectlementary gradingare proved to be very important.

From now on, we assume that the abelian gréugs finite. LetM,, = M,,(F) be the
algebra of matrices of ordet with entries inF and fix a map| |:{1,2,...,m} - G.
Then| | induces a grading oM, by settingle;;| = | j| — |i|, for all matrix unitse;; € M,,.
We leave to the reader the verification that this is indeed the elementary grading defined
by (111, ..., |m|) € G™. We write (M,,, | |) for the matrix algebraM,, endowed with
the G-grading defined by the map|:{1,2,...,m} - G. For G = Z», the superalgebra
(M, | |) is simply denoted adf; ;(F) if [i|=0forl<i<kand|i|=1fork+1<i<
k+1=m.

Let (M, ]| |n) and (M,,, ] |,) be two G-graded matrix algebras. Define the map
| 1:{1,2,...,m +n} — G by putting|i| = |i|, fori <m and|i| =|i — m|, fori > m.
We consider then the matrix algeb#s,,,, endowed with theG-grading defined by the
map| |. LetU = M,,,«, and letA, B be G-graded subalgebras respectivelyf,, M,,.
Then

A U
R:[O B}c(Mmﬂ,H)

is aG-graded subalgebra. We will prove that under suitable assumptions for the algebra
or B it holds T¢(R) = T (A)Tg(B). The notion of “generic algebra” is very useful for
this purpose.

Let £2 be anyG-graded algebra. We denote by Ge€t) each G-graded algebra
isomorphic toF (X)/ T (£2) and we call it aG-graded generic algebra associated s
In particular, this implies thafs (£2) = T (Geng (£2)).

If £2 has finite dimension, one has a canonical way to define a graded generic algebra.
Let {e1,...,e,} be anF-linear basis of2 whose elements are all homogeneous. Denote
P(2) = F[ti(h) | 1<i <n,h>1]the polynomial ring in the countable set of commuting
variablesrl.(h). We call P(£2) the polynomial ring associated to the finite dimensional
algebras2. Note that the tensor produ& ® P(£2) =P 2, ® P(£2) over the fieldF
is aG-graded algebra such that:

geG

T6(2 ® P(R2)) =Ts(£2).

If x;, are the variables of th€-graded free algebr(X), then we consider if2 ® P(£2)
the graded subalgebi@’ generated, for alk > 1, by the homogeneous elemenjs=
Zle;|=\xh\ ti(h)e,- where the index ranges over X i < n. We can easily prove:

2’ =Gens(R2).

Note that if 2 = M,, then we choose canonically @&slinear basis the one given by the
matrix unitse;; (for the non-graded case, see for instance [19]).
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We consider now as an homogeneous linear baskstoe disjoint union of some bases
of A, B and the canonical basfg;;} (1<i<m,m+1<j<m+n)ofU.If P=P(R)
then the algebra&k ® P containsA’ = Ger;(A), B = Gerng(B) and R’ = Gerg (R).
Denote byR C R ® P the following G-graded subalgebra:

— AU
Rz[o B,} 3)

wherelU’ is theG-gradedA’—B’-bimodule contained iR ® P and generated, for ail > 1,
by the following homogeneous elements:

up = Z tl-(jh)eij (4)

leij|=lxnl
with1<i <m,m+ 1< j <m+n. We have then:
Proposition 4.1.
To(R') =Tg(R) =TG(R).

Proof. Itis sufficient to note thal; (R') = Tg(R) = Tg(R ® P) and moreoveR’ C R C
R®P. O

Now we want to show that the homogeneous elemepnidefined in (4) form a free set
of the bimodulel/’ under suitable conditions. For thisirpose we introduce the notion of
“G-regularity” of a matrix subalgebra.

Let A be anyG-graded subalgebra oM,, | |). DenoteP = P(A) the polynomial ring
associated tol. For anyg € G we consider the-linear maprg : M,, ® P - M, @ P
defined as follows:

E aijeij = E aijeij
ij

lil=g8.J

where 1< i, j < m. Since Geg(A) CA® P C M,, ® P we define also the maf, :
Gerg(A) — M,, ® P as the restriction ofr, to Ger;(A). Define n;:Mm ® P —
M, ® P the F-linear mapy_; ; aijeij = 3_; =, @ijeij and denote byt its restriction
to Ger; (A).

Proposition 4.2.The mapsz, are all injective if and only if the maps; are such, for all
g€G.

Proof. PutA’ = Genr;(A) and letyp : F(X) — A’ be the canonicali-graded epimorphism
such that keip) = T (A). Suppose that the maf is not injective that is there is a matrix
a’ # 0 of A’ such thatr,(a’) = 0. Since the mapr, is graded, we can assume that the
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elementa’ is homogeneous of degrées G. We want to prove tha;tr;rh (@) =0thatis
fr;Jrh is not a monomorphism.

Let f € F(X), f ¢ Tg(A) be an homogeneous polynomial of degrge= & such that
@(f) = a'. Denote byr, andz; the F-linear maps defined oi,, which correspond
respectively tor, and n;;. The conditionr, (a’) = 0 is equivalent tat,(a) = 0, where
a=v(f) andv: F(X) — A is any G-graded evaluation. We prove that one has also
7y (@) =0 that isa;; =0 for anyi,j = 1,2,...,m with |j| = g + h. In fact, if
|71 —li| # h thena;; = 0 since the matrix: € A is homogeneous of degrée Otherwise,
if |l —1il = h and hencdi| = g, thena;; = 0 sincen,(a) = 0. As v varies over the
evaluations, we get;, ,(a’)=0. O

Definition 4.3.A G-graded subalgebra C M,, is said to beG-regularif the mapsz, (or
equivalently thez;) are all injective, for any € G.

If the map| |:{1,2,...,m} — G is not surjective, clearly all the graded subalgebras
of M,, are notG-regular since there is somg, = 0. For this reason, from now on we
assume that the may is surjective and thus the finite grouphas order< n. Moreover
note that for the ordinary case, that is f6r= {0}, all the subalgebras d#,, are regular.
With the notation of definitions (3) and (4), we have:

Proposition 4.4.Let A, B be G-graded subalgebras respectively #,, M, . If one of
these subalgebras i§-regular then the homogeneous elemeniof the gradedA’-B’-
bimoduleU’ form a countable free set such thaf| = |x;|, forall 2 > 1.

Proof. We assume thaB is a G-regular subalgebra d¥f,,. Since the non-zero entries of
the matrices:, are distinct variables for all the indicés clearly it is sufficient to prove
that each elemen, is torsion-free. Then, I€L; a;ub; = 0 witha, € A’, by € B'. Suppose
that the matrices; are linearly independent and that£ O for any indexs. For any pair
of indices(i, ¢) we have:

Z Z(aS)ijujP (bs)pq =0.
s /p

Note thatu;, # 0 if and only if |p| — |j| = |u|. Moreover, the entries;, # 0 are
variables that are distinct from those of the polynomialg,; and (bs) 4. It follows that
Y s(ay)ij(bs)pg = 0, for any quadruple of indice§, j, p, ¢) such that/p| — || = |u].
Sinceas # 0, there are indices, j1 such that(ai);,, j, # 0. By puttingg = | j1| + |u| we
have thend_ (ay)i, j, (bs) pg = O, for any indicesp, ¢ with |p| = g. By multiplying now
this equation foe,, and by summing over the indicgs ¢, we finally obtain:

D @5y g (bs) = 0.

Note that the matrice, (by) are linearly independent singg is a monomorphism. Since
(a)i j; # 0, we get then a contradiction. We argue in a similar way is a G-regular
subalgebraoM,,. O
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Theorem 4.5.Let R be theG-graded block-triangular matrix algebra defined as follows
A U
#=[6 4]

whereA Cc M,,, B C M,, are graded subalgebras and = M,,»,. If one ofA and B is
G-regular then thel;-ideal T (R) factorizes as

TG(R) =T (A)TG(B).

Proof. By Proposition 4.1 we havég (R) = Tg(R). SinceA’ ~ F(X)/Tc(A) andB’ ~
F(X)/Ts(B), by Corollary 3.2 and Proposition 4.4 we obtdig(R) = T (A Tg(B') =
Tc(A)Tg(B). O

5. G-regularity for compl ete matrix algebras

In this section we give some exampleg®iegular graded subalgebras and characterize
such notion for complete matrix algebras in terms of fibers of the maghat defines
the G-grading. Moreover, for a block-triangular matrix alget®avhose blocks along the
diagonal are complete matrix algebras, under some assumptions for the(@weiprove
that the ideall ¢ (R) is factorable if and only if some of the algebras on the diagonal is
G-regular.

Proposition 5.1.Let (M,,, | |,,) be aG-graded matrix algebra. IfG| = n then there is a
G-grading of M,,,, such that the following monomorphism is graded

a 0 ... 0
) O a ... O

Q. My — My, ai—>dlag(a,...,a)= .
0 0 ... «a

Moreover, if A is any G-graded subalgebra oM, then¢(A) is G-regular as graded
subalgebra of\1,,,), .

Proof. SayG = {go, g1, - - -, gu—1}- The required map|:{1, 2,...,mn} — G is defined
asl|i +km|=|i|m +gr, foralli=1,2,... . mandk=0,1,...,n — 1. Let nowA C M,,
be aG-graded subalgebra and pRit= P(A) = P(¢(A)). Note that for the generic algebra
Gerg (¢(A)) one has the following chain of immersions:

Gen; (¢(A)) Co(A)® P C p(My) ® P.

Therefore, itis sufficient to note that the restrictions of fénear mapsrg; : My, ® P —
M, ® P tothe subspace:

¢(My) ® P ={diaga,...,a)|a € M, Q P}
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are injective since all the entries of a matsix M,, ® P occur in the rows of degreg of
diaga,...,a),foranyg; e G. O

Proposition 5.2. Let M,, be any matrix algebra ands = Z, the cyclic group of
order n. Consider theG-graded algebraB = @7;&#Mm, wheret" = 1 and t' M,, is
the homogeneous component of dedgreeG. Let ¢: B — M,,, be the monomorphism
defined as follows

ap ai ... ap-2 dap-1
n-1 . al a ... dap—1 ap
Zt’ai —
i=0
ap-1 4o ... Aap-3 dan-2

Then, aG-grading of M,,,,, is given such thap is graded and ifA C B is anyG-graded
subalgebra the(A) is G-regular as graded subalgebra 4,,,,,.

Proof. The required grading oM,,, is defined by the map + km| =k, for all i =
1,2,....mandk=0,1,...,n — 1. The remaining part of the proof is similar to the
corresponding part of the pof of the previous proposition.

By the classification of the finite dimensional simple superalgebras over an algebraically
closed field of characteristic different from(@e [21]), it holds that there are exactly two
classes of such superalgebras up to isomorphidfg(F) with k >1 > 0,k # 0 and
M,, ® tM,, with m > 0,12 = 1. From the previous proposition we have that the latter
superalgebra iZ,-regular as embedded i#>,,. We prove now that the superalgebra
M, (F) is Zp-regular as subalgebra of itself if and onlykif=[. Actually, we prove a
general result for complete matrix algebras graded by any finite abelian group

Proposition 5.3.Let A = (M., | |) be aG-graded matrix algebra. Assume th&t| =n
and each fiber of | has exactlyn elements. PuP = P(A) = F[tl.(;') |1<i,j <mn,
h > 1] and fix any integed < i < mn. Define theF-linearmap p;:A® P > AQ® P,
ar> Zj aijeij, wherel < j < mn. Then, the restrictiorp; : Gerg(A) - A ® P is an
injective map.

Proof. PutA’ = Gen;(A) and letp: F(X) — A’ be the canonicali-graded epimorphism
such that kelip) = TG (A). Let a’ be a matrix ofA” such thatp; (a’) = 0. Moreover, let
f € F(X) be a polynomial such thai(f) = a’. We have to prove thaf € Tg(A) that
is v(f) =0, for any G-graded evaluatiow: F(X) — A. Fix an evaluationv and put
a =v(f). Sincep;(a’) =0 we have that;; =0, forany; =1,2,..., mn.

Let nowg € G. We call a permutatioa € S,,;,, homogeneous of degrgeif |o (k)| =
|k| + g. Such a permutation inducesGxgraded conjugation automorphisin A — A,
epq > €s(p)a(q)- Sinceov is still a graded evaluation we havg); = 0 for any j =
1,2, ..., mn.

Because all fibers df | have the same number of elements, for any couple of indices
1< h, k < mn there exists an homogeneous permutaticsuch that (k) = k. Then, the
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indexo (i) can assume all the values2l ..., mn and therefore ( f) = a = 0 since all the
rows of this matrix have zero entriest

It is convenient to recall here the definitions standard polynomiabnd Capelli
polynomialwhich are respectively:

Sn(U1, ..., up) = Z SgNo) U (1) * Ug (n)>

oEeS,

dp(Ug, ..., Up, V1, ..., Vpgl) = Z Sgrta)vlua(l)UZ ©Unllo (n)Un+1-
oEeS,

We define also the function: G — N, wherew(yg) is the cardinality of the fiber of € G
forthe map |:{1,...,m} —> G.

Theorem5.4.LetA = (M,,, | |) be aG-graded complete matrix algebra. Thanis G-re-
gular if and only if the mayp | is surjective and all its fibers are equipotent.

Proof. The sufficient condition follows a ftiori by Proposition 5.3. For the necessary
condition, note that for the homogeneous comporgnive have the following decompo-
sition:

Ao=EPay’ (5)
geG
where the subspaet-(()g) = (e;;: |i| = |j| = g) is canonically isomorphic td/,, ). Assume

now that there ix € G such thatw(g) < w(g’), for someg’ € G. Putd = w(g) and
consider the polynomiab;(y1, ..., y2q) € F(X), where they; are variables of degree 0

of the setX. Fix v: F(X) — A an arbitraryG-graded evaluation. Then, the matrigo;)

is homogeneous of degree 0, and the Amitsur—Levitzki theorem implies thad has
zero component imgg) as direct summand of the decomposition (5). Moreover, the same
theorem provides that there exists a graded evaluatisuch that'(sz;) is a matrix of
degree 0 which has non-zero componemgl). Thus,sy,; defines a matrix’ € Gerg (4),

a’ #0suchthatig(a’) =0. O

Note that theG-regularity ofA = (M,,, | |) is verified in particular when the order 6f
is exactlym and the map | is bijective. This is the caséor instance, when we consider
the naturak,,-grading ofM,, (see [20]).

We want to prove now that, under some assumptionsGtiregularity is a necessary
condition for block-triangular matrix algebras to have a factorafyjeideal. For this
purpose, we need the following lemmas.

Lemma 5.5.Let q; = (al.(j’.‘)) be matrices ofM,,, for anyk = 1,2, ..., n. Then, for any
indexj and pairs of indicesi1, j1), ..., (in, ju) Of the sefl, 2, ..., m}, we have

dy(as,...,ay, €ji1s €jgins -+« €jy_qins ejnj) = dei(b)e.,'.,'
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whereb € M,, is defined a$y,;, = ai(:j).h. In particular, if ay = e;, j, are distinct matrix units
for anyk, thendet(d) = 1.

Proof. Straightforward computation.

Lemma 5.6.The standard polynomia} (u1, ..., u;) is a polynomial identity for the block-
triangular matrix algebradT (m, n) if and only ift > 2(m + n).

Proof. Putk =m + n. If t > 2k the polynomials; (u1, ..., u;) is an identity of UTim, n)

by the Amitsur—Levitski theorem. Moreover, the algebra(dTr) contains the staircase
{e11, e12, . - ., ex—1k, ek } @and therefore it has no polynomial identity of degree strictly less
thanZ. O

With the notation of the decomposition (5), it holds:

Proposition 5.7.Let G be a finite group of prime order and considar= (M,,,| |) a
G-graded matrix algebra which is ndk-regular. Fixt € G such thatw () = maxw (G).
Then, there is a multilinear polynomigl € F(X), f ¢ Tc(A) such thatv(f) € Ag) for
any G-graded evaluatiow: F(X) — A.

Proof. Let k = w(t) = maxw(G) and putT = {g € G | w(g) = k}. Consider also
sok—1(u1, ..., uz—1) the standard polynomial of degreé 2 1. Assuming thafu;| = 0,
then for each graded evaluatioron A one has:

v(sok—1) € @ Aég) CA. (6)
w(g)=k

In fact, the polynomiaty; 1 is an identity for any matrix algebra of orderk and hence for
Agg),whena)(g) <k.WT ={t1,12,...,t,},foranyi=1,2,...,randj =1,2,...,2k—1
letu;; be distinct variables whosg-degree is zero. By putting = sor—1(u;1, . . ., #i2k—1)
we claim that the required polynomial i = wiciz1 - wrcrz-, Wherew; andz; are
variables of degrepw;| = —|z;| =t; — ¢, for anyi. Sayr = t1 and denotef; = w;c;z;. For
each evaluatiom, by (6) one has(f;) @g Ag") where the elementge G are such that
t; —t1+ g € T. Therefore, it holds:

v(f)=v(f) - v(f) e PAY
8

whereg satisfyt;, — 11 +ge T foralli =1,2,...,r,that isT — 11 =T — g. Then
T =T + (11 — g) and thusT is union of cosets of the subgrodp= (1 — g) C G. Since
A is not G-regular we have thaf’ # G and henceH # G. Because the order af is
prime, it follows thatH = 0 thatisg =, = ¢t and hence (f) € Ag). We prove finally that
f¢T6(A).

Note that we havey;_1(e11, e12, .. ., ex—1k, exx) = e1, in the matrix algebra;. For
anyt € T, denote bya;, b; respectively the minimal and maximal element of the set
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{j11<j<m,|jl =t} Then, there exists an evaluatipn on Ag") ~ My such that
wi(ci) = eqp;- Fix s € {1,2,...,m} of degree|s| =t and definew; = e5; € A;,—;,

Zi = ep;s € Ar—y;. Since{w;, z;} and{u;;} are disjoint sets of variables, we have a graded
evaluationw on A such that (¢;) = u; (¢;), v(w;) = w;, v(z;) = z;. Clearly we have:

v(f)=e5. O (7)
We can finally prove the following result:
Theorem 5.8.Let R be theG-graded algebra defined as follows
A U
R= [O B}
where A = (M, | |m), B = (M, ]| |,) are G-graded complete matrix algebras and

U = My« If the finite groupG has prime order then th&g-ideal of R factorizes as
T (R) =T (A)Tg(B) if and only if one of the algebras or B is G-regular.

Proof. Assume that the algebraisand B are both non-regular ones. We want to define a
polynomial f € F(X) such thatf € Tg(R) but f ¢ Tc(A)Tg(B). Recall that the map
| 1:{1,2,...,m + n} - G that provides thaG-grading of R is obtained agi| = |i|;,
fori <m andli| =|i — m|, for i > m. Note that for any fixed elemenrte G, we can
obtain a newG-grading for the algebr&® by defining a new map |* as|i|* = |i| for
i<mand|i|* =|i| + g for i > m. We say that |* is obtainedby translation of| |,
by means of. We denote byR* the graded algebra obtained Byusing theG-grading
defined by |*. SinceR, R* differ only for the degree of the matrix units A one has that
T (A)TG(B) C Tg(R*). Hence, it is sufficient to prove thate T (R) \ T (R*).

Denote byw, andwp the functions corresponding to the mapg, and| |,,. Owing
to Theorem 5.4, we have thét= maxws(G) > Minw4(G) and k = maxwp(G) >
Mminwp (G). We consider two cases. The first one is that there i r0G such that
wa(g) =handwpg(g) = k. Inthis case, we have that-k > w4 (g) +wp(g) foranyg € G.

If we put p = 2(h + k) — 1, then the required polynomial §=s,(y1, ..., y,) wWhere the
variablesy; have allG-degree equal to zero. In fact, the homogeneous compderdan
be decomposed as the following direct sum of subalgebras:

Ro=P Ry

geG

whereR(()g) = (e;j: |il = |j| = g). Such subalgebras are canonically isomorphic to the
block-triangular matrix algebras Ud 4 (g), wp (g)) and hencef € T (R) by virtue of the
Lemma 5.6.

Letnowa, b € G such thatwa (a) = h, wp(b) = k and putc = a — b. Let| |* be the map
obtained by translation df},, by means of and denote by* the corresponding-graded
algebra. Similarly to what we have fat, for the decomposition of the homogeneous
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componentR; one has that the direct summand corresponding to the degrise
canonically isomorphic to UT, k). Then, still by Lemma 5.6 it follows thaf ¢ T (R*).

We consider now the case that there existsG such thatw4 (1) = h = maxw4 (G)
andwp (1) = k = maxwp (G). Then, by Proposition 5.7 ¢ne are multilirar polynomials
fa, fB € F{X) defined on disjoint sets of variables which verify the following properties:

(@) fa ¢ Tc(A), fp ¢ Tc(B),
(b) for anyG-graded evaluations, : F(X) — A, vg: F{X) — Bonehass(fa) € AL,
(1)
VB(fB) € BO .

Suppose now that is a multilinear polynomial whose vabées are different from those
of fa, fp. Suppose also that thé-degree ofd is different from zero and(d) € U,
for any graded evaluation: F(X) — R. We will prove later that such a polynomial
exists. In this case, we can define the polynonfiak f4dfp and prove that it belongs
to the idealTs (R) but not toTg (R*). By contradiction, assume that there issagraded
evaluationv: F(X) — R such thab(f) # 0. Becausef is multilinear we can assume that
all variables are evaluated yat matrix units. Since we have:

AB=BA=BU=UA=U?*=0

andv(d) € U, this implies thatv maps the variables of4 and fp respectively into
elements ofA and B. Thus, by means of the property (b) we have thét,) < Ag),
v(f5) € BY .

Consider now any: Ag) C R andb ¢ Bg) C R, and lete;; € U. Note that if the
productae;;b # 0 then|i| = |j| =t and hencae;;| = 0. Sincev(d) is an element ot/
whoseG-degree is different of zero, by(f) # 0 we get a contradiction and therefore
feTg(R).

We define now the required polynomidl Fix g € G, g # 0 and consider the
homogeneous componemts, B,. If we put p = max(dimg Ag, dimg B,) + 1 thend is a
Capelli polynomiald, (u1, ..., up, v1, ..., vp+1) Whose variables are different from those
of fa, fB, the totalG-degree is different from zero and;| = g for anyi. Let v be an
arbitraryG-graded evaluation oR. We show that (d) € U.

Sinced is multilinear we can assume that all variables are evaluated at matrix units.
Note that ifv(u;) € A or v(u;) € B for all i thenv(d) =0, sinced is alternating for they
variablesy;. Thus, ifv(d) # 0 thenv(d) € U sinceAB = BA =0 andU is an ideal ofR.

It remains to be proved that ¢ T (R*) for some magp |*. We show that for a suitable
choice of G-degrees for the variables, ..., vy,41 0f d =dp(u1, ..., up,v1,...,vp41),
there is a graded evaluation F(X) — R* such that(f) #0.

Say dimy A, > dimp B, thatisp — 1 =dimg A,. Denote by, ..., a,—1 the F-linear
basis of A, given by matrix units. Owing to Lemma 5.5, for any=1,2,...,m there
are suitable matrix unitsy, ..., a;, in A such thaid,_1(a1,...,ap-1,ay, ..., a;,) =ejj.
For j > m, we puta, =e;; anda, , = ej;. Sincea, is an element o/ one has that
dp(al,...,a,,,a’l,...,a;H) = ¢;;. In particular, we may choose indiceés;j such that
li| = |j| = t. Consider now the map|* obtained by translating |, by means of¢ and
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let R* be the corresponding-graded algebra. IR* we have thena,|* = |a,| = g for
q=21,2,....,p— 1and|a |* = |a |forq=1,2,..., p. Moreover, it holds:

lapl* =1jI" —lil"=t+g—t=g.

By putting vy | = |a('1 |* foranyg =1,2,..., p+1, agraded evaluationon R* is clearly
given such that(d,) = e;;. By using Eq. (7) withs =i, s = j for the polynomialsfs, fz
respectively, we conclude thatf) #0. O

6. Cocharacters of superégebras with factorable T»-ideal

In this section we assume that the fidichas characteristic zero. We generalize to the
Z»-graded algebras the results of Berele—Regev [4] about the sequence of the cocharacters
of ordinary Pl-algebras whose T-ideal is factorable as a product of two T-ideals. Such
generalization can be further extended to ahgrading, but we avoid to do this to keep
the notations reasonably simple and since melyathese results just to superalgebras. We
start with the following basic result:

Theorem 6.1 (Formanek [9,13])Let I, J be m-multigraded ideals of the free algebra
P = F({X,,). Then, we have

HP,, (P/1)HP,,(P/J)

HP,, (P/1.) = HPu(P/D) + HPy (P/J) = HP,. (P)

In what follows it is useful to note that the Hilbert—Poincaré series of the algep¥a )
isHP, (F(X,)) =1/(1—t1—---—t,). Moreover, in terms of Schur functiong one has:
—YHP, (F(Xp))=t1 4+ +tm—1=&+ -+ &+m+-+m—1

=51 - 8050 @1, ) s G- E)s@(, L) — 1

where we denote bgi) the row-partition of lengta.
Let now x;., x; (k > 0) be two sequences of characters of the grSupWe define
(x" o x")« to be the following sequence of characters obtalmedonvolutiorfrom x;, x,:

(X' ox"), = ZX,®X£’_i

where ® denotes the outer tensor product of the characte ofn a similar way, if
Xi.1» X (k.1 > 0) are two sequences of characters of the product gspwsS;, we define
(x" o x")x.1 to be the following sequence of characters:

XOX ZZX”@Xklzj

i=0 ;=0
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where® is now the outer tensor product of the character§;ok S;. Explicitly, for the
irreducible characterg, ./, x,7.,» one has thaj, v ® X7 = (Xu & xu) ® (Xy ®
xv). We are ready to prove the following result:

Theorem 6.2.Let 1, J be T»-ideals of the superalgebras, B respectively. Denote by
R any superalgebra whosgE-ideal factorizes as the produdt/. Then, theZ,-graded
cocharactersy, ;(R) of this algebra verify

Xk (R) = k.1 (A) + xx1(B) + x(1),0 ® (x(A) 0 X(B));_1,

. (8)
+ X(0),(1) ® (X (A) o X(B))k,lfl - (X (A) o X(B))k,l'

Proof. By (1) and (2) it is sufficient to argue for the Hilbert—Poincaré serieg iR). By
Theorem 6.1 we get:

HP 1 (R) =) my o (R)s,u ()5, (1)

v

=a+Bx D mu (A E)sy () x Y myr i (B)sur (§)syr ()

’ ’ " "
JTanY no,v

=o + ﬂ X Z[ Z m,u/,v/(A)mu”,v”(B)C‘Z/,M/’(":’,v”}sﬂ(E)SV (77)

wov s o v

wherea = Zﬂ’v[mu,,,(A) + myv(B)lsu(§)sy(), B = —1/HP, (F(X,)) and cﬁw, are
the Littlewood—Richardson numbers that is:

s €L B EL L E) =) el s 8,
n

Sy (N1, - S (L) = Y el sy (i m).
v

For the outer product of irreducible character§pk S; we have also that,,/ ./ ® X o =
(Xll/ ® XM//) R (X & xvr) = Z,u,v CZ/,/,L//CE/,U”XM’V and hence:

(x(A)o x(B)), = Z[ > mw/(A)mu//,v//(B)cl’j/,ﬂ/,c;,v/,}x,w.

wov b v
Sinceg = S(1) (E)S(o)(n) + 500) (E)S(]_)(n) — 1, we get finally Eq. (8). O

It is important to study how the convolution product of sequences of characters
decomposes as sum of irreducibles (see for instance [18]). By the previous theorem
such study is needed for computing tbecharacters of superalgebras whasedeal is
factorable. In particular, the convolution of characters of row-partitions are relevant for the
matrix algebras.
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For a fixed integef > 0, denote by ;) the irreducible character 8 associated to the
row-partition(i). We write¢ = { x(;)}i >0 for the corresponding sequence of characters. We
define:

(n) S S
Y =(¢°"‘°¢)k=;X(M)®"‘®X(Mn)

n

wherew = (u1, - . ., 1y) is anyn-tuple of integerse; > 0 such thajes + - - - + u, = k. We

call Y(") thenth Young characteof the symmetric groufSy. In the termlnology used by
Regev in [18], the sequence of charactefé) Yk > 0) is said to béroung-derived: times

by the sequence of characteig= 1 andy; = 0 fork > 0. Clearly Y(") is the character of

the representation & on the tensor power® (V) of a vector spac& of dimensiom:.

We refer the reader to the books [10,14,17] for the knowledge on algebraic combinatorics
and representation theory of symmetric and general linear groups.

Let u = (u1, ..., uy) be an-tuple of non-negative integers whose sum is equdl. to
Then, we may think of. as thecontentin » letters of a semistandard tableaux of shape
wherea is any partition of the integet. By definition, theKostka numberk; , is the
number of semistandard tableaux of shapend contenjr. By means of the Pieri—Young
rule, such number is the multiplicity of the irreducible charagiein the decomposition
of the characte ;) ® - - - ® x(u,), thatis:

X @+ ® Xun) = Z Koo,
Y

where the partitiong. are all of height< n. By summing over all thé-contentsu in n
letters, we have:

Proposition 6.3.The decomposition aith Young characteY,((”) is the following
v ="K
A

where A ranges over all the partitions of with height at mosk and the multiplicity
K" = >, Kiy is equal to the total number of semistandard tableaux of shaped
content inn letters.

It is well known that the numbeKi”) is equal to the value of the Schur function

s)(t1, ..., ty) In n variables forry = --- =1, = 1. It can be proved (see [10, Chapter 6])
that:
Mi—Aj+j—i
K)(Ln) =s)u(17"'11)= 1_[ % (9)
1<i<j<n J !

wherea is any partition of height at moat
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We apply now the previous results to compute the cocharacters of a superalgebra which
has a factorabl&»-ideal.

Example 6.4.Consider the block-triangular matrix superalgebra:
AU
#=[5 5]

whereA = M1 o(F), B= My 1(F) andU = M. Denotem,, , (u+ k, v 1) the non-
zero multiplicities of theZ,-graded cocharactef, ;(R). Forl > 1, these multiplicities are
given by the following table:

/v ()| (W, v) [ (u,u)| (u,v,1)
(a,b) o B o |y(a,b,0)
(a,b,c) |3y| 4y | 3y Y
(@, b,c,D|y | v 04

whereb can be equal to zero, the integer # 0 andu # v for the partition(u, v).
Moreover, we denote by, 8, y the following polynomials:

a=1/2-(a—b+1)(2ab+a+3b+2),
B=1/2-(a—b+1)(3ab+2a+5b+4),
y=k® =1/2.(a—b+1(b—-c+Da—c+2).

(a,b,c) —

For! =0, the table of then,, , is the following:

u/v_ 1)

(@ |1
(a,b) | «
(a,b,1) o

whereb # 0 ando = K((i)b) =a — b+ 1. Finally, forl = 1 we have:

w/v @
(a) a(a,0)
(a,b) o
(a,b,c) 2B
(a,b,c,1) B

where the integers, ¢ # 0 and the polynomials, g are the following:

a=1/2-(a—b+1)ab+b+2), =K, .
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For computing the multiplicities:,, , note thatB = M1 1(F) is aZp-regular algebra
and hencd>(R) = T2(A)T2(B) by Theorem 4.5. Then, we can apply the formula (8). For
the superalgebra we have clearly:

1 .
Xkl(A)Z{Yl(c)®X(O) if =0,
0

otherwise

Moreover, theZp-graded cocharacter @ has been computed in [5] as:

YP®xo ifl=0,
Xe1(B)=1 .
Y,”®>, xv otherwise

Wh_erev'l—l ranges over all the partitions with heigkt 2. By using the property
Y oYY =Y*7 we obtain therefore:

Y? gy if =0
k () )
(X ox(B)), =1 _

Y. ®>, xv otherwise

Then, we get the multiplicities:, , by applying the formula (9).
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