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We consider the asymptotic behaviour of solutions to the p-system with linear
damping on the half-line R+=(0, �),

vt&ux=0, ut+ p(v)x=&:u,

with the Dirichlet boundary condition u|x=0=0 or the Neumann boundary condi-
tion ux | x=0=0. The initial date (v0 , u0)(x) has the constant state (v+ , u+) at
x=�. L. Hsiao and T.-P. Liu [Commun. Math. Phys. 143 (1992), 599�605] have
shown that the solution to the corresponding Cauchy problem behaves like diffu-
sion wave, and K. Nishihara [J. Differential Equations 131 (1996), 171�188; 137
(1997), 384�395] has proved its optimal convergence rate. Our main concern in
this paper is the boundary effect. In the case of null-Dirichlet boundary condition
on u, the solution (v, u) is proved to tend to (v+ , 0) as t tends to infinity. Its
optimal convergence rate is also obtained by using the Green function of the diffu-
sion equation with constant coefficients. In the case of null-Neumann boundary
condition on u, v(0, t) is conservative and v(0, t)#v0(0) by virtue of the first equa-
tion, so that v(x, t) is expected to tend to the diffusion wave v� (x, t) connecting v0(0)
and v+ . In fact the solution (v, u)(x, t) is proved to tend to (v� (x, t), 0). In the
special case v0(0)=v+ , the optimal convergence rate is also obtained. However,
this is not known in the case v0(0){v+ . � 1999 Academic Press
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1. INTRODUCTION

In this paper we consider the initial-boundary value problem for the
p-system with linear damping

vt&ux=0
(1.1)

ut+ p(v)x=&:u, x # R+=(0, �), t>0,

with the initial data

(v, u)(x, 0)=(v0 , u0)(x) � (v+ , u+), v+>0, as x � �, (1.2)

and with the Dirichlet boundary or the Neumann boundary condition.
Eq. (1.1) models a one-dimensional compressible flow through porous
media. Here, v>0 is the specific volume; u is the velocity; the pressure p
is a smooth function of v with p>0, p$<0; and : is a positive constant.

For the Cauchy problem to (1.1), the solutions were shown by Hsiao
and Liu [4, 5] to time-asymptotically behave like those of Darcy's law,

v� t&u� x=0
(1.3)

p(v� )x= &:u� ,

or

v� t=&
1
:

p(v� )xx

(1.3$)
p(v� )x=&:u� .

A better convergence rate and the optimal convergence rate when v(�, 0)
=v(&�, 0) were obtained by Nishihara [14, 15] by the enegy method
and the pointwise estimate. For a related problem, see [3, 6] and references
therein. See also the book [2] by Hsiao.

Although the initial-boundary value problems on R+ to the equations of
viscous conservation laws have been recently investigated by several
authors [7�9, 12, 13, 16], there are few works on (1.1) as far as we know.
Our results discussed below show that even for the case with boundary
condition, the Dirichlet or the Neumann boundary condition at x=0, the
solutions of (1.3) capture the time-asymptotic behaviour of the solutions to
(1.1). In the case of the Dirichlet boundary condition

u(0, t)=0, (1.4)
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we show that the solution (v, u)(x, t) converges to (v+ , 0) as t � �.
Futhermore, since the solution converges to a constant state, the analysis
of [14, 15] can be applied and the optimal convergence rate is obtained. In
the case of the Neumann boundary condition

ux(0, t)=0, (1.5)

(1.1)1 (the first equation of (1.1)) heuristically yields (d�dt) v(0, t)=0 and
v(0, t)=v0(0). Hence, when v0(0){v+ , the solution (v, u)(x, t) will be
shown to converge to the profile (v� , u� ) of (1.3) in the form of v� =�(!),
!=x�- t+1, with �(+�)=v+ and �(0)=v0(0). Eventually, if v0(0)=
v+ , v� (x, t)#v+ , then the analysis in [14, 15] can also be applied and the
optimal convergence rate is obtained.

Both problems are reformulated to the perturbed problems from the
diffusion wave (v� , u� )(x, t) and the auxiliary function (v̂, û)(x, t), which are
defined in a similar fashion to those in Hsiao and Liu [4]. These will be
stated in later sections.

Here, we briefly mention the condition (1.5), which corresponds to the
Dirichlet condition v(0, t)=v& (given constant) on v from the discussion
above. Recently (1.1), with (1.2) and v(0, t)= g(t), g(t) � v+ has been
considered by Marcati and Mei [10]. However, the case g(t)#v&({v+)
or g(t) � v&({v+) is not treated there.

The content of our paper is as follows. After we state the notations, in
Section 2 the problem with the Dirichlet boundary condition is reformulated
and the results will be stated. In Subsection 2.2 the proofs of theorems will be
given; much of that subsection is based on the papers [14, 15]. In Section 3
the Neumann boundary problem will be considered.

Notations. We denote several positive constants depending on a, b, ...
by Ca, b, ... or only by C without confusion. For function spaces, L p=
L p(R+) (1�p��) is a usual Lebesgue space with the norm

& f &Lp=\|R+

| f (x)| p dx+
1�p

, 1�p<� and & f &L�=sup
R+

| f (x)|.

The L2-norm on R+ is simply denoted by & }&. H l (l�0) denotes the usual
l th order Sobolev space on R+ with its norm

& f &l=\ :
l

j=0

&� j
x f &2+

1�2

, & }&=& }&0=& }&L2 .
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2. THE CASE OF THE DIRICHLET BOUNDARY CONDITION

2.1. Reformulation of the Problem and Theorems

We first reformulate the problem (1.1), (1.2) with the Dirichlet boundary
condition (1.4). Expecting

(v, u)(x, t) � (v+ , 0), t � �, (2.1)

we put ut #0 to have (1.3) or (1.3)$ with u(0, t)=vx(0, t)=0, v(+�, t)
=v+ . Approximating this by the solution v� (x, t) of

v� t&}v� xx=0, v� x(0, t)=0, v� (+�, t)=v+ , (2.2)

or explicitly,

v� (x, t)=v++
$0

- 4}?(t+1)
exp \&

x2

4}(t+1)+ , (2.3)

where } :=&p$(v+)�:>0 and $0 is defined by

$0=2 \|
�

0
(v0(x)&v+) dx&

u+

: + . (2.4)

We set

u� (x, t)=&
p$(v+)

:
v� x(x, t)=}v� x(x, t)

so that u� | x=0=0 because v� x |x=0=0.
Thus, (v� , u� )(x, t), called the diffusion wave, satisfies

v� t&u� x=0

p$(v+) v� x=&:u� (2.5)

u� |x=0=0, (v� , u� )|x=�=(v+ , 0).

Next, expecting u(+�, t)=u+e&:t, we define the auxiliary function
(v̂, û)(x, t) by

(v̂, û)(x, t)=\u+m0(x)
&:

e&:t, u+ |
x

0
m0( y) dy } e&:t+ , (2.6)

where m0 is a smooth function with compact support such that

|
�

0
m0( y) dy=1, supp m0 /R+ . (2.7)
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Therefore, (v̂, û)(x, t) satisfies

v̂t&ûx=0

ût=&:û (2.8)

û|x=0=0, (v̂, û)| x=�=(0, u+e&:t).

Combining (1.1) with (2.5) and (2.8) we have

(v&v� &v̂)t&(u&u� &û)x=0
(2.9)

(u&u� &û)t+( p(v)& p(v� ))x=&:(u&u� &û)&u� t+( p$(v+)& p$(v� )) v� x .

By virtue of (2.9)1 and (2.4),

|
�

0
(v&v� & v̂)( y, t) dy=|

�

0
(v0(x)&v+) dx&

$0

2
&

u+

:
=0,

and hence we reach the setting of perturbation

V(x, t)=&|
�

x
(v&v� &v̂)( y, t) dy

(2.10)
z(x, t)=u(x, t)&u� (x, t)&û(x, t)

and the reformulated problem, after the integration of (2.9)1 once over
(x, �),

Vt&z=0

zt+( p(Vx+v� +v̂)& p(v� ))x+:z=&u� t+( p$(v+)& p$(v� )) v� x

(V, z)| t=0=(V0 , z0)(x) (RP)

:=\&|
�

x
(v0( y)&v� ( y, 0)&v̂( y, 0)) dy, u0(x)&u� (x, 0)&û(x, 0)+

z|x=0=0,

or the linearized problem around v�

Vt&z=0

zt+( p$(v� ) Vx)x+:z=&F (LP)

(V, z)| t=0=(V0 , z0)(x), z| x=0=0,
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where

F=
p$(v+)

:
v� xt&( p$(v+)& p$(v� )) v� x+( p(Vx+v� +v̂)& p(v� )& p$(v� ) Vx)x .

(2.11)

Noting that, by (2.4),

|$0 |�2 \&v0&v+&L1+
|u+ |

: + , (2.12)

we obtain the following first theorem.

Theorem 2.1 (Dirichlet boundary). Suppose that v0&v+ is in L1,
(V0 , z0) # H3_H2 and that both &v0&v+&L1+&V0&3+&z0&2 and |u+ | are
sufficiently small. Then there exists a unique time-global solution (V, z)(x, t)
of (RP), which satisfies

V # C i ([0, �); H3&i), i=0, 1, 2, 3

z # C i ([0, �); H2&i), i=0, 1, 2

and moreover

:
3

k=0

(1+t)k &�k
xV( } , t)&2+ :

2

k=0

(1+t)k+2 &�k
xz( } , t)&2

+|
t

0 _ :
3

j=1

(1+{) j&1 &� j
xV( } , {)&2+ :

2

j=0

(1+{) j+1 &� j
xz( } , {)&2& d{

�C(&V0&2
3+&z0&2

2+|$0 | ), (2.13)

and
(1+t)4 &zt( } , t)&2+(1+t)5 (&zxt( } , t)&2+&ztt( } , t)&2)

+|
t

0
[(1+{)4 &zxt( } , {)&2+(1+{)5 &ztt( } , {)&2] d{

�C(&V0&2
3+&z0&2

2+|$0 | ). (2.14)

The solution (V, z) obtained in Theorem 2.1 satisfies V |x=0=0 by the
first equation of (RP) and the boundary condition z|x=0=0, and hence
(RP) or (LP) can be rewritten as the problem to the second order wave
equation of V with linear damping

Vtt+( p$(v� ) Vx)x+:Vt=&F
(2.15)

(V, Vt)| t=0=(V0 , z0)(x), V | x=0=0.
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Moreover, we rewrite (2.15)1 to the linearized parabolic problem around v+ ,

Vt&}Vxx=&
1
:

(Vtt+F� )+
1
:

( p$(v+)& p$(v� )) v� x , }=&
p$(v+)

:
,

(2.16)

to use the Green function of the parabolic equation with null-Dirichlet
boundary

E(x, t; y)=
1

- 4?}t
(e&(x& y) 2 �4}t&e&(x+ y) 2 �4}t), (2.17)

where

F� =
p$(v+)

:
v� xt+( p(Vx+v� + v̂)& p(v� )& p$(v� ) Vx)x&(( p$(v+)& p$(v� )) Vx)x .

(2.18)

Hence we have the explicit formula of V:

V(x, t)=|
�

0
E(x, t; y) V0( y) dy

&
1
: |

t

0
|

�

0
E(x, t&{; y)(Vtt+F� )( y, {) dy d{

+
1
: |

t

0
|

�

0
E(x, t&{; y)( p$(v+)& p$(v� )) v� x( y, {) dy d{. (2.19)

Define ,(x, t) by

,(x, t)=|
�

0
E(x, t; y)(V0( y)+

1
:

z0( y)) dy

+
1
: |

t

0
|

�

0
E(x, t&{; y)( p$(v+)& p$(v� )) v� x( y, t) dy d{ (2.20)

or the solution of

{
,t&},xx=

1
:

( p$(v+)& p$(v� )) v� x ,

,(x, 0)=V0(x)+
1
:

z0(x),

(x, t) # R+_R+

,(0, t)=0.
(2.20$)

Then we have the asymptotic profile , of V as t � � in the sense of the
following theorem.
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Theorem 2.2 (Asymptotic Profile). Define , by (2.20) or (2.21) and
suppose that (V0 , z0) # L1_L1. Then the solution (V, z) of (RP) obtained in
Theorem 2.1 satisfies

&(V&,, (V&,)x , (V&,)t)( } , t)&L�=O(t&1 ln t, t&3�2 ln t, t&2 ln t) (2.21)

as t � �.

Remark 2.1. Since , satisfies

&(,, ,x , ,t)( } , t)&L�=O(t&1�2, t&1, t&3�2), (2.22)

, is generally an asymptotic profile of V as t � �, which is on the same
line of assertions in [15]. However, in the present case we have the slightly
worse term &(( p$(v+)& p$(v� )) Vx)x in F� and hence ln t in (2.21) are added.

Remark 2.2. All results are obtained under the condition that any data
are small. For large data the singularity will generally develop after a finite
time and the weak solution must be considered. In such cases the
asymptotic behaviour of the solutions of (1.1) is unknown in general even
for Cauchy problem.

2.2. Proofs of Theorems

First, applying the L2-energy method we prove Theorem 2.1, which is
established by the combination of the local existence result with a priori
estimates. For the local existence of the solution (V, z) to (RP) see, e.g.,
Matsumura [11] and references therein.

We now devote ourselves to the a priori estimates of the solution
(V, z)(x, t), 0<t<T, to the linearized equation (LP) under the a priori
assumption

N(T ) := sup
0<t<T { :

3

k=0

(1+t)k &�k
xV( } , t)&2+ :

2

k=0

(1+t)k+2 &�k
xz( } , t)&2=�=.

(2.23)

Since it suffices to establish the estimates for sufficiently smooth solution,
the equations in (RP) and z|x=0=0 give the following boundary condi-
tions for higher order derivatives:

V(0, t)=Vxx(0, t)=Vt(0, t)=Vtxx(0, t)=0, etc.

Therefore, estimates obtained below are formally quite similar to those in
Section 3 of [14]. The difference between (LP) in [14] and (LP) in this
paper is the second term of F :

h(x, t) :=&( p$(v+)& p$(v� )) v� x . (2.24)
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Since h(x, t)=O(1)(v� &v+) v� x , the decay properties

|
�

0
|h(x, t)|2 dx�C$4

0(1+t)&5�2

(2.25)

|
�

0
|hx(x, t)|2 dx�C$4

0(1+t)&7�2, etc.,

hold, the decay rates of which are the same as those in (LP) of [14]. Note
that the first term decays faster than those in (2.25). Hence, we briefly
repeat the lemmas.

Multiplying (LP)2 by z+*V(0<*<<1) and using (LP)1 , we have the
first lemma.

Lemma 2.1. If N(T )�= and |$0 | are small, then

&V(t)&2
1+&z(t)&2+|

t

0
(&Vx({)&2+&z({)&2) d{�C(&V0&2

1+&z0&2+|$0 | ).

Multiplying (LP)2 by (1+t) z and applying Lemma 2.1, we have the
second lemma.

Lemma 2.2. If =+|$0 |<<1, then

(1+t)(&Vx(t)&2+&z(t)&2)+|
t

0
(1+{) &z({)&2 d{�C(&V0&2

1+&z0&2+|$0 | ).

Next, differentiate (LP)2 with respect to x to obtain

zxt+( p$(v� ) Vx)xx+:zx=&Fx . (2.26)

Multiplying (2.26) by (1+t)k (zx&*Vxx) (0<*<<1), k=0, 1, we have

(1+t)(&Vx(t)&2
1+&zx(t)&2)+|

t

0
(1+{)(&Vxx({)&2+&zx({)&2) d{

�C(&V0&2
2+&z0&2

1+|$0 | ). (2.27)

Again, multiplying (2.26) by (1+t)2 zx and applying (2.27), we have

(1+t)2 (&Vxx(t)&2+&zx(t)&2)+|
t

0
(1+{)2 &zx({)&2 d{

�C(&V0 &2
2+&z0&2

1+|$0 | ), (2.28)

which gives the third lemma together with (2.27).
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Lemma 2.3. If =+|$0 |<<1, then

(1+t)2 (&Vxx(t)&2+&zx(t)&2)+|
t

0
[(1+{) &Vxx({)&2+(1+{)2 &zx({)&2] d{

�C(&V0&2
2+&z0&2

1+|$0 | ).

A similar procedure applied to the equation obtained by differentiating
(2.26) with respect to x once more yields

Lemma 2.4. If =+|$0 |<<1, then

(1+t)3 (&Vxxx(t)&2+&zxx(t)&2)

+|
t

0
[(1+{)2 &Vxxx({)&2+(1+{)3 &zxx({)&2] d{

�C(&V0&2
3+&z0&2

2+|$|0).

Applying the same procedure as above to

ztt+( p$(v� ) Vx)xt+:zt=&Ft , (2.29)

we have the following two lemmas.

Lemma 2.5. If =+|$0 |<<1, then

(1+t)2 &z(t)&2+(1+t)3 (&zx(t)&2+&zt(t)&2)

+|
t

0
[(1+{)2 &zx({)&2+(1+{)3 &zt({)&2] d{

�C(&V0&2
2+&z0&2

1+|$0 | ).

Lemma 2.6. If =+|$0 |<<1, then

(1+t)4 (&zxx(t)&2+&zxt(t)&2)+|
t

0
[(1+{)3 &zxx({)&2+(1+{)4 &zxt({)&2] d{

�C(&V0&2
3+&z0&2

2+|$0 | ).

The estimates obtained in the series of the above six lemmas show (2.13).
To obtain (2.14), we differentiate (2.29) with respect to t once more:

zttt+( p$(v� ) Vx)xtt+:ztt=&Ftt
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or

zttt+( p$(v� ) zxt)x+:ztt=&Ftt&(2p"(v� ) v� t zx+( p"(v� ) v� tt+ p$$$(v� ) v� 2
t ) Vx)x

:=&Ftt&P� x . (2.30)

We apply the same procedure as above to (2.30), that is, multiply (2.30) by
(1+t)k (ztt+*zt) (0<*<<1), k=0, 1, ..., 4 and use Lemmas 2.1�2.6. Then
we have

(1+t)4 (&zt(t)&2
1+&ztt(t)&2)+|

t

0
(1+{)4 (&zxt({)&2+&ztt({)&2) d{

�C(&V0&2
3+&z0&2

2+|$0 | ). (2.31)

Since �t
0 (1+{)5 ��

0 |Ftt+P� x |2 dx d{�C(&V0&2
3+&z0&2

2+|$0 | ) is shown by
(2.31) after tedious calculations, multiplying of (2.30) by (1+t)5 ztt and
using of (2.31) yield

(1+t)5 (&zxt(t)&2+&ztt(t)&2)+|
t

0
(1+{)5 &ztt({)&2 d{

�C(&V0&2
3+&z0 &2

2+|$0 | ),

which shows (2.14) together with (2.31). Thus we have completed the proof
of Theorem 2.1.

We now turn to the L�-estimate assuming that (V0 , z0) # L1_L1. The
proof is very similar to that in [15].

First we show (2.22). The first term of right-hand side in (2.20) clearly
satisfies (2.22) since (V0 , z0) # L1_L1. The last term is estimated by (2.3)
as follows:

|the last term in (2.21)|

� } 1: |
t�2

0
|

�

0
E(x, t&{; y)( p$(v+)v� &|

v�

v+

p$(s) ds)y ( y, {) dy d{}
+C |

t

t�2
|

�

0
E(x, t&{; y) |v� &v+| |v� x| dy d{

�C |
t�2

0
&E(t&{)&L� &(v� &v+)({)&2 d{

+C |
t

t�2
&E(t&{)&L� &v� x&L� &v� &v+)({)&L1 d{

�C \|
t�2

0
(t&{)&1 (1+{)&1�2 d{+|

t

t�2
(t&{)&1�2 (1+{)&1 d{+

�C(1+t)&1�2.

Derivatives of , are also estimated similarly.

449BOUNDARY EFFECT



Since

&
1
: |

t�2

0
|

�

0
E(x, t&{; y) Vtt( y, {) dy d{

=
1
: |

�

0
E(x, t; y) z0( y) dy&

1
: |

�

0
E(x, t�2; y) z( y, t�2) dy

&
1
: |

t�2

0
|

�

0
Et(x, t&{; y) z( y, {) dy d{, (2.32)

(2.19) and (2.20) with (2.32) give the expression

(V&,)(x, t)=&
1
: |

�

0
E(x, t�2; y) z( y, t�2) dy

&
1
: |

t�2

0
|

�

0
Et(x, t&{; y) z( y, {) dy d{

&
1
: |

t

t�2
|

�

0
E(x, t&{; y) zt( y, {) dy d{

&
1
: \|

t�2

0
+|

t

t�2+ |
�

0
E(x, t&{; y) F� ( y, {) dy d{

:=I+II+III+(IV1+IV2). (2.33)

Since the Green kernel E is given by (2.17), the following estimates hold:

|I |�C &E(t�2)& &z(t�2)&�C(1+t)&1�4&1,

|II |�|
t�2

0
&E(t&{)& &z({)& d{

�|
t�2

0
(1+t&{)&5�4 (1+{)&1 d{�C(1+t)&5�4 ln(2+t)

|III |�C |
t

t�2
&E(t&{)& &zt({)& d{

�C |
t

t�2
(1+t&{)&1�4 (1+{)&2 d{�C(1+t)&2+3�4. (2.34)
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For IV1 and IV2 we recall that F� given by (2.18) has the form F� = fx .
Hence

|IV1|�C |
t�2

0
|

�

0
|Ey(x, t&{; y)| | f ( y, {)| dy d{

�C |
t�2

0
(t&{)&1 (&v� t({)&L1+&v̂({)&L1+&Vx({)&2+&v̂({)&2

+&Vx({)&L� &(v� &v+)({)&L1) d{

�Ct&1 |
t�2

0
((1+{)&1+e&:{+(1+{)&3�4) d{�C(1+t)&3�4 (2.35)

and

|IV2|�C |
t

t�2
[&E(t&{)& (&v� xt({)&+&v̂x({)&+&(VxVxx+v̂v̂x)({)&)

+&Ey(t&{)& &Vx({)&L� &(v� &v+)({)&]] d{

�C |
t

t�2
(t&{)&1�4 ((1+{)&7�4+e&:{)+(t&{)&3�4 (1+{)&3�4&1�4) d{

�C(1+t)&3�4. (2.36)

Combining (2.33) with (2.34)�(2.36) shows that &(V&,)(t)&L�=
O(t&3�4). Estimates of &(V&,)x (t)&L�=O(t&5�4) and &(V&,)t (t)&L�=
O(t&7�4) are obtained in a similar fashion to the above. In particular,
&(V&,)x (t)&L�=O(t&5�4) and (2.22) show that &Vx(t)&L�=O(t&1).
Applying this to (2.35) and (2.36) again, we have

|IV1|�C(1+t)&1 ln(2+t) (2.35)$

and

|IV2|�C(1+t)&1, (2.36)$

which gives the estimate &(V&,)(t)&L�=O(t&1 ln t). Derivatives of V&,
are also obtained, which yields the desired estimate (2.21).
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3. THE CASE OF THE NEUMANN BOUNDARY CONDITION

We now turn to the problem with the Neumann boundary condition (1.5)

vt&ux=0, (x, t) # R+_R+

ut+ p(v)x=&:u (3.1)

(v, u)| t=0=(v0 , u0)(x), ux | x=0=0.

As in the preceding section we first reformulate (3.1). Heuristically, (3.1)1

yields (d�dt) v(0, t)=ux(0, t)=0 and v(0, t)=v0(0) for any t>0. Hence, we
can expect that

(v, u)(x, t) � (v� , 0)(x, t) as t � �, (3.2)

where v� (x, t) is a diffusion wave connecting v0(0) and v+ .
In the case of v0(0){v+ , putting ut=0 in (3.1)2 we have

u=&
1
:

p(v)x and vt+
1
:

p(v)xx=0. (3.3)

To construct the diffusion wave (v� , u� ), it is known that for any constant
v&>0 we have a self-similar solution {=�(x�- t+1) satisfying

{t+
1
:

p({)xx=0, x # R=(&�, �), t>0
(3.4)

{|x=\�=v\ .

Therefore, for v0(0)>0 between v& and v+ , there exists a unique v� (x, t) in
the form of �(x�- t+1)|x�0 satisfying

v� t+
1
:

p(v� )xx=0, (x, t) # R+_R+

(3.5)
v� |x=0=v0(0), v� | x=�=v+ .

For these results see [1]. Moreover, u� is defined by

u� (x, t)=&
1
:

p(v� )x

so that

u� x |x=0=v� t | x=0=�$(x�- t+1) \&
x

2 - t+1 (t+1)+}x=0

=0. (3.6)
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Thus we have had

v� t&u� x=0

p(v� )x=&:u� (3.7)

(v� , u� x)|x=0=(v0(0), 0), (v� , u� )|x=�=(v+ , 0).

Similar to that in the Dirichlet boundary problem, the auxiliary function
(v̂, û)(x, t) is defined by

(v̂, û)(x, t)=\u0(0)&u+

:
m0(x) e&:t,

_(u0(0)&u+) |
�

x
m0( y) dy+u+& e&:t+ , (3.8)

where m0 is a smooth function satisfying (2.7). Hence (v̂, û) satisfies

v̂t&ûx=0

ût=&:û
(3.9)

(û, ûx)|x=0=(u0(0) e&:t, 0), v̂| x=0=0

(v̂, û)|x=�=(0, u+e&:t).

Combining (3.1) with (3.7) and (3.9) we have

(v&v� &v̂)t&(u&u� &û)x=0

(u&u� &û)t+( p(v)& p(v� ))x=&:(u&u� &û)&u� t
(3.10)

(u&u� &û)x |x=0=0

(v&v� &v̂, u&u� &û)| t=0=(v0 , u0)(x)&(v� +v̂, u� +û)(x, 0).

Defining the perturbation by

V(x, t)=&|
�

x
(v&v� &v̂)( y, t) dy

(3.11)
z(x, t)=(u&u� &û)(x, t),
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we have the reformulated problem, after the integration of (3.10)1 once
over (x, �),

Vt&z=0

zt+( p(Vx+v� +v̂)& p(v� ))x=&:z&u� t

zx |x=0=0 (or Vx |x=0) (NRP)

(V, z)| t=0=(V0 , z0)(x)

:=\&|
�

x
(v0( y)&v� ( y, 0)&v̂( y, 0) dy, u0(x)&u� (x, 0)&û(x, 0)+ ,

or the second order wave equation of V with damping

Vtt+( p(Vx+v� +v̂)& p(v� ))x+:Vt=&u� t (3.12)
Vx |x=0=0, (V, Vt)| t=0=(V0 , z0).

Note that, if (V, z) is sufficiently smooth in x, t, (3.10) or (3.12) yields
the boundary conditions at x=0

Vx=Vtx=Vttx= p(Vx+v� +v̂)& p(v� )=( p(Vx+v� +v̂)& p(v� ))xx=0, etc.

Therefore, once we have the smooth solutions, we can treat them formally
the same as those in the Cauchy problem in [14]. The diffusion wave v�
defined in (3.6) has the same behaviour as the self-similar solution { defined
in (3.5). For the diffusion wave see [1] and [4, 14]. Hence, the same
L2-estimates for the local smooth solution (V, z) to (NRP) are obtained.
Thus we have the following theorem.

Theorem 3.1 (The Case of v0(0){v+). Suppose that v0&v+ is in L1(R+)
and both &V0 &3+&z0&2 and $1 :=|(v0(0)&v+ , u+&u0(0))| are small.
Then, there exists a unique time-global solution (V, z)(x, t) of (NRP), which
satisfies

V # C i ([0, �); H3&i), i=0, 1, 2, 3

z # C i ([0, �); H2&i), i=0, 1, 2

and moreover

:
3

k=0

(1+t)k &�k
xV( } , t)&2+ :

2

k=0

(1+t)k+2 &�k
xz( } , t)&2

+|
t

0 _ :
3

j=1

(1+{) j&1 &� j
xV( } , {)&2+ :

2

j=0

(1+{) j+1 &� j
x z( } , {)&2& d{

�C(&V0&2
3+&z0&2

2+$1), (3.13)
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and

(1+t)4 &zt( } , t)&2+(1+t)5(&zxt( } , t)2+&ztt( } , t)&2)

+|
t

0
[(1+{)4 &zxt( } , {)&2+(1+{)5 &ztt( } , {)&2] d{

�C(&V0&2
3+&z0&2

2+$1). (3.14)

The derivation of (3.14) is similar to that of (2.14) and so the proof of
Theorem 3.1 is omitted.

Remark. The L1-property of v0&v+ is a sufficient condition for the
definition of V0(x). The decay rates in (3.13)�(3.14) will be optimal in
L2-setting. In L1-setting the optimal decay rates are not known, different
from Theorem 2.2. However, when v0(0)=v+ , optimal decay rates are
obtained as shown below.

We now treat the case of v0(0)=v+ . Taking

(v� , u� )(x, t)#(v+ , 0) (3.15)

and

(v̂, û)(x, t)=\u0(0)&u+

:
m0(x) e&:t,

_(u0(0)&u+) |
�

x
m0( y) dy+u+& e&:t+ , (3.16)

we have

(v&v+& v̂)t&(u&û)x=0

(u&û)t+( p(v)& p(v+))x=&:(u&û)
(3.17)

(u&û)x |x=0=0 (or (v&v+&v̂)|x=0=0)

(v&v+&v̂, u&û)| t=0=(v0&v+ , u0)(x)&(v̂, û)(x, 0).

The definition

(V, z)(x, t)=\&|
�

x
(v&v+&v̂)( y, t) dy, u(x, t)&û(x, t)+ (3.18)
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gives the reformulated problem

Vt&z=0

zt+( p(Vx+v++v̂)& p(v+))x=:z
(3.19)

zx |x=0=0 (or Vx |x=0=0)

(V, z)| t=0=(V0 , z0)(x) :=\&|
�

x
(v0( y)&v+&v̂( y, 0)) dy, u0(x)&û(x, 0)+

or the linearized wave equation of V around v+

vtt+ p$(v+) Vxx+:Vt=&F�

:=&( p(Vx+v++v̂)& p(v+)& p$(v+) Vx)x (3.20)

Vx |x=0=0, (V, z)| t=0=(V0 , z0)(x).

Therefore, if (V0 , z0) # H3_H2, then we can obtain the following theorem
on the same line as Theorem 3.1.

Theorem 3.2 (The Case of v0(0)=v+). Suppose that v0&v+ is in
L1(R+) and both &V0&3+&z0 &2 and $2 :=|u+&u0(0)| are small. Then,
there exists a unique time-global solution (V, z)(x, t) of (3.19), which satisfies

V # C i ([0, �); H3&i), i=0, 1, 2, 3

z # C i ([0, �); H2&i), i=0, 1, 2

and moreover

:
3

k=0

(1+t)k &�k
xV( } , t)&2+ :

2

k=0

(1+t)k+2 &�k
xz( } , t)&2

+|
t

0 _ :
3

j=1

(1+{) j&1 &� j
xV( } , {)&2+ :

2

j=0

(1+{) j+1 &� j
xz( } , {)&2& d{

�C(&V0&2
3+&z0&2

2+$2), (3.21)

and

(1+t)4 &zt( } , t)&2+(1+t)5 (&zxt( } , t)&2+&ztt( } , t)&2)

+|
t

0
[(1+{)4 &zxt( } , {)&2+(1+{)5 &ztt( } , {)&2] d{

�C(&V0&2
3+&z0&2

2+$2). (3.22)
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Moreover, the same line to Theorem 2.2 can be applied. In the Dirichlet
problem, since 1�:( p$(v+)& p$(v� )) v� x in (2.16) has not enough decay order,
, was defined by (2.20)$ with a sourcing term. However, in the present
case, since v� #v+ , we define an asymptotic profile ,1(x, t) by

,1(x, t)=|
�

0
E1(x, t; y)(V0( y)+

1
:

z0( y)) dy (3.23)

or the solution of the corresponding parabolic equation

,1t&},1xx=0, }=&
p$(v+)

:
(3.24)

,1x |x=0=0, ,1 | t=0=V0(x)+
1
:

z0(x),

where

E1(x, t; y)=
1

- 4}?t
(e&(x+ y) 2 �4}t+e&(x& y) 2 �4}t). (3.25)

Then we have the expression

(V&,1)(x, t)=&
1
: |

�

0
E1(x, t�2; y) z( y, t�2) dy

&
1
: |

t�2

0
|

�

0
E1t(x, t&{; y) z( y, {) dy d{

&
1
: |

t

t�2
|

�

0
E1(x, t&{; y) zt( y, {) dy d{

&
1
: \|

t�2

0
+|

t

t�2+ |
�

0
E1(x, t&{; y) F� 1( y, {) dy d{. (3.26)

We note that F� 1 in (3.26) does not include the bad term likely
&(( p$(v+)& p$(v� )) Vx)x in (2.18). Thus, applying the decay properties
obtained in Theorem 3.2, we can estimate (3.26) to reach the final theorem.

Theorem 3.3 [Asymptotic Profile]. Define ,1 by (3.23) or (3.24) and
suppose that (V0 , z0) # L1_L1. Then, the solution (V, z) of (3.19) obtained
in Theorem 3.2 satisfies

&(V&,1 , (V&,1)x , (V&,1)t)( } , t)&L�=O(t&1, t&3�2, t&2).
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