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Abstract

This paper is the 3rst half of a two-part series devoted to an exemplary formal proof of a
fundamental result in the 3eld of geometry—the theorem of classi3cation of surfaces—which
has major implications in computer graphics. We study here the speci3cation of generalized
maps, a topological combinatory model for surfaces subdivisions. We show how we developed
in Coq two fundamentally distinct formalizations of generalized maps, each based on one of the
standard de3nitions, in a single common framework, then used this speci3cation to prove for the
3rst time their complete equivalence.
c© 2004 Published by Elsevier B.V.
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1. Introduction

Computer graphics is a computer-related 3eld that has close ties with one branch
of mathematics, geometry. As in many other 3elds, application precedes theory: most
of the graphics software is being developed without any of the rigorous mathematical
foundations that would ensure their reliability. Our goal is to focus on one crucial
type of geometric objects, combinatory surfaces, and study both their de3nition and
operations to handle them. Within a computer-aided-proof environment, we design and
implement formal speci3cations and then rigorously test them by proving the well-
known and important theorems of geometry. This paper is the 3rst of a two-part series.
It introduces our speci3cation of combinatory surfaces, that was built with the goal to
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use it to prove a diDcult theorem of topological classi3cation of surfaces with respect
to numeric combinatory characteristics, which is the topic of the second paper.

We have chosen to model combinatory surfaces with generalized maps (or g-maps),
introduced by Lienhardt [13]. This speci3cation was developed within the logical frame-
work of the calculus of inductive constructions (CIC), a type theory, i.e. a higher-order
logic in which propositions and proofs are of the same kind as objects. We build our
theorem proofs with the help of CIC-based proof assistant Coq. The considered classi-
3cation theorem is actually the union of two independent subtheorems of comparable
importance: a normalization theorem and a “trading” theorem. We only deal with the
latter, the former not having been formally proved yet. Moreover, we only work with
open surfaces for now, as closed surfaces would require a diJerent set of operations.
The general approach would probably work for closed surfaces as well though.

This work takes advantage of a large body of algebraic speci3cations that were orig-
inally developed for software design purpose (in particular for modeller Topo3l [2]):
Indeed, a lot of theoretical results regarding surfaces speci3cation is already available,
and we try and reuse this knowledge to build formal proofs. Type theory and CIC have
already been studied a lot [4,15] and have proved themselves in the 3eld of computer-
aided proving, in particular for combinatory geometry, with for instance the proof of
a discrete Jordan theorem [17].

Besides, we also take a small part in the huge task of specifying combinatory ge-
ometry by formalizing the model of generalized maps, notably by proving an equiva-
lence theorem between two representations of g-maps. This theorem had never formally
proved before; it is likely that the informal proofs are Kawed as we have unearthed
special cases that they overlook.

This work on surfaces is the 3rst step in the development of a rigorous uni3ed frame-
work in which geometric objects and operations are de3ned, their properties proved,
and the safety of the software that uses them is ensured (by using program extraction
techniques for instance). Like all other fundamental speci3cation and proof works, we
hope that it will also provide greater insight on the considered objects and “de3ni-
tive” proofs of the validity of the studied mathematical properties [12,2]. In our case,
a deeper understanding of surfaces would be very welcome in the 3eld of discrete
geometry [3], where this notion still remains unclear and debated. Thus, solving the
problems of surface extraction from voxel images and discrete surface subdivision,
which are both crucial in 3D imagery, requires a well-adapted de3nition of surfaces.

From the computer-aided proving 3eld point of view, this work can be seen as a
large application developed in CIC design using a type hierarchy that exploits the cast-
ing facilities that proof assistant Coq oJers in order to compensate for the lack of
support of real subtyping in CIC. Our method is to de3ne several layers of high-level
constructors, which are either low-level constructors (i.e. CIC constructors) or func-
tions; each level features an induction scheme that has been proved either automatically
for the former or manually for the latter. The methodology that we have developed
and used is independent from our particular problem. It may serve as a basis for many
diJerent speci3cations, in particular for graph-like objects speci3cations.

As far as we know, all existing proofs of the trading theorem are informal to some
degree. They all diJer on some points, the 3rst of which being the mathematical nature
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of the considered combinatory surfaces. For instance, there is a proof that applies
to surfaces that are de3ned as words on an alphabet, in which an oriented edge is
represented by a signed letter [7]. We have chosen a modelling much like the ones
used by GriDths [9] and Fomenko [8]: surfaces are seen as patchworks of panels
(i.e. surface elements that are homeomorphic to a disc). GriDth’s proof proceeds by
identifying two distinct subdivisions, Fomenko’s by incrementally turning one into the
other. We took inspiration in the latter, as it does not require a graphical interpretation
of surfaces like the former does.

A little background on higher-order logics is welcome, but not needed, to fully un-
derstand this paper and the techniques we use. The reader should feel free to skip the
“implementation” details of the most complex functions, as they are only mentioned
for the sake of being complete. This paper is structured this way: after this introduc-
tion, we present some related work (Section 2), and then brieKy describe the calculus
of inductive constructions (Section 3). In Section 4, we will give a mathematical de-
scription of the generalized maps model. The next two sections present our formal
speci3cations in Coq and some of the meaningful lemmas and theorems that we have
proved. Section 5 deals with free and generalized maps, Section 6 of well-constructed
maps. We conclude in Section 7.

2. Related work

The geometry modelling aspects of this work are mostly related to generalized maps.
These maps are a variation of Jacques’s [10] combinatory maps, which have been
extended by Cori [5] into hypermaps and then by Lienhardt [13] into generalized
maps, and later algebraically speci3ed by Bertrand and Dufourd [2].

Generalized maps oJer one constructive model for geometry. Another approach of
constructive geometry has been explored by Von Plato [19] and formalized in Coq by
Kahn [11]. A similar experiment has been undertaken by Dehlinger et al. [6]. Also
using Coq, Pichardie and Bertot [16] have formalized Knuth’s [12] plane orientation
and location axioms, and then proved correct algorithms of computation of convex
hulls.

Proof assistant Coq [1] is based on the calculus of inductive constructions [4], an
intuitionistic-type theory [14]. In addition to being a powerful tool for proofs, it features
the extraction of certi3ed programs from formal proof terms [15].

3. Calculus of inductive constructions

The calculus of inductive constructions (CIC) is a type theory that is well adapted
to the mechanization of mathematics [4]. It is based on two meta-theories: Girard’s
polymorphic �-calculus, a powerful functional system that allows the representation of
propositions and proofs in a single high-level formalism, and Martin–LOof’s intuitionistic-
type theory [14], a foundation of mathematics on constructive principles. The two the-
ories are merged with the help of the Curry–Howard isomorphism that describes how
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function-representing �-terms may also be used to represent proofs in natural deduc-
tion. From a more pragmatic point of view, the CIC can be seen as a mixture of
PROLOG-style inductive predicates and ML-style recursive functions. The CIC pro-
vides us with a uni3ed framework in which algebraic speci3cations can be expressed
very naturally and preconditions and type relations can be taken into account.

Our proofs are built with Coq, a proof assistant built on the CIC. A high-level
language, Gallina, allows the declaration of axioms and parameters, the de3nition of
types and concrete or abstract objects. In proof mode, the intuitive reasoning steps
are implemented by tactics, which are commands that modify the formal wording of
the proposition that is being proved, also called the goal, possibly by splitting it into
several subgoals.

The proof terms of Coq are very information-rich. Thus, thanks to the Curry–Howard
isomorphism, a construction algorithm of an object may be extracted from the proof of
its existence [15]. This is a programming paradigm by itself, that consists in extracting
a program from a proof of its correctness. This technique is obviously very powerful
for certi3ed software development.

4. Generalized maps

The term “generalized maps” actually encompasses a series of combinatory models
used to represent the topology of diJerent classes of geometric objects. A generalized
map is 3rst characterized by its dimension, an integer greater or equal to −1. Depending
on the dimension, the type of represented objects varies:

Dimension Object classes
−1 Isolated vertices
0 Isolated edges
1 Simple curves
2 Surfaces
3 Volumes
4 4D volumes
...

...

The mathematical de3nition of generalized maps is:

De nition 1 (N-G-MAP). A g-map of dimension n (or n-g-map) is a (n + 2)-uplet
(D; �0; : : : ; �n), where D is a 3nite set of abstract elements called darts, and where the
�i are involutions on D, i.e. permutations on D such that, for any x, �2

i (x) = x.
Besides, the �i must satisfy the following constraints:

1. ∀i¡n; �i has no 3xpoint (i.e. for any x, �i(x) = x);
2. ∀i; j | 2 + i6j6n, �i ◦ �j is an involution

Dart y is a k-successor of dart x if �k(x) =y. Dart x is then also said to be sewn
at dimension k to y, or k-sewn to y. A dart may be sewn to itself. As the �i are
involutions, they obviously are symmetrical; as a consequence, x is k-sewn to y iJ y
is k-sewn to x.
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Fig. 1. Standard representation of g-maps.
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Fig. 2. Examples of generalized maps.

Intuitively, darts may be seen as half-edges, and the �i as diJerent ways to paste
them, or sew them. Each �i has its own meaning suggested by the previous table: �0

sews darts to make up edges, �1 simple curves, �2 surfaces, etc. In general, for any
given k, �k is used to build cells of dimension k.

The standard graphical representation of darts and sewings is depicted in Fig. 1, in
which x and y are darts. As the �i are involutive, they are symmetrical, and hence
they need not be oriented in the 3gure. A dart, the k-sewing of which is not explicitly
shown, is implicitly k-sewn to itself.

The graphical representation of a generalized map does not explicitly feature its
dimension. Though, we can try to deduce it from the type of sewings that appear in
the 3gure: if a g-map drawing features any k-sewings, then its dimension is at least
k. Moreover, if some darts are k-sewn to other darts while other darts are k-sewn to
themselves, then the dimension of the map is exactly k, thanks to constraint 1. But in
the case where all darts are sewn to themselves at dimension (k + 1) while none is
at dimension k, then we cannot tell whether the represented map has dimension k or
(k + 1). A few examples of g-maps are given in Fig. 2. Fig. 2a is a (−1)-g-map, but
also a 0-g-map. We know for sure that Fig. 2b is a 1-g-map, because only some of its
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Fig. 3. (a) A 0-g-map, (b) a 2-g-map, (c) and (d) not g-maps.

darts are 1-sewn to themselves. Likewise, Fig. 2c is a 1-g-map. Figs. 2d and e may
represent 1-g-maps as well as 2-g-maps, because all their darts are 1-sewn to other
darts and 2-sewn to themselves. Fig. 2f represents a 2-g-map. These examples suggest
that there is some degree of recursivity in the structure of g-maps with respect to the
dimension. This point will be developed later. Constraints 1 and 2 of the de3nition of
g-maps forbid some con3gurations, such as the ones illustrated in Fig. 3.

– For instance, constraint 1 forbids:
• Fig. 3a as an n-g-map for n¿1 because x is 0-sewn to itself. This does not

prevent it from being a 0-g-map however;
• Fig. 3b as a 2-g-map because x and y are 1-sewn to themselves;

– Constraint 2 forbids shifts in sewings and forces the sew whole cells only:
• Fig. 3c is not a generalized map: �0 ◦ �2 ◦ �0 ◦ �2(x) =y �= x (there is a shift,

i.e. the darts of a single edge are sewn to darts of two distinct edges);
• Fig. 3d is not a generalized map: �0 ◦ �2 ◦ �0 ◦ �2(x) =y �= x (2-sewing along

a half-edge only).
Before de3ning the usual notions of topology in the formalism of n-g-maps, we need

to introduce the mathematical notion of orbit.

De nition 2 (ORBIT). Let S be a set and f1; f2; : : : ; fk functions on D. For any x∈D,
we call orbit of f1; f2; : : : ; fk at x the smallest subset of S containing x and stable by
all functions fi. In other words, it is the set of elements of S that can be obtained
from x by applying any composition of the fi. It is noted 〈f1; f2; : : : ; fk〉(x).

From now on, G= (D; �0; �1; �2; : : : ; �n) will be an n-g-map we use to give our
de3nitions. With the notion of orbit, connected components and cells are easily de3ned
as 2-g-maps derived from an initial 2-g-map:

De nition 3 (CONNECTED COMPONENT). The connected component of G inci-
dent to dart x∈D is de3ned as the 2-g-map G′ = (D′; �′

0; �
′
1; �

′
2; : : : ; �

′
n) satisfying

– D′ = 〈�0; �1; : : : ; �n〉(x);
– ∀i | 06i6n, �′

i is the restriction of �i to D′.
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De nition 4 (CELL; VERTEX; EDGE; FACE; OPEN; CLOSED). For any x ∈ D,
we call vertex of G incident to x, or 0-cell of G incident to x, the orbit 〈�1; �2(x); : : : ;
�n(x)〉. Similarly, we call edge of G incident to x, or 1-cell of G incident to x, the
orbit 〈�0; �2(x); : : : ; �n(x)〉; and we call face of G incident to x, or 2-cell of G incident
to x, the orbit 〈�0; �1(x); : : : ; �n(x)〉. We call map of k-cells of G the pseudo-2-g-map
obtained from G by ripping all k-sewings. It is noted Gk . In dimension 2, an edge
may be either 2 darts (open edge) or 4 darts (closed edge).

Cells de3ned this way are topological cells. As such, they have no associated position
or shape. The only relevant notions that de3ne them are the way they are connected.
Assigning a space position and actual metric shape to cells is done by applying an
embedding function to the cells, i.e. a function that associates a subset of the represen-
tation space to each cell. Embedding functions must have a number of properties to be
valid, notably that embeddings of two cells are (geometrically) incident iJ the cells are
(topologically) incident. A standard embedding is an embedding into Euclidean space
in which vertices are embedded into points, edges into straight lines and faces into
polygons, such that the vertices incident to an edge are embedded into the ends of the
corresponding line, and the edges incident to a face are embedded into the boundary of
the corresponding polygon. Another common possibility is to embed edges into BSezier
curves.

For any n¿1, the Gk are pseudo-n-g-maps, as opposed to real n-g-maps, because
while they are also built using some �i and a set of darts, their �k has 3xpoints, which
contradicts the de3nition of n-g-maps for k = 0 and n¿1. Obviously, two darts belong
to the same k-cell of G iJ these two darts belong to the same connected component of
Gk . Fig. 4 shows an example of 2-g-map as well as its maps of cells; in this example, G
has two connected components. Similarly, all darts from the same topological edge are
embedded into the same geometric edge and all darts from the same topological face
are embedded into the same geometric face. Incident topological objects are embedded
into incident geometrical objects. The 1-g-map �(G) is the 2-g-map of boundaries of
G: its darts are the darts of G that are incident to a boundary, each of them being
1-sewn in �(G) to its boundary-neighbour in G, the notions of boundary and boundary
neighbourhood being de3ned as:

De nition 5 (BOUNDARY INCIDENCE; OUTER; INNER). A dart x∈D is said
to be incident to a boundary of G if �n(x) = x. A dart incident to a boundary is called
outer, it is called inner else.

De nition 6 (BOUNDARY NEIGHBOURHOOD). For any dart x; dart y∈D is
called boundary-neighbour of x if

– y is incident to a boundary (i.e. �n(y) =y);
– k is the smallest natural number such that y= (�n ◦ �n−1)k(x) and y �= x.

During our developments, we have proved that a dart has at most one boundary-
neighbour. Though we do not use this property, it suggests that boundary neighbour-
hood was well formalized.
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Fig. 4. An example of a 2-g-map and its maps of cells, 2-g-map of boundaries and standard embedding.

5. Formal speci cation of free and generalized maps

Our speci3cation of g-maps is written in Gallina, the language used by proof assistant
Coq for the declaration of axioms and parameters as well as the de3nition of concrete
and abstract objects. It allows the user to handle the terms of CIC in a rather natural
way. The syntax of Gallina will be introduced step by step along the speci3cation.
Gallina terms are printed in a typewriter font. Keywords are underlined, types are
italicized, the names of lemmas, theorems and axiomes are UPPER-CASED, variable
names are lower-cased.

Our speci3cation is structured as a three-level map-type hierarchy, each representing
a subtype of the previous. There is no real subtyping in CIC, so we have to use some
techniques to simulate it. They have already been used by Dufourd and Puitg in [17]
for their two-level speci3cation of combinatory maps. To each level corresponds a
concrete CIC type, respectively, fmap, ngmap and smap:

– fmap: The 3rst level is the level of free maps. A free map is simply a set of
darts, called support of the map, with a 3nite series of 3nite binary relations
between darts, which may or may not belong to the support (Fig. 5). In terms of
graphs, they are integer-arc-valued multigraphs, some vertices of which make up
the support. A free map has no dimension. Free maps may be used to represent
not only g-maps, but they also encompass very diJerent other objects, such as
combinatory maps, as in [17], or the pseudo-g-maps that we used in De3nition 5.

– ngmap: The second level is the level of generalized maps. Their speci3cation is
a straightforward translation of the mathematical de3nition given in the previous
section: the ngmap are fmaps the binary relations of which satisfy the properties
of the �i. In the CIC, a natural way to express this is to exploit the fact that proofs
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n

Fig. 5. Examples of free maps that do not represent g-maps (the dashed dart is a dart that does not belong
to the map).

are the same kind of objects as concrete objects such as free maps. Thus, an ngmap
is de3ned as a triplet made up of an fmap called support of the generalized map,
a dimension and a term of proof that the support and the dimension satisfy a well-
formedness predicate, noted wf. Predicate wf basically is a formal expression of
the properties of the �i in a g-map.

– smap: The third level is the level of the sewn maps, or s-maps. It is in turn a
subset of the generalized maps, built only with the help of a high-level cell-sewing
operation noted sm.

In this hierarchy, the higher the level, the more specialized the objects and the
more complex the constructors. In general, using such a hierarchy provides with a
clear and modular speci3cation, while at the same time avoiding redundacies. Be-
sides, when de3ning operations or proving properties on a type, especially when this
type is complex, it is often necessary (or at least much easier) to work in a more
general framework than the type itself. For instance, in trigonometry, although sine
and cosine are real functions, it is often easier to see them as combinations of com-
plex exponentials. In our case, the fmap are a such more general framework for the
smap.

Many of the operations that we are interested in are operations on the g-maps,
and hence that will be applied only to g-maps. In order to specify them formally, it
is however much more simple to formulate them at the level of the fmap, having
no concern for their behaviour when they are applied to fmaps that are not g-map
supports, i.e. that do not satisfy predicate wf. We then show that whenever they are
applied to g-map supports, they also yield g-map supports. Formally, this amounts to
showing that these operations preserve predicate wf.

5.1. Binary relations

Before specifying maps themselves, we de3ne a few secondary notions, in particular
the notion of relation. It is not necessary to formalize them separately, but we choose to
do it nonetheless on safety and modularity grounds, as although the considered notions,
such as functionality and injectivity, are very basic and well known, it is easy to make
slight mistakes and their formulation, thereby compromising the rest of the speci3cation.
Moreover, we have at our disposal Dufourd and Puitg’s [17] speci3cation of relations,
which make this approach virtually costless. In this speci3cation, relations are de3ned
on any type, and only link objects of the same type. Thus, we cannot de3ne this way
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a relation between an integer and a dart. A relation is simply represented by a 2-place
predicate on a given type. Conversely, such a predicate may always be interpreted as a
relation. As the two notions are equivalent simply de3ne relations on a type as an alias
for two-place predicates on objects of this type. This is performed with the Gallina
deEnition mechanism.

De nition 7 (RELATION). Let E be a set. A binary relation on E is a two-place
predicate on objects of this set. When two objects are put into relation, the one in the
3rst position is called the antecedent and the one in the second position is called the
image:
Definition relation : Set → Type

:= �E:Set. E → E → Prop

This command allows to declare symbol relation as an abbreviation for term
�E:Set.E → E → Prop. 1

In Gallina, the notation x:T is a type judgement meaning “term x is of type T”.
Prede3ned type Prop is the type of proposition terms. For instance, terms (0=5) or
((∀x : nat) x=x) are of type Prop; the truth or falseness of a proposition is irrelevant
to the meaning of Prop. Prede3ned type Set is the type of concrete types, which are
the types of the objects that we actually want to build.

Thus, the type of relation is Set → Type, thus an object of type relation is a
function that, when applied to a concrete type E (of type Set), yields a type, precisely
type E→ E → Prop, i.e. the type of two-place predicates on E.

For instance, a relation on integers is of type (relation nat), which is a shortcut
for nat → nat → Prop.

The de3nition mechanism may also be used to express predicates on relations:

De nition 8 (INJECTIVITY). Let E be a set and R a relation on E. R is injective if
equality of images by R implies equality of arguments:
Definition injective : (∀E : Set) (relation E) → Prop

:= �E:Set. �R:(relation E).
(∀x,x’,y : E) (R x y) → (R x’ y) → x=x’.

De nition 9 (FUNCTIONALITY). Let E be a set and R a relation on E. R is functional
if equality of arguments of R implies equality of images
Definition function: (∀E : Set) (relation E) → Prop

:= �E:Set. �R:(relation E).
(∀x,y,y’ : E) (R x y) → (R x y’) → y=y’.

1 The Gallina syntax has been slightly modi3ed in order to make it more accessible to beginners. Symbol
¬ replaces the usual negation, symbol ∀ is added where relevant, symbol � representing lambda-abstraction
will be used instead of the notation [...], parentheses around integers are omitted, notation (∃ x|...) is
used for {x | ...} and {x & ...}, the natural successor S is replaced by +1, disjunctions (+) on Set
are replaced by their equivalent ∨ on Prop.
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De nition 10 (INVOLUTIVITY). Let E be a set and R a relation on E. R is involutive
if for any dart, an image of an image of this dart is the dart itself
Definition involutive : (∀E : Set) (relation E) → Prop

:= �E:Set. �R:(relation E).
(∀x,x’,y : E) (R x y) → (R y x’)→ x=x’.

De nition 11 (IRREFLEXIVITY). Let E be a set and R a relation on E. R is irreGexive
if no object is in relation with itself by R:
Definition irreflexive : (∀E : Set) (relation E) → Prop

:= �E:Set. �R:(relation E).
(∀x : E) ¬(R x x).

De nition 12 (IDENTITY). Let E be a set and R a relation on E. R is identical if a
dart may only be in relation with itself by R:
Definition identical : (∀E : Set) (relation E) → Prop

:= �E:Set. �R:(relation E).
(∀x,y : E) (R x y) → x=y.

Note that term �x:X. t where t has type T is a function term of type (∀x : X)T.
A priori, proposition “the natural order on natural numbers (noted le) is injective” is
formalized by term (injective nat le). Notice that in this term, the presence of
nat is redundant: indeed, as le is of type (relation nat), nat is the only possible
type T so that (injective T le) is well typed. Coq is able to infer redundant-type
arguments, provided it is asked so with command Set Implicit Arguments. These
types may then be omitted to simplify the notations. With this facility, the previous will
simply be written (injective le). Whenever possible, we underlined in de3nitions
the type arguments that Coq was able to infer, and hence are later omitted. Besides,
we also use the pretty-printing facilities of Coq to display some expressions in a nicer
way. For example, (le 3 4) is written as 364.

We also de3ne relation composition.

De nition 13 (COMPOSITION). The composition of R et R’ is a relation that links
two objects x and y provided there exists a z such that (R’ x z) and (R z y), x
and y belonging to E:
Definition composition:

(∀E : Set) (relation E) → (relation E) → (relation E)
:= �E:Set. �R,R’:(relation E).

�x,y:E. (∃z | (R’ x z) ∧ (R z y))

Now, we wish to de3ne surjectivity. However, we do not want to express that a
relation is surjective on its whole argument type E, but only on one of its subparts.
The relation will then be said to be surjective on that subpart. To do this, we consider an
abstract set F that will be seen as the set of parts of E. We then introduce a membership
predicate is in for F, of type E → F → Prop. Term (is in x m) means that x, of
type E is an element of m, of type F. A relation of E on F is a function yielding
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a binary relation in E, hence of type F → (relation E); these objects are called
relations-on.

De nition 14 (SURJECTIVITY). A relation R in E on F is surjective on m if for any
y in E belonging to m, there exists a x in E such that (R x y):
Definition surjective:

(∀E,F : Set) (E → F → Prop)
→ (F → (relation E)) → F → Prop

:= �E,F:Set. �is in:(E → F → Prop).
�R:(F → (relation E)). �m:F.

(∀y : E) (is in y m) → (∃x | (R m x y))

With the same conventions, we express the fact that a relation is total or localized:

De nition 15 (TOTALITY OF A RELATION). A relation R in E on F is total on
m if for any x in E belonging to m, there exists a y in E such that(R x y):
Definition total:

(∀E,F : Set) (E → F → Prop)
→ (F → (relation E)) → F → Prop

:=�E,F:Set. �is in:(E → F → Prop).
�R:(F → (relation E)). �m:F.

(∀x : E) (is in y m) → (∃y | (R m x y))

De nition 16 (LOCALIZATION). A relation R in E on F is localized on m if for any
x in E, (R x y) entails that x and y belong to m:
Definition localized:

(∀E,F : Set) (E → F → Prop)
→ (F → (relation E)) → F → Prop

:= �E,F:Set. �is in:(E → F → Prop).
�R:(F → (relation E)). �m:F.

(∀x,y : E) (R m x y) → (is in x m) ∧ (is in y m)

All the previous notions are combined to de3ne the permutations:

De nition 17 (PERMUTATION). A relation R in E on F is a permutation on m if it
is total, surjective, and (R m) is functional and injective
Definition permutation:

(∀E,F : Set) (E → F → Prop)
→ (F → (relation E)) → F → Prop

:=�E,F:Set. �is in:(E → F → Prop).
�R:(F → (relation E)). �m:F.

(total is in R m) ∧ (surjective is in R m)
∧ (function (R m)) ∧ (injective (R m))

Notice that thanks to implicit arguments, variables E and F do not appear whenever
they may be inferred.
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5.2. DeEnition of darts

The darts, the basic bricks of our maps, have previously simply been de3ned as
abstract objects, without any more information. This is exactly how we formalize them,
in order to remain as general as possible. This allows us to avoid to rely on the
geometric embedding of darts, which would be the case had we chosen to represent
them as half-edges. In the same way, the type of darts does not have to be instantiated
as a particular type, like integers. Although in most actual software darts are indeed
represented by integers or pointers, this fact is irrelevant as far as theorem proving
goes. Hence, we will simply consider the type of darts, noted dart as a parameter of
our speci3cation.

Parameter 1 (DART). there exists a type of darts called dart
Parameter dart : Set.

This declaration allows us to assume the existence of an object of type Set, i.e. a
concrete type, and name it dart. A priori, dart may be any concrete type, 3nite or
in3nite. We know nothing of the elements that inhabit it. Because of our needs during
the proofs, we will have to make a number of additional reasonable hypotheses. First,
a recurring reasoning scheme will be to compare two darts and proceed with the proof
in a diJerent way depending whether the darts are equal or not. In classic logic, this
is completely trivial: one can perform case reasoning on the truth of any proposition.
On the other hand, in intuitionistic logic, which is the logic underlying the CIC, case
reasoning may be performed only if it is actually known how to decide (i.e. compute)
which case is the good one. But there is no general algorithm that may be applied to
any type and that decides equality of two elements of this type; there are even some
types for which equality is undecidable, for example real numbers. Hence, we must
assume that such a decision algorithm is available for dart. This is another parameter
of the speci3cation:

Parameter 2 (DECIDABILITY OF DART EQUALITY).
Parameter EQ DART DEC : (∀x,y : dart) x=y∨¬x=y
This declaration binds the name EQ DART DEC to an object of type (∀x, y : dart)

x=y∨¬x=y. It means that EQ DART DEC is an algorithm that, given two darts x and
y, allows us to prove either x=y, or x �=y, knowing in which case we are. In other
words, EQ DART DEC is a computable equality criterion for objects of type dart.

Besides, during our proofs we will have to build a number of darts that are absent
from the handled maps in order to build intermediary maps. Thus, we must make sure
that we always have new darts available, which amounts to assuming that type dart is
in3nite. To do this, we assume that we have at our disposal an injection from naturals
into dart. This injection can be seen as an in3nite dart generator, noted idg:

Parameter 3 (DART GENERATOR). Generator idg is a function which takes a
natural for argument and yields a dart
Parameter idg : nat → dart.
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This command binds the symbol idg to an object of type nat → dart, i.e. a
function that takes a nat for argument and yields a dart. We still have to ensure that
this generator is injective.

De nition 18 (INJECTIVITY OF THE DART GENERATOR). Equality of images
by idg implies equality of arguments
Inductive IDG INJ : (∀n,n’ : nat) (idg n)=(idg n’) → n=n’.

The term IDG INJ is declared as an axiom. This means that IDG INJ is as suDcient
and useable proof of the injectivity of idg.

5.3. Sewings

A sewing is a triplet made up of a natural representing its dimension and the two
darts that are sewn. The type of sewings, noted sw, is de3ned as:

De nition 19 (SEWINGS).
Inductive sw : Set := c : nat → dart → dart → sw.

First notice the form of the type of c. If we put back the parentheses that are omitted
because of the right associativity of → , the type of c is (nat → (dart → (dart
→ sw))). Thus, term c is a function from nat to dart → (dart → sw).

As a consequence, terms (c 0) et (c 1) are of type dart → (dart → sw). In a
similar way, if x and y are darts, term ((c 0) x) is of type dart → sw, and term
(((c 0) x) y) of type sw.

Function (c 0) may be interpreted as the partial function that for any x and y of
type dart yields the image of (0,x,y) by c. Application being left-associative, some
parentheses may be omitted, so we can write (c 0 x y) instead of (((c 0) x) y).

The de3nition of c is said to be inductive. It allows to uniquely specify a concrete
type or a predicate by giving an exhaustive list of the constructors of the elements
of this type. The constructors are two-by-two distinct and are all injective. Here, sw
is de3ned as the type of terms built from its only constructor c. For instance, if x
and y are dart s, then (c 0 x y), (c 5 x x) and (c 27 y x) all are of type sw.
Conversely, this declaration speci3es that c is the only constructor of sw. This means
that if an object s is of type sw, then one can infer that there exist n, x and y such
that s=(c n x y). This property, called an inversion property, is wrapped in a lemma
with the same name.

Lemma 1 (INVERSION OF SEWINGS). Any sewing is part of the image of c
Lemma SW INV: (∀s:sw)

(∃n:nat |(∃x,y:dart | s=(c n x y)))

Proving, as we did, a separate lemma for such a simple proposition may seem useless,
as it is obtained by using a single tactic; hence, we could use the same tactic whenever
we use this lemma in further proofs. This is justi3ed by a general will to wrap the
inductivity properties of inductive objects in lemmas; indeed, these properties, when
exploited directly with inversion tactics, are analogous to “low-level” functions, and for
the same reasons as in traditional programming, we prefer working at a higher level.
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Among others, this allows to clearly separate the Gallina implementation of objects like
sewings from the proofs in which they appear, and to put these properties into a form
that is more conveniently used than the one obtained by a direct use of tactics. Besides,
these lemmas can be used as any other term proofs; it is therefore possible to combine
them to form term proofs of other propositions, which sometimes greatly shortens
proofs. As terms, they are also sometimes even necessary when de3ning functions.

The third inductivity property, the injectivity of constructors, here amounts to be
able to infer n=n’, x=x’ and y=y’ from (c n x y)=(c n’ x’ y’). As with SW INV,
this property is wrapped in the following lemma.

Lemma 2 (INVERSION OF SEWINGS EQUALITY). Equality of sewings implies
equality of its parameters
Lemma EQ SW INV :

(∀n,n’:nat; ∀x,x’,y,y’:dart)
(c n x y)=(c n’ x’ y’)→ n=n’∧x=x’∧y=y’.

Our 3rst useful result on sewings is the decidability of their equality, the Coq proof
of which uses the decidability of equality of naturals, a property that is proved in the
standard Coq library.

Lemma 3 (DECIDABILITY OF EQUALITY OF NATURALS). It is possible to de-
cide whether two naturals are equal or distinct
Lemma EQ NAT DEC : (∀n,n’ : nat) n=n’∨¬n=n’

Lemma 4 (DECIDABILITY OF SEWINGS EQUALITY). It is possible to decide
whether two sewings are equal or not
Lemma EQ SW DEC : (∀s,s’:sw) s=s’∨¬s=s’

5.4. Free maps

A free map is simply made up of two independent 3nite sets, one of darts and
the other of sewings. It is speci3ed by a three-constructor inductive type: the 3rst
one, v(oid), is used to build an empty map, while the other two, i(nsert) and l(ink),
respectively, allow the addition of a dart or a sewing to an already built map.

De nition 20 (FREE MAP).
Inductive fmap : Set :=

v : fmap
| i : dart → fmap → fmap
| l : sw → fmap → fmap

This de3nition is obviously very little constrained, which allows a lot of construc-
tions. A dart may be sewn to itself or to any other dart at any dimension, it may be
sewn to several darts at the same dimension; a dart even does not have to have been
inserted previously to being sewn. A free map may be seen as two interwoven lists,
one of darts and the other of sewings, sharing the same empty list constructor v and
each with its own head insertion constructor, respectively, i and l.
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When fmap is declared, Coq automatically generates a structural induction theorem.

Lemma 5 (INDUCTION ON FREE MAPS).
Lemma fmap ind : (∀P : (fmap → Prop))

(P v)
→ ((∀d:dart; ∀f:fmap) (P f) → (P (i d f)))
→ ((∀s:sw; ∀f:fmap) (P f) → (P (l s f)))
→ (∀f : fmap)(P f)

This theorem states that if a predicate on fmap is satis3ed by v and stable by i and
l, then it is satis3ed for any fmap. This theorem will be the backbone of most of our
proofs on fmap.

In order to de3ne a predicate on a free map, we always use the same technique:
we state, if it is the case, that P is satis3ed for v, and then we describe the behaviour
of P whenever we add a dart or a sewing to the map. Thus, we now de3ne three
fundamental selector predicates on this type. The 3rst expresses the existence of a dart
in a map. It is noted exd (existence of a dart).

De nition 21 (EXISTENCE OF DARTS). Existence of darts in an fmap is the
smallest two-place predicate exd satis3ed for x on (i x m) for any free map m, that
is also stable by dart insertion i and sewing insertion l
Inductive exd : dart → fmap → Prop :=

EXD I X : (∀x:dart; ∀m:fmap)
(exd x (i x m))

| EXD I : (∀x:dart; ∀m:fmap) (∀d : dart)
(exd x m) → (exd x (i d m))

| EXD L : (∀x:dart; ∀m:fmap)(∀s : sw)
(exd x m) → (exd x (l s m)).

The predicate constructors are capitalized as they may be interpreted and used as the
axioms that de3ne the predicate. Just like with concrete inductive type, an inversion
lemma can be de3ned for a predicate:

Lemma 6 (INVERSION OF EXD). A dart belongs to a free map if it has just been
inserted, or if a dart or a sewing has just been inserted into the free map and the
dart already belonged to the older map
Lemma EXD INV : (∀x:dart; ∀m:fmap)

(exd x m)
→ (∃m’:fmap|

m=(i x m’)
∨((∃y:dart | m=(i y m’))∨(∃s:sw | m=(l s m’))

∧ (exd x m’))

For proof-development reasons, this lemma is then split into three narrower sublem-
mas, each corresponding to one of the possible constructors for map m:

Lemma 7 (EXISTENCE OF DARTS; INVERSION/V). No dart is in fmap v
Lemma EXD V INV : (∀x : dart) ¬(exd x v).
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Lemma 8 (EXISTENCE OF DARTS; INVERSION/I). If x is in (i y m), then x=y
or x is in m
Lemma EXD I INV : (∀x,y:dart; ∀m:fmap)

(exd x (i y m)) → y=x∨(exd x m)

Lemma 9 (EXISTENCE OF DARTS; INVERSION/L). If x is in (l s m), then x is
in m
Lemma EXD L INV : (∀x:dart; ∀s:sw; ∀m:fmap)

(exd x (l s m)) → (exd x m)

As with the sewings, we need to prove the decidability of existence of darts.

Lemma 10 (DECIDABILITY OF EXISTENCE OF DARTS). For any dart x and any
free map m, either x exists in m, or x does not exist in m
Lemma EXD DEC : (∀x:dart; ∀m:fmap)

(exd x m)∨¬(exd x m)

We now de3ne three selectors that observe the sewings of a map. The 3rst one is
analogous to exd, it allows to test the existence of a sewing at a given dimension
between two given darts.

De nition 22 (SUCCESSORS). Let k be a dimension, x and y two darts and m a free
map. Dart y is a k-successor of x in map (l (c k x y) m); this property is stable
by dart and sewing insertion
Inductive succ : nat → dart → fmap → dart → Prop

:= SUCC L X : (∀k:nat; ∀m:fmap; ∀x,y:dart)
(succ k x (l (c k x y) m) y)

| SUCC I : (∀k:nat; ∀m:fmap; ∀x,y:dart) (∀d : dart)
(succ k x m y)
→ (succ k x (i d m) y)

| SUCC L : (∀k:nat; ∀m:fmap; ∀x,y:dart) (∀s : sw)
(succ k x m y)
→ (succ k x (l s m) y)

We will also often need to express the fact that a dart has no successor at a given
dimension. We may use succ to do so, but the speci3cation we are reusing features a
separate selector for this purpose:

De nition 23 (ABSENCE OF SUCCESSOR). Let k be a dimension and x a dart. In
the empty map, x has no successor. The absence of successor of x at dimension k is
stable by dart insertion and sewing at any dimension other than k or linking any dart
other that x
Inductive nosucc : nat → dart → fmap → Prop :=

NOSUCC V : (∀k:nat; ∀x:dart) (nosucc k x v)
| NOSUCC I : (∀k:nat; ∀m:fmap; ∀x:dart) (∀d : dart)

(nosucc k x m) → (nosucc k x (i d m))
| NOSUCC L :
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(∀k,k’:nat; ∀m:fmap; ∀x,x’:dart) (∀y’ : dart)
(nosucc k x m)
→ k’=k ∨ ¬x’=x
→ (nosucc k x (l (c k’ x’ y’) m))

Notice that it would have been equivalent to replace the 3rst implication → in the
de3nition of NOSUCC L by a conjunction ∧; however, we favor expressions built with
implications as they are more easily handled in proof mode. As usual, this de3nition
comes along a number of inversion lemmas named NOSUCC I INV and NOSUCC L INV
that we do not explicitly state here. As a general writing rule, inverson lemma will
not be mentioned anymore. There is no inversion lemma NOSUCC V that would be
associated to the empty map as nothing can be deduced on x or k from (nosucc k
x v).

Obviously, succ and nosucc are semantically very close. Indeed, nosucc could
have been de3ned from succ, with the Gallina de3nition mechanism.

De nition 24 (ABSENCE OF SUCCESSOR; ALTERNATIVE VERSION). A dart
x has no k-successor in m if for any dart y this dart is not the k-successor of x in m
Definition nosucc alt : nat → dart → fmap → Prop

:= �n:nat. �x:dart. �m:fmap.
(∀y:dart) ¬(succ n x m y)

We easily show that the two de3nitions of nosucc are actually equivalent:

Lemma 11 (EQUIVALENCE OF ABSENCES OF SUCCESSOR). The predicates
nosucc and nosuccalt are equivalent
Lemma NOSUCC NOSUCC ALT : (∀k:nat; ∀x:dart; ∀m:fmap)

(nosucc k x m) ↔ (nosucc alt k x m)

There is no particular semantic or real practical reason to choose one version over
the other, it essentially comes down to the user’s own speci3cation style. To 3nish
with that matter, we now reformulate the previous equivalence lemma in a form that
will be useful during proofs:

Lemma 12 (INCOMPATIBILITY BETWEEN SUCC AND NOSUCC).
Lemma SUCC NOTNOSUCC : (∀k:nat; ∀x,y:dart; ∀m:fmap)

(succ k x m y) → ¬(nosucc k x m)

The last selector, called alpha, is a completion of selector succ.

De nition 25 (SELECTOR ALPHA). If dart y is the k-successor of x in m, then y
is also its k-�-successor. On the other hand, if x has no k-successor in m but belongs
to m, then x is its own k-�-successor
Inductive alpha : nat → fmap → dart → dart → Prop :=

SUCC ALPHA : (∀k:nat; ∀m:fmap; ∀x,y:dart)
(succ k x m y) → (alpha k m x y)

| ALPHA REF : (∀k:nat; ∀m:fmap; ∀x:dart)
(nosucc k x m) → (exd x m)
→ (alpha k m x x)



C. Dehlinger, J.-F. Dufourd / Theoretical Computer Science 323 (2004) 351–397 369

This selector is simply used to ensure the existence of a successor for all the darts in
the map. In the version of the speci3cation presented in this paper, we consider alpha
to be the more semantically interesting selector, i.e. the one the properties of which are
more interesting, while succ is only an intermediary selector used in the de3nition of
alpha. Current developments tend to reverse this precedence, which is something that
was inherited from previous versions of the speci3cations. At the semantical level, it
is alpha rather than succ that should be associated to the �i. From now on, we shall
say that x is �-sewn at dimension k (or k-�-sewn) to y in m iJ (alpha k x m y).
Notice that x is k-�-sewn to y if x is k-sewn to y, but that the converse may be false.
Indeed, a dart that is k-�-sewn to itself is either k-sewn to itself, or has no k-successor.
It may not hold if x=y. In that case, x will be said to be implicitly k-sewn to itself.

5.5. Computing of successors, decidability of their existence

It is easy to prove that the selectors are decidable. We will however take a closer
look at the decidability lemma for nosucc, as it is more interesting than the others:

Lemma 13 (DECIDABILITY OF NOSUCC).
Lemma NOSUCC DEC : (∀k:nat; ∀x:dart; ∀m:fmap)

(nosucc k x m)∨ ¬(nosucc k x m).

After thinking a little about this theorem, one can see that a more powerful version
of this lemma may be built: if you take advantage of the bonds between succ and
nosucc, you can de3ne a similar lemma that will also exhibit a k-successor of x in
the case where ¬(nosucc k x m).

Lemma 14 (EXISTENCE OR ABSENCE OF SUCCESSOR). Let k be a dimension,
m a free map and x a dart. Then either x has a k-successor y in m, or it does not
have any
Lemma SUCC OR NOSUCC : (∀k:nat; ∀x:dart; ∀m:fmap)

(∃y:dart | (succ k x m y))
∨(nosucc k x m)

It may sometimes happen that a dart has several successors at the same dimension.
The above lemma always yields one of them provided it exists, but you cannot tell
which. Indeed, there is no information in the formulation of SUCC OR NOSUCC that
allows to separate this dart from the others. While leading proofs, this turns out to
be very problematic as unless you take much care, and work in a relatively non-
intuitive and cumbersome way, you cannot even compare the darts you get from two
separate applications of SUCC OR NOSUCC to the same arguments. Hence, we must 3nd
another way to get more precise information about this dart. The 3rst method consists
in proving a lemma that is analogous to SUCC OR NOSUCC and that imposes stricter
constraints on y. Such constraints would be directly suggested by the needs of further
proofs, and gathered in a predicate called propsucc of type nat → fmap → dart
→ dart → Prop. Property (propsucc k m x y) would be satis3ed only if y were
a k-successor of x in m that satis3es particular properties. Such a property could be
that y must be the k-successor of x that was last inserted in m. Thus, after picking a
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propsucc that suits our needs, we would prove the following variant:

Lemma 15 (EXISTENCE OR ABSENCE OF SUCCESSOR; VARIANT). Let x be a
dart, k a dimension and m a free map. Either x has no k-successor in m, or x has
one called y such that if m happens to be of the form (l (c k x y’’) (l (c k x
y’) m’)) then y=y’
Lemma SUCC OR NOSUCC 2 : (∀k:nat; ∀x:dart; ∀m:fmap)

(∃y:dart | (succ k x m y) ∧ (propsucc k m x y))

This lemma allows to obtain more information on the yielded dart than with SUCC OR
NOSUCC. The problem with this method is that all the properties that you might need on

this dart must be anticipated; if one is forgotten, then the lemma must be reformulated
and reproved with a stronger propsucc, and all the proofs that use it must be adapted
to take its new form into account. The fundamental problem with using a lemma in
order to build an object is that the building algorithm is hidden within the proof of
the theorem, and thus is hard to extract and use.

The second method consists in explicitly de3ning a function that build successors
of a dart in a map and proves particular properties of this function. At the theoretical
level, this method has the downside to force some choices on the successor computing
process, and thus implicitly adding a number of additional constraints to the initial
problem. At the practical level in our case, this method has another downside which
stems from the fact that this function would be partial: indeed, a dart has no successor at
most dimensions. There are two main techniques to de3ne partial functions in Gallina.
The 3rst one consists in manipulating objects supplied with a proof that they belong
to the de3nition domain. The second one, more simpler from both a conceptual and
practical point of view, consists in using the notion of type with error, a basic notion
of functional programming: if the argument of a function belongs to its domain, then it
yields the image by the function; if not then it yields a special value noted error. Types
with error are de3ned in the standard library of Coq as inductive objects constructed
from other types. 2

De nition 26 (TYPE WITH ERROR). Let T be a type. A value of type “T with
error” (noted (Exc T) is either a value of type T, either constant (error T)
Inductive Exc : Set → Set:=

value : (∀T : Set) T → (Exc T)
| error : (Exc T)

The following recursive function allows to compute the oldest k-successor (i.e. the
earliest inserted) of a dart in a map, provided such a dart exists, and yields (error
(Exc dart)) otherwise.

De nition 27 (COMPUTING OF A SUCCESSOR).
Fixpoint getsucc : nat → dart → fmap → (Exc dart) :=

�k:nat. �x:dart. �m:fmap.
Cases m of

2 We have slightly altered this de3nition to take advantage of the implicit arguments mechanism.
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v ⇒ (error dart)
| (i m’) ⇒ (getsucc k x m’)
| (l (c k’ x’ y’) m’) ⇒ Cases (getsucc k x m’) of

(value y) ⇒ (value y)
| error ⇒ Cases (EQ NAT DEC k k’) of

(left p1) ⇒ Cases (EQ DART DEC x x’) of
(left p2) ⇒ (value y’)

| (right p3) ⇒ (error dart)
end

| (right p4) ⇒ (error dart)
end

end

First of all, let us take a look at this de3nition. Keyword Fixpoint is used to de3ne
a function that is recursive on its last argument (here m). The construction Cases X of
... end is a conditional de3nition, the condition of which is one the shape of term
X, and that yields diJerent results depending on the type of constructor used to build
term X. This is simply standard pattern-matching. Presence or absence of a type variable
applied to constructor error depends on Coq’s ability to infer the corresponding type.
The function proceeds by analysing the shape of the free map argument m:

– If m=v then the search fails, so it yields (error dart).
– If m=(i d m’) then this last insertion is ignored, and the search yields the value

yielded by (getsucc k x m’).
– If m=(l (c k’ x’ y’) m’) then the search is 3rst continued in m’. To do so,
(getsucc k x m’) is computed and its result analysed:

• If (getsucc k x m’)=(value y) then the search succeeded in m’. The
search in m can then yield the same value.

• If (getsucc k x m’)=(error dart) then the search failed in m’. This
means that x has no k-successor in m’. So, the search must also fail in m=
(l (c k’ x’ y’) m’), unless in the case that both k=k’ and x=x’, where
the search succeeds and yields y’. To identify whether it is the case, k must
be compared to k’. To do so, we use lemma EQ NAT DEC. Let us consider the
term (EQ NAT DEC k k’): it is of type k=k’∨¬k=k’, i.e. a proof that either
k and k’ are equal, or that they are distinct. Remember that as we are work-
ing in an intuitionnistic logical framework, this means that term (EQ NAT DEC
k k’) is either built from a proof of k=k’ or from a proof of ¬k=k’. We
will then study two cases, depending on which of these proofs (EQ NAT DEC
k k’) is built from. This term is a disjunction, which in Gallina is a simple
inductive type with two constructors left et right.

* If (EQ NAT DEC k k’)=(left p1) then this means that (EQ NAT DEC k
k’) is built from a proof p1 of k=k’ (the left half of the considered dis-
junction). This entails that we are in the case where k=k’. We will compare
x to x’ in a similar fashion by analysing (EQ DART DEC x x’):

· If (EQ DART DEC x x’)=(left p2) then we deduce that x=x’. In this
case, the search succeeds and yields (value y’).
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· If (EQ DART DEC x x’)=(right p3) then it means that (EQ DART DEC x
x’) is built from a proof p3 of ¬x=x’ (the right half of the considered
disjunction). This entails that we are in the case where ¬x=x’. So the
search still fails and yields (error dart).

* If (EQ NAT DEC k k’)=(right p4) then we deduce that ¬k=k’. The search
fails, and yields (errordart).

We are easily convinced that this function does compute a successor if there is one,
and fails if there is not any. We must now ensure this, by proving how getsucc
relates to selectors succ and nosucc.

Lemma 16 (GETSUCC TO SUCC OR NOSUCC). If a call to getsucc for dart x,
dimension k and map m fails, then x has no k-successor in m; if it yields a dart y
then y is a k-successor of x in m
Lemma GETSUCC SUCC NOSUCC : (∀k:nat; ∀x:dart; ∀m:fmap)

Cases (getsucc k x m) of
error ⇒ (nosucc k x m)

| (value y) ⇒ (succ k x m y)
end.

Lemma 17 (NOSUCC TO GETSUCC). If x has no k-successor in m, then the call
(getsucc k x m) fails
Lemma NOSUCC GETSUCC : (∀k:nat; ∀x:dart; ∀m:fmap)

(nosucc n x m)
→ (getsucc n x m)=(error dart).

Lemma 18 (SUCC TO GETSUCC). If y is a k-successor of x in m, then the call
(getsucc k x m) yields a value (which may or may not be y)
Lemma SUCC GETSUCC : (∀k:nat; ∀x,y:dart; ∀m:fmap)

(succ k x m y)
→ (∃y’:dart | (getsucc k x m)=(value y’)).

If we only prove these properties on getsucc, the advantage of using a function over
a lemma to compute a successor is essentially to achieve greater transparency: we have
simply proved diJerently the same proposition that was proved by SUCC OR NOSUCC,
i.e. that we are able to decide whether a dart has any k-successors; only we do it in
a more readable way with function getsucc instead of a process hidden inside the
proof of SUCC OR NOSUCC. On the other hand, using a function allows to prove easily
properties such as stability by l, which makes this technique much more adapted to
inductive reasoning:

Lemma 19 (VARIATIONS OF GETSUCC BY L). Term (getsucc k x m) reduces
to the same value as (getsucc k x (l (c k’ x’ y’) m’)) unless (getsucc k x
m) yields (error dart), k=k’ and x=x’, in which case the term reduces to (value
y’):
Lemma GETSUCC L : (∀k,k’:nat; ∀x,x’,y’:dart; ∀m:fmap)

((getsucc k x (l (c k’ x’ y’) m))=(getsucc k x m)
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∧¬((getsucc k x m)=(error dart)∨k=k’∨x=x’))
∨((getsucc k x (l (c k’ x’ y’) m))=(value y’)

∧((getsucc k x m)=(error dart)∨k=k’∨x=x’))
The goal that we were pursuing by using a function is not to explicitly set well-

chosen constraints in order to obtain a beforehand predetermined successor computing
process, but simply to have at our disposal a behaviour model of this process in
situations that may not have been expected at the time of function de3nition. For
instance, at the time we speci3ed successor computing, it was not obvious that we
would need to know how it behaves with respect to l. If we had used a lemma, it
would have been very diDcult to express and determine this. As we used a function,
we are able to determine this behaviour, and we express it in lemma GETSUCC L.
Similarly, we de3ne GETSUCC I.

One problem with the de3nition of getsucc is that it yields values in (Exc dart)
instead of dart. This complicates the de3nitions of operations that use the darts com-
puted by getsucc, as we always have to take into account the case where the search
fails, although it sometime could not come up in reality. Intuitively, we would like to
wrap getsucc in a function with the same arguments that will either yield the dart
computed by getsucc if such a dart exists, or a default dart else. To do so, we de3ne
a general error handling function, then use it with getsucc:

De nition 28 (ERROR HANDLING).
Definition err : (∀A:Set; ∀default:A; ∀e:(Exc A))

:= �A:Set. �default:A. �e:(Exc A).
Cases e of
error ⇒ default

| (value x) ⇒ x
end

De nition 29 (WRAPPING GETSUCC).
Definition getsucc’ : dart → nat → dart → fmap → dart

:= �def:dart. �k:nat. �x:dart. �m:fmap.
(err def (getsucc k x m))

In particular, we may choose the dart the successor of which is sought as the default
dart. The resulting function is noted sos (successor or self).

De nition 30 (SUCCESSOR COMPUTING; IDENTITY AS DEFAULT).
Definition sos : nat → dart → fmap → dart

:= �k:nat. �x:dart.
(getsucc’ x k x)

We show lemmas for sos that are analogous to GETSUCC L in order to ensure the
properties of sos. One of them shows the compatibility between sos and alpha.

Lemma 20 (COMPATIBILITY BETWEEN ALPHA AND SOS).
Lemma ALPHA SOS : (∀k : nat) (∀m:fmap; ∀x:dart)

(exd x m) → (alpha k m x (sos k x m)).
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For any dart in any map, sos allows to compute one of its �-successors at a given
dimension.

5.6. Observational equality on maps

As we mentioned before, the sets of darts and sewings that make up a free map
are represented by two (interwoven) lists. This choice of representation has two well-
known downsides, namely allowing duplicates and inducing an order on the elements
of the dart and sewings sets. In particular, two maps m1 and m2 that feature the same
darts and sewings, but in which they have been inserted in diJerent orders, are distinct
because the terms that represent them are syntactically distinct. Similarly, if a dart
that belongs to m1 is inserted again into m1, the resulting map m3 is distinct from m1.
But from the semantical standpoint, m1, m2 and m3 should be equal. This shows in
our choice of selectors: every one of them has the same behaviour whether it is used
on m1, m2 or m3. That is why we use them as a basis of our own map equality, an
observational equality noted ∼= .

De nition 31 (OBSERVATIONAL EQUALITY ON FREE MAPS). Two free maps
are observationally equal if the behaviour of alpha and exd is the same on both maps
Inductive ∼= : fmap → fmap → Prop:=

FMEQ : (∀m,m’ : fmap)
((∀x : dart) (exd x m) ↔ (exd x m’))
→ ((∀n:nat; ∀x,y:dart)

(alpha n m x y) ↔ (alpha n m’ x y))
→ (m∼= m’)

The main problem related to observational equality is that it is not possible to replace
equals with equals in formulas, as is the case with Leibniz equality. An option would
be to add the axiom ((∀m,m’ : fmap) m∼= m’ → m = m’), which would let us replace
observational equals with equals. While convenient, it turns out to be unsatisfying as it
can easily be shown that this proposition is false in our speci3cation. Adding it as an ax-
iom would thus render the speci3cation contradictory. However, this contradiction could
possibly be tolerated, provided we are always careful never to use it to prove anything
by absurd. But given the large size of our speci3cation, it is risky to assume that we al-
ways fully control every use of the axiom. As a consequence, we cautiously rejected this
axiom, at the expense of some unwieldiness in the speci3cation and proof processes.

5.7. Paths

In order to de3ne some operations, we need the notion of path in a map. A path is
not a series of darts, but an itinerary, i.e. a succession of directions to be taken from
any starting dart.

De nition 32 (PATH). A path is a 3nite series of dimensions. It is isomorphic to
a list of naturals; pnil is the empty path, (pcons n p) is path p preceded with an



C. Dehlinger, J.-F. Dufourd / Theoretical Computer Science 323 (2004) 351–397 375

x
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y=(follow m x (pcons 1 (pcons 2 (pcons 1

1

2
1

0
2

1

(pcons 0 (pcons 2 (pcons 1 pnil)))))))

Fig. 6. Following a path.

extra direction n
Inductive path : Set :=

pnil : path
| pcons : nat → path → path

Note that a direction might be ambiguous, as in maps where succ is not functional,
a dart may have several successors for any given dimension; in that case, which sewing
is being referred to is not obvious. Hence, this kind of paths is not well-suited for such
maps. However, they are perfectly unambiguous in the case of g-maps.

We de3ne on maps some standard operations on paths that are inspired from linear
list operations. They are not given in detail: papp (of type path → path → path,
that concatenates two paths), plength (of type path → nat, that computes the length
of a path), pmirror (of type path → path, that computes the reverse path). We also
de3ne a number of operations that are related to the semantics of path.

De nition 33 (FOLLOWING A PATH). Following the empty path in any map from
any dart leads to that same dart. Following path (pcons k p) in map m from dart x
consists in following p in m from the image dart of x by (sos k) in m Fig. 6
Fixpoint follow : fmap → dart → path → dart

:= �m:fmap. �x:dart. �p:path.
Cases p of
pnil⇒ x

| (pcons k p’)⇒ (follow m (sos k x m) p’)
end

Notice that as we work in free maps, in which exd and succ are completely separate,
the darts reached by follow may or may not belong to the map. Whenever there is
an ambiguity about which sewing to cross (when a visited dart has several successors
for the dimension that corresponds to the next direction), follow systematically picks
the earliest inserted one.

De nition 34 (PATHS THE DIRECTIONS OF WHICH SATISFY A PREDI-
CATE). Let P be a predicate on integers. Path p satis3es predicate (pathpr P) iJ all
directions in p satisfy P
Inductive pathpr : (nat → Prop) → path → Prop
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:= PATHPR PNIL : (∀P : (nat → Prop)) (pathpr P pnil)
| PATHPR PCONS : (∀P:(nat → Prop); ∀k:nat; ∀p:path)

(pathpr P p) → (P k) → (pathpr P (pcons k p))

While leading in a proof, it is often needed to decide whether two darts may be
joined by a path the directions of which satisfy some properties, and to compute such
a path if it exists. These properties are usually maxima or minima for the value of
the directions. These properties are wrapped in a predicate that speci3es the directions
that may be used. A priori, the only property this predicate must have is decidabil-
ity, so that it can be checked during path construction. Let us formalize predicate
decidability.

De nition 35 (DECIDABILITY OF A PREDICATE). Let T be a concrete type
and P a predicate on this type. Then P is decidable iJ for all x of type T it can be
determined whether (P x) is satis3ed or not
Definition decpr : (∀T : Set) (T → Prop) → Set

:= �T:Set. �P:(T → Prop).
(∀x : T) (P x)∨¬(P x)

Now we want to de3ne getpath, a function that builds such a path and fails if none
exists. Function getpath is supposed to satisfy the following fundamental lemma that
states what it is supposed to do.

Lemma 21 (COMPATIBILITY BETWEEN FOLLOW AND GETPATH). Let m be a
free map, x and y two darts, P a predicate on sewings and dec a proof of the
decidability of P. Then either (getpath dec m x y) yields a path that leads from
x to y in m and all dimensions of which satisfy P, or (getpath dec m x y) fails,
and there is no such path
Lemma GETPATH FOLLOW : (∀P : (nat → Prop))

(∀dec:decpr P; ∀m:fmap; ∀x,y:dart)
Cases (getpath dec m x y) of
(value p)⇒ (pathpr P p) ∧ (follow m x p)=y

| error⇒ ((∀p : path) (pathpr P p)
→ ¬(follow m x p)=y)

Note that this is still formally a conjecture, as we have not declared function getpath
yet. Let us now do right after introducing an intermediary lemma that is used to shorten
de3nitions.

Lemma 22 (COMBINATION OF TWO CASE DISJUNCTIONS). Let p1, p2, q1 and
q2 be four propositions. If we know that either p1 or p2 is satisEed and that either
q1 and q2 is satisEed, then we know that either both p1 and q1 are satisEed, or p2
or q2 is satisEed
Lemma AND DEC : (∀p1,p2,q1,q2 : Prop) :

p1∨p2 → q1∨q2 → p1∧q1∨p2∨q2
The main purpose of AND DEC is to group two tests: given p and q two propositions

and decp and decq proofs of their respective decidabilities, lemma AND DEC allows to
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test whether they are both true or if one of them is false. This is how we use it in the
de3nition of path computing.

De nition 36 (PATH COMPUTING). Let P be a predicate on naturals, dec a proof
of its decidability, m a free map, and x and y two darts. If x=y, then path computing
yields empty path pnil. Otherwise, if m is the empty map, then computing fails. If
m is of the shape (i d m’) then the path is computed in m’. If m is of the shape
(l (c n’ x’ y’) m’), the computing is 3rst performed in m’. If it succeeds, the
obtained path is returned. If it fails, if sewing (c n’ x’ y’) satis3es P, if x’ has no
n’-successor in m’, and if path computing in m’ from x to x’ and y to y’ succeeds
in both cases and, respectively, yields path xx’ and path y’y, then path computing
yields (papp xx’ (pcons n’ y’y)). If any of these conditions is not satis3ed, then
path computing fails
Fixpoint getpath : (∀P : (nat → Prop) → (decpr P) → )

fmap → dart → dart → (Exc path) :=
�P:(nat → Prop). �dec:(decpr P). �m:fmap.
�x,y:dart. Cases (EQ DART DEC x y) of
(left )⇒ (value pnil)

| (right )⇒ Cases m of
v⇒ (error path)

| (i m’)⇒ (getpath dec m’ x y)
| (l (c n’ x’ y’) m’)⇒

Cases (getpath dec m’ x y) of
(value p)⇒ (value p)

| error⇒ Cases (AND DEC (dec n’)
(NOSUCC DEC n’ x’ m’)) of

(left )⇒ Cases (getpath dec m’ x x’) of
(value xx’) ⇒
Cases (getpath dec m’ y’ y) of
(value y’y) ⇒

(papp xx’ (pcons n’ y’y))
| error⇒ (error path)
end

| error⇒ (error path)
end

| (right )⇒ (error path)
end

end
end

end

This is a rather standard algorithm. It consists in rebuilding the map sewing by
sewing, and at each step check if the last added sewing was the missing link to com-
plete the sought path. Between the various ways to express this algorithm, we had to
make sure that the one we picked yielded a path that was compatible with follow, i.e.
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that following the computed path with follow from the 3rst argument dart does lead
to the second argument darts. Indeed, there might be some issues as to which sewing to
cross when there are ambiguities. This property is ensured by the test (NOSUCC DEC n’
x’ m) in the de3nition of getpath: for any dart x’ and any dimension n’ it allows to
only take ignore all but the earliest inserted n’-sewing that links x’ to another dart, as
it is the one that is taken into account by getsucc and thus by follow. Assume that
this test were absent: in that case, under the hypotheses that ¬x=y and ¬y=z, we would
for example have (getpath dec (l (c 0 x z) (l (c 0 x y) v)) x y)=(value
(pcons 0 pnil)) while (follow (l (c 0 x z) (l (c 0 x y) v)) x (pcons 0
pnil))=z �=y. We now formally express the compatibility between the two
notions.

5.8. Generalized maps

A generalized map m of dimension n can mathematically be described as a 3nite
set of darts with n+1 binary relations on the darts of this set, said relations being
involutions that satisfy a number of additional properties. As we stated earlier, we
formalize it with a triplet made up of a free map called support of the map and
noted (gsupport m), a natural (gdim m) representing its dimension and a proof of
its well-formedness that expresses the fact that (gsupport m) is a good candidate
to be a (gdim m)-g-map. Obviously, in order for (gsupport m) to be well-formed,
relations (alpha i (gsupport m)) must be involutions satisfying the properties of
the �i of the g-maps. However, this is not enough, as there are two more issues left
to tackle:
– Using a free map as a support does not ensure that only the darts of the map will be

sewn. Thus, we will assume that relations (alpha i (gsupport m)) are localized,
i.e. that they only link darts that belong to (gsupport m);

– We have an in3nity of relations (alpha i), while the mathematical de3nition states
that there are only n + 1 relations �i; thus, we must simulate the 3niteness of the
number of relations �i. To do so, there are two approaches:
• Always make sure that only sewings the dimensions of which are low enough are

manipulated by adding hypotheses to theorems;
• Assume that relations (alpha i (gsupport m)) are equal to identity for higher

dimensions.
The 3rst solution is cleaner, but as a downside it sigi3cantly increases the number of
premises of the lemmas dealing with the (alpha i), which are the majority of the
proved lemmas, which makes their formulation and use all the more complicated.
For practical reasons, we then choose the second solution.
Another small problem also stems from the dimension. As seen previously, the di-

mension of a g-map is an integer that is greater or equal to −1. As we have so far
only worked with naturals, we would rather not introduce integers only to respect this
dimension convention. This is why an n-g-map is formalized by an ngmap m such
that (gdim m)=(n+1). In our speci3cation, the dimension is equal to the number of
diJerent possible sewing dimensions in this map rather than the maximal dimension of
these sewings. This does not change the numbering of the �k , and they have the same
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semantics in the standard de3nition as in ours. With this new convention, we can write
the well-formedness predicate.

De nition 37 (WELL-FORMEDNESS OF FREE MAPS). A free map m is well-
formed at dimension dim if for any n the relation-on (alpha n) is an involutive
permutation localized on m, and if for any n such that n+26dim relation (alpha
n m) is irreKexive, and if for any n and n’ such that (n+3)6(n’+1)6dim relation
(alpha n m)◦(alpha n’ m) is involutive, and if for any n such that n¿dim relation
(alpha n m) is the identity:
Inductive wf : nat → fmap → Prop

:= WF : (∀dim:nat; ∀m:fmap)
((∀n : nat) (permutation exd (alpha n) m)

∧ (localized exd (alpha n) m)
∧ (involutive (alpha n m)))

→ ((∀n : nat) (n+2)<=dim
→ (irreflexive (alpha n m)))

→ ((∀n,n’ : nat) (n+2)<=n’ → (n’+1)<=dim
→ (involutive (composition

(alpha n m) (alpha n’ m))))
→ ((∀n : nat) dim<=n → (identical (alpha n m)))
→ (wf n m)

This de3nition is very close to the mathematical de3nition of g-maps, thus we can
be con3dent that it is actually g-maps that we are implementing. We can now de3ne
the type of g-maps.

De nition 38 (G-MAP). A g-map is a triplet made up of a free map m, a dimension
n and a proof that m is well-formed at dimension n, i.e. a term of type (wf n m):
Inductive gmap : Set

:= mkg : (∀n:nat; ∀m:fmap; ∀w:(wf n m)) gmap

This de3nition means that an object of type gmap may only be built with the help
of constructor mkg. Constructor mkg has three arguments: a natural number, a free map
and a proof term of a given property. Thus, applying three proper arguments to mkg
yields an object of type gmap. For instance, if WF V 2 is a proof that the empty map
is well-formed at dimension 2, then (mkg 2 v WF V 2) has type gmap. Moreover,
injectivity of constructors ensures that two objects of type gmap are equal iJ the same
arguments of mkg were used to build them.

As gmap is of type Set, we may use it directly as a type in de3nitions and lemmas,
and thus use quanti3ers on the gmap without having to use quanti3ers on each of the
three objects that they are made of. Thus, we may de3ne the two selectors associated to
gmap by combining quanti3ers with terms of type gmap and then destructuring them.

De nition 39 (DIMENSION OF A G-MAP).
Definition gdim : gmap → nat

:= �m:gmap.
Cases m of (mkg n m w) => n end
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De nition 40 (SUPPORT OF A G-MAP).
Definition gsupport : gmap → nat

:= �m:gmap.
Cases m of (mkg n m w) => m end

We now would like to test the existence of darts and sewings in a gmap. To do
so, we may de3ne new selectors on gmap, for instance by using the ones de3ned on
fmap.

De nition 41 (EXISTENCE OF DARTS IN A G-MAP). A dart belongs to a g-map
if it belongs to its support
Definition gexd : dart → gmap → Prop

:= �x:dart. �m:gmap. (exd x (gsupport m))

The main problem with this method is that a selector on gmap must be de3ned for
each selector that should be inherited from fmap, and provided with associated lemmas
(inversion lemmas, . . . ). The selectors of the fmap cannot be directly applied to the
gmap, as the typing rules would not be respected. Coq features a coercion mechanism
that allows us to solve this problem. First, gsupport is declared as a coercion:

Coercion gsupport : gmap >-> fmap

This command means that whenever a term of type fmap is expected and that in its
place there is a term m of type gmap, then this term must be read as (gsupport m).
For instance, (∀x:dart; ∀m:gmap) (exd x m) is simply a more readable and all-
around more convenient version of (∀x:dart; ∀m:gmap) (exd x (gsupport m)).
This mechanism allows to transparently project gmap onto fmap, and thus from the user
point of view to apply the free maps selectors to generalized maps. Similarly, gdim
is declared as the coercion from gmap to nat. This way, we may express that m is a
2-g-map with proposition m=3 (remember that there is a diJerence of one between the
dimensions of the represented g-maps and their representations). An example lemma
that is expressed with coercions states the symmetry of succ in generalized maps.

Lemma 23 (SYMMETRY OF SUCC IN GMAP). Let k be a dimension, x and y two
darts and m a gmap. Then if y is k-successor of x in m, then x is also k-successor of
y in m:
Lemma G SUCC SYM : (∀k:nat; ∀x,y:dart; ∀m:gmap)

(succ k x m y) → (succ k y m x)

As for all inductive types, Coq automatically generates an induction principle on the
gmap.

Lemma 24 (STANDARD INDUCTION ON GENERALIZED MAPS). If for any di-
mension n, any free map m and any proof w of (wf n m), the generalized map made
up of n, m and w satisEes P, then P is satisEed by all g-maps
Lemma gmap ind : (∀P : (gmap → Prop))

((∀n:nat; ∀m:fmap; ∀w:(wf n m)) (P (mkg w)))
→ (∀m : gmap)(P m)
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This induction principle, although generated with the same automated methods as
in the case of the fmap, is semantically quite diJerent. What we would like is a
theorem analogous to the one on free maps, that would allow to incrementally prove
the properties of a g-map. The 3rst approach is to try and perform induction on the
support of the g-map, which is a free map. This is no trivial, but nonetheless may
be done after some manipulations. The main problem is that gmap ind is applied to
predicates on gmap. This means that the predicates describe properties not only of the
support and dimension of the g-map, but also on the proof of well-formedness of this
generalized map; but as the term of the support also appears in the well-formedness
proof term, induction cannot be directly performed. However, the well-formedness proof
itself usually is not important; all that matters is that it exists. The properties we are
interested in only deal with the support and dimension of the g-maps, and not the
well-formedness proofs. Thus, we may introduce a new induction principle that applies
to predicates on integers and free maps:

Lemma 25 (INDUCTION ON G − MAPS WITH RESPECT TO THEIR SUPPORT).
Let P be a two-place predicate on a natural and a free map. Let us assume that
for each n for which v is well-formed at dimension n, P is satisEed for n and v.
Then assume that for any free map m and any natural n that satisfy P provided m is
well-formed at dimension n, P is preserved by insertion of dart provided the resulting
map is also well-formed. Finally, assume the same for insertion of sewings. Then P
is satisEed for the dimension and support of a generalized map
Lemma GMAP FMAP IND : (∀P : (nat → fmap → Prop))

((∀n : nat) (wf n v) → (P n v))
→ ((∀n:nat; ∀m:fmap; ∀x:dart)

((wf n m) → (P n m))
→ (wf n (i x m)) → (P n (i x m)))

→ ((∀n:nat; ∀m:fmap; ∀s:sw)
((wf n m) → (P n m))
→ (wf n (l s m)) → (P n (l s m)))

→ (∀m : gmap) (P m m)

Notice that the use of coercions in the ending (P m m): the 3rst occurrence of m
is coerced into its dimension, the second into its support. This lemma can be used to
reason by induction this way: let P be the predicate that we try to prove. Then, each of
the three premises of GMAP FMAP IND should successively be proved. First, we prove
that (P n v) is true for any n; this is the basis of the induction. Then, we set n, m
and x, we assume (wf n m) → (P n m) and (wf n (i x m)), then we try to prove
(P n (i x m)); this is an induction step. The strategy with this kind of induction
principle is either to prove that (wf n (i x m)) is contradictory, or to prove that
(wf n m) is also satis3ed in order to be able to use the induction hypothesis to show
(P n m) and then deduce (P n (i x m)) after some calculations; this corresponds
to the “recurrence step”. The main problem is that, as the g-maps are synthetically
de3ned, it is uncommon that (wf n (i x m)) entails (wf n m); even in very simple
cases such as the ones where n¿2 and m=v. The induction hypothesis can then only
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seldom be used, and only in cases that are diDcult to qualify. The same problem
arises with constructor l. Using this induction principle as a consequence is practically
impossible as far as useful properties go.

As we have just seen it, the induction hypothesis may not be used because well-
formedness is not stable by constructors i and l. The induction principle on g-maps
based on the structure of the support all suJer from the same problem, i.e. a deep
structure discrepancy between the support of a g-map and the proof that it is well-
formed. But the normalization theorem is proved by induction on surfaces, so we
cannot skip 3nding a way to lead induction proofs at least on g-maps if dimension 2.
To solve this incompatibility, we introduce s-maps.

6. S-MAPS

Our solution to this problem is based on an alternative de3nition of generalized
maps. Indeed, generalized maps are often presented in a very diJerent manner from
ours [13]: using our numbering, a 0-g-map is seen as a dart set. A 1-g-map is seen as a
closed 0-g-map (it is the case for all 0-g-maps). A 2-g-map is seen as a closed 1-g-map
(i.e. such that no dart is 0-sewn to itself) in which only whole cells of dimension 1
(i.e. edges) have been sewn. In general, an n-g-map is seen as a closed (n− 1)-g-map
(i.e. such that �n−1 is irreKexive) in which whole (n − 1)-cells have been n-sewn.
For instance, for n= 2, a 2-g-map (intuitively representing a surface) is a closed 1-g-
map (a collection of edge cycles) in which cells of dimension 1 (edges) are sewn at
dimension 2. An n-g-map is built by applying several times the (n− 1)-cell sewing to
an (n−1)-g-map. Thus, the sewing of cells may generate all of these generalized maps.
This naturally allows to reason by induction on generalized maps, as they are the set
of objects generated by sewing of cells. So we must prove that the two ways to de3ne
g-maps are equivalent, in order to extend all results obtained by induction on g-maps
de3ned by cell sewing to the ones we have used so far. So far, this equivalence had
never been proved. We proceed this way:
1. we start by de3ning on free maps a high-level operation noted sm (sewing of maps)

that intuitively corresponds to cell sewing;
2. we then consider the set of free maps generated with v, i and sm while always

respecting some preconditions. This set is noted smap;
3. we show that any smap is well-formed;
4. we show that any gmap is observationally equal to an smap.

From the last two points we deduce that smap and gmap are observationally equiva-
lent. If we prove on smap a property that respects observational equality, may be using
induction reasoning, then the property may easily be extended to gmap by using the
equality. All propositions de3ned only with exd and alpha, including all propositions
on objects represented by g-maps, belong to this category. Thus, we have a way to
reason by induction on surfaces represented by the gmap in order to prove the most
useful properties.
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Fig. 7. Example of application of the sewing of cells.

6.1. Cell sewing

Like getpath (Section 5.7), cell sewing is programmed in a very straightforward
and ineDcient manner, as the main goal is to obtain a simple and correct algorithm.
For all aforementioned reasons, it is de3ned on free maps, though in practice it is only
applied to g-map supports. Cell sewing is depicted at several dimensions in Fig. 7. To
perform the sewing of n-dimension cells in free map m, the algorithm is the following:
– Pick a dart x in one of the cells to be sewn.
– Pick in the other cell the one dart y to which x should end up sewn to.
– Browse m to determine all darts in m that can be reached from x by crossing only

sewings of dimension lower or equal to n-2; thus obtaining the darts of m belonging
to the same cell of dimension n as x. Each of these darts is characterized by the
path pi that is taken while browsing to reach it from x, and thus is of the form
(follow m x pi).

– n-sew each of these darts, of the form (follow m x pi), to its match in the other
cell, i.e. (follow m y pi).
To determine the set of (follow m x pi), every dart of the map is checked with

getpath, by trying to build a path from x to it such that all its directions are lower or
equal to n-2, thus ensuring that it belongs to the same (n− 2) cell as x. To test each
of these darts, m is deconstructed in the course of the operations. But as computing
the paths requires the whole map, it must be kept as a whole somewhere. Map m
actually performs two distinct roles in this algorithm: this of recursion variable, for
which it is deconstructed, and this of background for path computing, for which it
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must remain untouched. This is a common situation in functional programming, which
is solved by building cell sewing with two separate functions. The more general one,
sm int (intermediary), rei3es the above algorithm, but gives the two roles of m to
two diJerent variables, mvar and mcst. The link between the two is made thanks to
the second function, sm, that simply applies sm int to the particular value m for mrec
and msup. Before specifying those two functions, we need to prove that the fact that a
natural is lower by at least two to another natural is decidable, as this is the predicate
that we want to give as argument to getpath.

Lemma 26 (DECIDABILITYOF 6 WRAPPED IN A PREDICATE).
Lemma LE2 DEC : (∀m : nat) (decpr (�n:nat. (n+2)6 m))

De nition 42 (CELL SEWING, INTERNAL FUNCTIONS WITH TWO MAP
PARAMETERS).
Fixpoint sm int :

nat → fmap → fmap → dart → dart → fmap
:= �n:nat. �mvar,mcst:fmap. �x,y:dart.
Cases mvar of
v⇒ mcst

| (i x’ mvar’) ⇒
Cases (getpath (LE2 DEC n) mcst x x’) of
(value p)⇒ (l (c n x’ (follow mcst y p))

(l (c n (follow mcst y p) x’)
(sm int n mvar’ mcst x y)))

| error⇒ (sm int n mvar’ mcst x y)
end

| (l mvar’)⇒ (sm int n mvar’ mcst x y)
end

De nition 43 (CELL SEWING).
Definition sm : nat → fmap → dart → dart → fmap

:= �n:nat. �m:fmap. �x,y:dart. (sm int n m m x y)

As with all functions, we prove a set of lemmas that almost completely describe
behaviour of sm. As they are meant to be very generic, these lemmas have the same
structure as the de3nition of getpath, which makes them very unwieldy and diDcult
to handle. Each of them takes into account a lot of situations, and whenever they
are used the part of the lemma corresponding to the current situation must 3rst be
extracted. This is very ineDcient, and sometimes also quite diDcult. To partially solve
this problem, we de3ne a larger set of narrower lemmas that only works in the most
common situations, especially when the dimensions are lower or equal to 1; a useful
sample lemma is:

Lemma 27 (INVERSION OF SM; DIMENSION 0 OR 1). Let X, Y be two darts and
k a dimension lower or equal to 1. If X is k-sewn to Y in (sm 1 m x y), then X
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already was k-sewn to Y in m, otherwise either X=x and Y=y, or X=y and Y=x
Lemma SUCC 0 1 SM INV :

(∀k:dart; ∀m:fmap; ∀X,Y,x,y:dart)
k61
→ (succ k X (sm k m x y) Y)
→ (succ k X m Y)∧(X=x∧Y=y∨X=y∧Y=x).

6.2. Useful deEnitions for preconditions

In order to specify smap, it will be useful to isolate some notions that will be used to
de3ne some preconditions. There are three of them. The 3rst one is a simple property
of paths, namely having all its directions lower than a constant k by at least 3. Thus,
following such a path from any dart always leads to a dart that belongs to the same
(k−3)-cell. Why are we interested in (k−3)-cells? Because we are later going to sew
them and wish to designate them in order to state some preconditions on them. It is
formalized by the following Gallina de3nition.

De nition 44 (LIMITATION OF THE DIRECTION OF PATHS). A path satis3es
(pathle3 k) if all its directions, when added 3, remain lower or equal to k
Definition pathle3 : nat → path → Prop

:= �k:nat. (pathpr (�i:nat. 3+i6k)).

Note that there is a slight diJerence between this predicate and a variant that would
state “all dimensions of the path are lower or equal to k-3”. Indeed, as substraction is
de3ned on naturals, the equality k-3 = 0 stands for any k63. In that case, the suggested
variant would be satis3ed by paths that only features 0 for directions, while (pathle3
k) would not.

The other two properties are less trivial. The 3rst one is a cell similarity condition,
a kind of isomorphism.

De nition 45 (CELL SIMILARITY). Let m be a free map, k a dimension and x and
y two darts. The k-cell of m incident to x is similar at x and y to the one incident to
y if, whenever a dart of the cell incident to x may be reached by several paths that all
satisfy (pathle3 k), following any of these paths from y always leads to the same
dart; and if the property also stands when x and y switch roles
Definition similar :

nat → fmap → dart → dart → Prop
:= �k:nat. �m:fmap. �x,y:dart.

(∀p,q : path)
(pathle3 k p) → (pathle3 k q)
→ ((follow m x p)=(follow m x q)

→ (follow m y p)=(follow m y q))
∧ ((follow m y p)=(follow m y q)

→ (follow m x p)=(follow m x q)).
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Fig. 8. Dart symmetry.

Note that for k ¡ 3, (k − 3)-cells are single darts, hence they are all similar. For
k = 3, (k − 3)-cells are simple edges, thus they are also all similar. These are the only
simple cases.

Before sewing cells, we would like to ensure that the two cells have the same
structure: for example, we only want to sew octogons to octogons. However, our cell-
sewing operation works for any two cells, with strange results when the cells do not
share the same structure, i.e. when they are not similar. Thus, when we later sew
(k − 3)-cells, we 3rst check that the cells are similar.

The second property deals with the set of paths that join two given darts without
changing (k − 2)-cells:

De nition 46 (DART SYMMETRY). Let m be a free map, k a dimension and x
and y two darts. Darts x and y are symmetrical at dimension k if any path satisfying
(pathle3 (k+1)) that leads from x to y also leads from y to x:
Definition sympoints :

nat → fmap → dart → dart → Prop
:= �k:nat. �m:fmap. �x,y:dart.

(∀p : path) (pathle3 (k+1) p)
→ y=(follow m x p) → x=(follow m y p).

It is easy to see that dart symmetry is only meaningful for dimensions greater than
k¿3. Indeed, it is a property of paths with directions no greater than ((k + 1) − 3) =
(k−2). If k ¡ 2, then the only such path is the empty path; symmetry is then a trivial
proposition. It is also quite easy to see that all darts are symmetrical for k = 2, because
all considered paths are made up of zeroes. Thus, for k62, all darts are symmetrical.

An example of dart symmetry is given in Fig. 8. As we just said, all darts in this
3gure are symmetrical at dimension k62. For k¿3, x and y are symmetrical. The
two main paths that lead from x to y are (pcons 1 pnil) and (pcons 0 (pcons 1
(pcons 0 (pcons 1 (pcons 0 pnil))))). It is easy to see that both of these paths
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also leads from y to x. All other paths can be proved to also have this property. Thus,
x and y are symmetrical at dimensions k¿3. On the other hand, it is not the case for
x and z, as there exists a path, namely (pcons 1 (pcons 0 pnil)), that leads from
x to z, but not from z to x. On this 3gure, (x, y), (x’, y) and (y, z) are pairs of
symmetric darts, while (x, z), (x, x’) and (z, x’) are pairs of dissymetric darts.

Like predicate similar, predicate sympoints will also be used when sewing (k−3)-
cells, more precisely when sewing a (k− 3)-cell to itself. This should only be allowed
when the structure of not only the (k − 3)-cell, but also the (k − 2)-cell to which it is
incident, is regular enough. This regularity is expressed by the notion of dart symmetry.
Thus, sewing a (k − 3)-cell to itself with sm should only be allowed when the darts
that would be sewn are symmetric at dimension k (i.e. their common (k − 2)-cell is
regular enough). Predicate sympoints describes a sort of symmetry between two darts
x and y that are incident to the same (k − 2)-cell, in the intuitive sense that this cell
must “look” the same seen from either dart, as an itinerary (i.e. a set of directions)
that leads from x to y must as well lead from y to x. Notice that two darts that belong
to diJerent (k−2)-cells are obviously symmetrical at dimension k, as dart symmetry is
a property of paths that lead from one dart to another without changing (k − 2)-cells;
no such path exists in this case so the property is trivial.

6.3. S-maps

We now focus on this special kind of maps, the sewings of which are generated by
applications of sm, called s-maps, and of type smap. As they are meant to be partially
normalized versions of g-maps, we want to be quite constraining in their de3nition,
without excess lest they may be too rigid to properly handle. Type smap is de3ned
like gmap, i.e. as a triplet made up of a dimension, a free map that is used as a
support, and a proof that this map and this dimension satisfy a predicate of well-
constructedness, analogous to the well-formedness predicate of gmap. Note that from
this de3nition, types gmap and smap are a priori completely independent. Their only
formal common point is that they are similarly typed. In particular, the dimension of
well-constructedness is formally unrelated to the dimension of well-formedness; the
same also holds for the supports. The actual bonds between these two types are the
point of the two main theorems of this section. The predicate of well-constructedness
is the smallest predicate satisfying the following properties:
1. The empty map is well-constructed at dimension 0.
2. Well-constructedness at dimension 0 is stable by insertion of darts without dupli-

cates.
3. A free map that is well-constructed at dimension n is also well-constructed at di-

mension n+1 if either n=0 or �n−1 is irreKexive.
4. Let m be a free map well constructed at dimension n+1, and x and y two distinct

3xpoints of �n. If the n-cell incident to x to the n-cell incident to y and if x and
y are symmetrical at dimension n, then (sm n m x y) is also well-constructed at
dimension n+1.

Well constructing a map is obviously very directed: the starting point is always the
empty map, in which all darts are then inserted, then all sewings at dimension 0 are
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performed cell by cell, then all sewings at dimension 1, etc. Property 1 allows to start
the construction, property 2 takes care of dart insertion. Property 3 is the one that
allows to set the dimension; notice that a map is well-constructed at dimensions n and
n + 1 provided that all its darts are sewn at dimension n − 1 and none at dimension
n. Property 4 takes care of all sewings: it only allows whole cell sewing at a precise
dimension, and only when speci3c preconditions are satis3ed. Note that a cell may
be sewn to itself under some preconditions. Well-constructedness is formalized by the
following predicate.

De nition 47 (WELL-CONSTRUCTEDNESS).
Inductive wcst : nat → fmap → Prop :=

WCST V : (wcst 0 v)
| WCST I : (∀m:fmap; ∀x:dart)

(wcst 0 m) → ¬(exd x m) → (wcst 0 (i x m))
| WCST INC : (∀m:fmap; ∀k:nat)

(wcst k m)
→ ((∀pk : nat) (pk+1)=k

→ (irreflexive (alpha pk m)))
→ (wcst (k+1) m)

| WCST SM : (∀m:fmap; ∀k:nat; ∀x,y:dart)
(wcst (k+1) m) → x�=y
→ (alpha k m x x) → (alpha k m y y)
→ (similar k m x y) → (sympoints k m x y)
→ (wcst (k+1) (sm k m x y))

Using the same methodology as for gmap, we de3ne smap as a triplet made up
of a dimension, a free map and a proof of well-constructedness of this map at this
dimension:

De nition 48 (S-MAP).
Inductive smap : Set :=

mks : (∀n:nat; ∀m:fmap) (wcst n m) → smap

We then de3ne selectors sdim : smap → nat, ssupport : smap → fmap and
swcst:((∀m : smap) (wcst (sdim m) (ssupport m))) that allow to extract from
an smap, respectively, its dimension, its support and a proof of its well-constructedness.
However, unlike their counterparts gdim and gsupport, these selectors are not de-
clared as coercions, for reasons explained later. Note a subtle point in the de3nition
of dimension: an smap always has exactly one dimension, while its support may be
well-constructed at several dimensions.

The 3rst important property of the smap is their well-formedness: what we want to
prove is that a free map that is well-constructed at dimension k is also well-formed
at dimension k. To do so, we want to reason by induction. The question is, on what
property should we reason by induction? Unlike most other proof styles, it is often
necessary to try and prove a stronger proposition that the one sought when reasoning
by induction. Indeed, the proposition that is studied will also appear as an induction
hypothesis; there is a risk that the induction hypothesis may be too weak. In our
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case, we try to prove (wf k m) under the assumption (wcst k m). The 3rst instinct
is to simply try and prove proposition (wf k m). But the induction hypothesis thus
obtained turns out to be far too weak, as it contains almost none of some much-needed
information on selectors. Thus, we attack a stronger lemma in order to be able to use
a stronger induction hypothesis.

Lemma 28 (WELL − FORMEDNESS OF WELL − CONSTRUCTED MAPS;
BEHAVIOUR OF SELECTORS IN THESE MAPS). Let k be a natural and m a well-
constructed free map at dimension k. Then m is also well-formed at dimension k.
Moreover, for any k’ the k’-succession relation is irreGexive (i.e. no dart may be
explicitly sewn to itself). Lastly, for any dart x and any natural pk such that pk+1
is greater or equal to k, if x is not sewn at dimension pk, then no dart of its k-cell
is either
Lemma WCST WF PROPS : (∀m:fmap; ∀k:nat)

(wcst k m)
→ (wf k m)

∧ ((∀k’ : nat)
(irreflexive (�x:dart. (succ k’ x m))))

∧ ((∀x:dart; ∀pk:nat; ∀p:path)
k6(pk+1) → (exd x m)
→ (nosucc pk x m) → (pathle3 k p)
→ (nosucc pk (follow m x p) m)).

A problem with this method is that it produces a massive lemma with a sizeable
proof and unfocused semantics, while in this domain short, narrow and simple theo-
rems are heavily favored. However, reasoning by induction does not allow us to split
this lemma into more elementary subparts; more focused subtheorems would be much
longer to state than WCST WF PROPS itself. We can however perform a splitting of
WCST WF PROPS after it has been proved, to obtain more focused lemmas. The 3rst
part of this theorem is thus extracted.

Theorem 29 (well-formedness of well-constructed free maps). A well-constructed map
at any dimension is also well-formed at the same dimension
Theorem WCST WF : (∀k:nat; ∀m:fmap) (wcst k m) → (wf k m).

We can deduce from this a function that projects smap into gmap.

De nition 49 (PROJECTING SMAP INTO GMAP). Let s be an smap. Then (s ng
s) is the gmap that shares its support and dimension with s, and the proof of well-
formedness of which is obtained by application of WCST WF to the proof of well-
constructedness of s
Definition s ng : smap → gmap

�m:smap. (mkg (WCST WF (swcst m)))

We may then naturally declare this function as a coercion, and thus obtain a default
projection of the smap into gmap, in order to transparently apply the objects de3ned
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on gmap to smap:

Coercion s ng : smap >-> gmap

Note that, because of coercion transitivity, smap are coerced to fmap by application
of the composition of s ng and ng support. Selectors on fmap like succ and exd
may then directly be applied to objects of type smap with the expected semantics.
This is the reason why we did not previously declare ssupport as coercions from
smap to fmap, as it was not only redundant but confusing, as there would have been
two diJerent ways to coerce smap to fmap. Coq would have picked the same way
every time. If Coq picked the ssupport coercion, we would not be able to apply
to smap any lemma on the selectors fmap that only apply to gmap, like for instance
NG SUCC SYM.

6.4. Projecting gmap into smap

Obviously, it is not possible to easily project gmap into smap in the same way, i.e.
by keeping the same support and dimension. Indeed, smap imposes strict constraints on
its support, notably order constraints, that are absent in gmap. Thus, there are numerous
gmaps the support of which are not well-constructed in the sense of smap, for example
the ones in which some darts are inserted several times. However, as we already
mentioned we are not very interested in some aspects of the fmap, for instance the
insertion order of elements. We only are interested in studying gmap through selectors
exd and alpha; that was the reason why we have de3ned an observational equality
relation that expressed the fact that free maps were ∼= -equal if exd and alpha were
satis3ed for the same values on these maps. As a consequence, we now decide to
work at the observational level. Instead of proving that every well-formed map is also
well-constructed, which is false, we instead show that every well-formed map is ∼= -
equivalent to a well-constructed one. To do so, we can either prove that such a map
exists, or de3ne a function that from a gmap computes a free map, that we then prove
to be well-constructed and ∼= -equal to the original map. For reasons mentioned in
the getsucc section, we choose the second approach. The chosen algorithm works
by extracting all darts of the argument map and insert them in the result map, then
browse all sewings of the map and reproduce all the sewings that were present in the
starting map with sm in the resulting map while avoiding duplicates. This algorithm
is implemented with a function, noted ng s, itself de3ned with three intermediary
functions. The 3rst one, dartmap removes all sewings and duplicate dart insertions
from a free map to only keep the 3rst dart insertions, thus obtaining the duplicateless
dart map of its argument map.

De nition 50 (COMPUTING THE DUPLICATELESS DART MAP). Let m be an
fmap. If m=v then its duplicateless dart map is v. If m=(l s m’) then its duplicateless
dart map is the one of m’. If m=(i x m’) then its duplicateless dart map is the one
of m’ if x belongs to m’, or else the one of m’ into which x was inserted
Fixpoint dartmap : fmap → fmap

�m:fmap. Cases m of
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v⇒ v
| (i x m’)⇒ Cases (EXD DEC x m’) of

(left )⇒ (dartmap m’)
| (right )⇒ (i x (dartmap m’))
end

| (l m’)⇒ (dartmap m’)

end

This function obviously is used to gather the darts of the map. Notice that interme-
diary functions are de3ned on fmap, although they are actually only used on gmap.
All that must be ensured is that they yield smap when applied to a gmap, no matter
whether intermediary maps are ill-constructed or ill-formed.

The second intermediary function, noted ng s 1step, is used to do all the sewings
at a given dimension. It has four arguments: an integer—the handled dimension—, a
free map noted rest that gives the initial value of the resulting map, and two free
maps mvar and mcst. As with sm int, they allow to distinguish the two roles of the
support of the studied gmap, which are those of induction variable and background for
successor computing. The used algorithm consists, for a given dimension n, in browsing
the darts of the map and for each of them compute its n-successor-to-be, then sew
their respective n-cells. At each step, two extra preconditions must be checked before
actually performing the cell sewing:
– The dart must not already be sewn in the result map. Indeed, it may be part of an

already treated n-cell, which has then already be sewn. We then do nothing for this
dart as we do not want to sew darts several times.

– The dart must not be its own n-�-successor in the argument map. The de3nition of
smap forbids explicit sewings of a dart to itself. In this case, the dart and all other
darts in its n-cell remain implicitly n-�-sewn to themselves in the result map.
A third precondition is featured in the de3nition, being the existence of the dart in

the argument map. However, it is always satis3ed whenever the function is used when
mcst is well-formed, which is the only case we later study in proofs. It just happens
that this information is hard to exploit in these proofs, which is why we prefer adding
a redundant test to our de3nition in order to easily have this information available.
The three precondition tests are grouped together with AND DEC 3, the three-argument
version of AND DEC. The inequality test is built from the equality test EXD DEC using
the test symmetrizing lemma TEST SYM.

De nition 51 (INTERMEDIARY FUNCTION, HANDLING OF A DIMENSION).
Let k be a dimension, and rest, mcst and mvar three free maps. If mvar=v, then the
function yields map rest. If mvar=(l m’) then the computing simply ignores this
sewing and proceeds with m’. If mvar=(i x m’) then three properties are tested: the
absence of k-successor of x in the recursively obtained map, the inequality between x
and its k-�-successor in mcst, and the existence of x in mcst. If all three are satis3ed,
then the function returns the recursively obtained map in which the (k-2)-cells of x
and (sos k x mcst) are sewn. Otherwise, the function simply returns the recursively
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obtained map
Fixpoint ng s 1step :

nat → fmap → fmap → fmap → fmap
:= �k:nat. �rest,mcst,mvar:fmap.

Cases mvar of
v⇒ rest

| (i x mvar’)⇒
Cases (AND DEC 3

(NOSUCC DEC k x
(ng s 1step k rest mcst mvar’))

(TEST SYM (EQ DART DEC x (sos k x mcst)))
(EXD DEC x mcst)) of

(left ) ⇒
(sm k (ng s 1step k rest mcst mvar’)

x (sos k x mcst))
| (right )⇒ (ng s 1step k rest mcst mvar’)
end

| (l mvar’)⇒ (ng s 1step k rest mcst mvar’)

end

The third function simply applies the previous function at every dimension lower
than a value to the duplicateless dart map of the argument map. This allows to browse
the map once for each dimension, as browsing only uses the darts of a map. It is
de3ned with a recursive function on the integer representing the dimension.

De nition 52 (INTERMEDIARY FUNCTION, TREATMENT OF ALL DIMEN-
SIONS). Let k be a dimension. If k=0, this function yields the duplicateless dart
map of m. If k=k’+1, then it applies function ng s 1step to the map yielded by the
recursive call and to m
Fixpoint ng s int : nat → fmap → fmap

:= �k:nat. �m:fmap. Cases k of
0⇒ (dartmap m)

| (k’+1)⇒ (ng s 1step k’ (ng s int k’ m) m m)

end

We have just de3ned a function that, when applied to the dimension and support
of a gmap, is expected to yield a free map that is equivalent to this gmap and also
well-constructed at its dimension. We now formally prove this. To do so, we study
some properties of these intermediary operations like the behaviour of selectors in their
images, and their possible well-constructedness. Although it is not absolutely necessary,
we choose to put all those properties in a single lemma. This is motivated by practical
reasons. Our goal is to prove properties on recursively de3ned functions. Obviously, we
are going to try and reason by induction on the recursion variable. As we underlined
in the description of WCST WF PROPS, whenever we use this reasoning style, we must
make sure that our induction hypothesis is strong enough. In particular, we should not
try and attack elementary and specialized propositions, as the corresponding induction
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hypothesis may (and probably would) turn out to be itself too specialized and hence
too weak. For instance, while analysing ng s 1step, selectors succ and exd cannot
be studied separately, as in this function these selectors evolve in an interdependent
way. Such a strategy would inevitably fail. The other issue is that the operations and
predicates we study, especially sm and wcst, are rather complex, and as a consequence
it is diDcult to anticipate precisely which secondary properties, if any, will be required
to prove the properties we are really interested in. Practically, unless the proof is
preceded by a diDcult and tiresome preparation, these properties can only be identi3ed
at the moment they are actually needed. The concrete technique is to save the current
proof script, then modify the lemma statement by adding the new secondary property.
Then the script can be applied again to the new lemma with some minor modi3cations
(usually at most a dozen new tactics regardless of the script size), and proceed at
the point where the proof was previously stopped. The diJerence is that we have
the new property available for the current subgoal, and that a new subgoal has been
added, being the one of the new secondary property. The problem with this method is
that lemma statements are much longer and unfocused. Moreover, their proof scripts
are much larger and thus harder to maintain. Besides, we are not really interested in
knowing the properties of these intermediary operations in their full generality, but
only when they are used for the conversion of gmap to smap. This is why we add
some extra hypotheses to our lemmas, which reKect some characteristics of the actual
set of values that the arguments of the functions will take. The 3rst of these lemmas
states the properties of cleandartmap.

Lemma 30 (WELL − CONSTRUCTEDNESS OF THE IMAGES OF DARTMAP;
BEHAVIOUR OF SELECTORS IN ITS IMAGES). Any dart belongs to a map iL it
belongs to the corresponding duplicateless dart map. No dart has any successors in
a duplicateless dart map.
Lemma DARTMAP PROPS :

(∀m : fmap) (wcst 0 (dartmap m))
∧((∀x,y : dart) (exd x m) ↔ (exd x (dartmap m)))
∧((∀k:nat; ∀x:dart) (nosucc k x (dartmap m))).

The more complex second lemma deals with ng s int. It introduces a number of
hypotheses on the arguments as was mentioned before. These hypotheses basically
state that map reste is a submap of mcst. The reader should feel free to skip this
lemma, as understanding it is quite diDcult and honestly not really worth the eJort.
Just notice that the extra hypotheses come up as extra premises, and also in a more
subtle way by de3ning rest and mcst, respectively, as an smap and as a gmap, which
implies the well-constructedness (resp. well-formedness) of these maps. The Gallina
syntax takes advantage of the local deEnition facility with the construction [m1step
:= (n s 1step reste reste mcst mvar)] that locally declares symbol m1step as
an abbreviation of expression (n s 1step reste reste mcst mvar). Remember that
coercions allow to use an smap instead of its dimension.

Lemma 31 (WELL − CONSTRUCTEDNESS OF IMAGES OF NG S 1STEP,
BEHAVIOUR OF SELECTORS IN THESE IMAGES).
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Lemma NG S 1STEP PROPS :
(∀rest:smap; ∀mcst:gmap; ∀mvar:fmap)

((∀k : nat) (k+1)=rest
→ (irreflexive (alpha k rest)))

→ ((∀x : dart) (exd x rest) → (exd x mcst))
→ ((∀x,y:dart; ∀k:nat) (k+1)6rest

→ ((alpha k x rest y) ↔ (alpha k x mcst y)))
→ (rest+1)6mcst
→ [m1step := (ng s 1step rest rest mcst mvar)]
(wcst (rest+1) m1step)
∧((∀x : dart)

(exd x mcst)↔ (exd x m1step))
∧((∀x,y : dart)

(succ rest x m1step y)
→ (succ rest x mcst y)
(∃p:path |

(pathle3 (rest+1) p)
∧((exd (follow mcst x p) mvar)

∨ (exd (sos rest (follow mcst x p)
mcst) mvar))))

∧ ((∀x,y:dart; ∀p:path)
(pathle3 (rest+1) p)
→ (succ rest x mcst y)
→ (exd (follow mcst x p) mvar)

∨ (exd (sos rest (follow mcst x p)
mcst) mvar))

→ x �= y
→ (alpha rest m1step x y)

∧((∀x,y:dart; ∀k:nat)
(k+1)6rest
→ (alpha k rest m1step x y)

↔ (alpha k mcst x y)).

The third lemma deals with ng s int.

Lemma 32 (WELL − CONSTRUCTEDNESS OF IMAGES OF NG S INT,
BEHAVIOUR OF SELECTORS IN THESE IMAGES). The image of gmap m and
natural k no greater than the dimension of m by function ng s int is a free map
that is well-constructed at dimension k, that has the same darts as m and the sewings
of which are those of m that are of dimension lower than k.
Lemma NG S INT PROPS : (∀m:gmap; ∀k:nat)

k6m
→ [mint := (ng s int m k)] (wcst k mint)

∧((∀x : dart) (exd x mint)↔ (exd x m))
∧((∀x,y:dart; ∀k’:nat)

k’<k → (alpha k’ mint x y)↔ (alpha k’ m x y)).
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Fig. 9. Links between map types.

We immediately deduce from this the well-constructedness of the images of ng s
int.

Lemma 33 (WELL − CONSTRUCTEDNESS OF THE IMAGES OF NG S INT).
Lemma WCST NG S INT : (∀m:gmap; ∀k:nat)

(wcst k (ng s int m k)).

This allows the de3nition of a function that from any gmap computes a smap that
is equivalent to this gmap:

De nition 53 (CONVERSION OF A GMAP INTO AN EQUIVALENT SMAP).
Let m be gmap. This function yields the g-map the support of which is (ng s int m
m), the dimension of which is m, and the well-construction proof of which is provided
by lemma WCST NG S INT
Fixpoint ng s : gmap → smap

:= �m:gmap. (mks (WCST NG S INT m m)).

The equivalence of images and arguments of this function is another direct corollary
of NG S INT PROPS.

Theorem 34 ( �Equivalence of arguments and images of ng s).
Theorem EQ NG S : (∀m : gmap) m ∼= (ng s m).

We call an application of ng s an s-conversion. We have succeeded in proving
that for any well-formed map there exists a well-constructed map at its dimension
that it is equivalent to, this map being its image by ng s, all the while exhibiting an
algorithm to build it. As we have previously shown that well-constructedness entails
well-formedness, we deduce that smap is equal to gmap modulo ∼= . Links between
map types are summed up in Fig. 9. As to the properties of these sets, this translates
by the fact that any property of smap that is stable with respect to ∼= may be extended
to gmap. This is the corollary that will allow us to reason by induction on the smap
for such properties, and deduce their validity on gmap. Moreover, this is a theoretical
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result that is interesting by itself, as it had never been proved for generalized maps
of any dimension as far as we know. Notably, the preconditions of dart symmetry,
that only applies when a cell is sewn to itself, was previously unknown. However,
sewing a cell to itself is almost never actually performed, so it can be assumed that
this precondition is practically irrelevant in concrete cases. Thus, the main interest of
this theoretical result is in fact that there were no overlooked preconditions other than
this one. As a consequence, most past uses of the duality of g-map de3nitions were
indeed correct, as they satis3ed all preconditions.

7. Conclusion

Finding inspiration in some aspects of the methodology used in [17], we have devel-
oped a hierarchical three-level formal speci3cation of generalized maps in the calculus
of inductive constructions, a type theory extended with inductive de3nitions. The top of
the hierarchy is the type of unconstrained free maps. Then we have introduced g-maps
themselves, which are free maps that are well-formed with respect to geometric mod-
elling requirements. Sewn-cells maps are special generalized maps, exclusively built
with two heavily constrained operations of dart insertion and cell sewing that give her
an incremental structure, whereas g-maps have a synthetical structure. G-maps and s-
maps are actually the formalizations of two diJerent usual mathematical de3nitions of
the generalized maps. With the help of proof CIC-based assistant Coq we have shown
to some degree the soundness and completeness of our axiomatics. In particular, by
explicitly building s-conversion, i.e. conversion between s-maps and g-maps modulo
reordering of darts and sewings insertions, we have proved that the set of generalized
maps was equivalent to the one of sewn-cells maps. Building this proof has uncovered
a previously unknown and unexpected precondition to cell sewing.

The speci3cation techniques we developed and used are quite general, and could
be used in any 3eld where a same kind of objects has two distinct representations
(here gmap and smap, modulo ∼= ) that can themselves both be expressed in a more
elementary framework (here fmap).

In the second part of the series, we will show how we used this speci3cation to
prove the 3rst half of a fundamental theorem of geometry, the theorem of classi3cation
of surfaces according to numerical characteristics.
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