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a b s t r a c t

Applying the implicit finite difference approximation of the time derivative term, the diffusion equation
governing fluid-flow around a crack in a fluid-infiltrated undeformable porous medium is transformed
into a non-homogeneous modified Helmholtz’s equation. Then, Vekua’s theory regarding the solution
of linear, second order, elliptical partial differential equations is employed for its solution and the corre-
sponding Riemann function is found. Subsequently, the general solution of the Dirichlet initial-boundary
value problem for a prescribed arbitrary distribution of pressure acting along a semi-infinite crack is
found in the form of a Cauchy singular integral equation of the second kind. A numerical Gauss–Cheby-
shev quadrature scheme is proposed to solve this singular integral equation that is first applied to the
steady-state problem and then to the transient problem. It is shown that the density of the Cauchy inte-
gral of the transient problem l̂ bears a simple similarity relationship with the steady-state problem l̂0 of
the form l̂ðxÞ � ð1� k=0:4Þl̂0ðxÞ for 0 6 x <1; y ¼ 0, wherein k ¼ 1=

ffiffiffiffiffiffiffiffiffi
D � t
p

, with D denoting the diffusiv-
ity coefficient and t the time. This solution is the first step towards the solution of transient fluid flow
around multiple cracks and then of the coupled problem of a crack or cracks in deformable porous media
and for the study of fluid-driven cracks in poroelastic media.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Pre-existing cracks have generally a great influence on global
transport properties (of hydraulic, thermal or diffusive nature), as
well as on deformability and strength of porous materials exhibit-
ing double porosity. Thus, the theoretical study of either fluid flow
or diffusion or heat conduction processes in fractured rocks or
other porous deformable engineering materials has many signifi-
cant technological applications such as hydraulic fracturing in
boreholes in petroleum, natural gas and geothermal reservoirs in
order to increase the permeability of the formation, contaminant
transport in jointed porous rocks, stress-assisted diffusion of corro-
sive substances around cracks, investigations on the conditions for
initiation of cracks and faults in porous solids and in the Earth’s
crust, respectively, and many others.

A general complex potential formulation with illustrating
example cases of the plane steady-state heat conduction or fluid
flow in a fully-saturated porous body containing an arbitrary num-
ber of either non-intersecting or intersecting curvilinear cracks
which are represented by branch cuts (line discontinuities)
subjected to Dirichlet, Neumann or mixed boundary conditions
was given by Liolios and Exadaktylos (2006). Although in the
geometric model the fractures have a zero thickness, their physical
thickness is not zero and they can contain some fluid mass quan-
ll rights reserved.
tity. Subsequently, the same authors have proposed the appropri-
ate numerical scheme for an arbitrary number of non-inter
secting curvilinear cracks subjected to any type of the above
boundary conditions. This formulation has been recently elabo-
rated by Pouya and Ghabezloo (2010) to investigate the basic prob-
lem of a single straight crack in an infinite body submitted to a
pressure gradient at infinity. A closed form solution was presented
for the case of void cracks (infinite conductivity along and across
the cracks), as well as a semi-analytical solution for the case of
cracks with Poiseuille type conductivity assuming a linear relation
between the discharge and the pressure gradient along the crack.
These solutions, derived first for an isotropic matrix, were then
extended to anisotropic matrices using a general transformation
lemma. Finally, using the solution obtained for a single crack, a
closed-form estimation of the effective permeability of micro-
cracked porous materials with weak crack density was derived
from a self-consistent upscaling scheme. In a subsequent publica-
tion (Pouya, 2012) has presented the governing equations for flow
in three-dimensional heterogeneous and anisotropic porous media
containing cracks with infinite transverse permeability leading to
pore pressure continuity across the crack was assumed and thus
excluding the case of impervious fractures. Fractures have been
modeled as zero thickness inclusions with the possibility of multi-
ple intersections. It has been assumed that flow obeys Darcy’s law
in the porous matrix and a Poiseuille type law in fractures. In this
manner a general potential solution, based on singular integral
equations, has been established for the steady state flow in an
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Fig. 1. Semi-infinite crack in an unbounded homogeneous porous medium and
Cartesian coordinates with origin O at the tip.
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infinite fractured body with uniform and isotropic matrix perme-
ability. The main unknown variable in the equations was the pres-
sure acting on the crack surfaces, reducing thus from three to two
the dimension of the numerical problem. A general transformation
lemma was then given that allowed the extension of the solution
to matrices with anisotropic permeability. The results have lead
to a simple and efficient numerical method for modeling steady-
state flow in three-dimensional undeformable fractured porous
bodies. Pouya and Vu (2012a) used the solutions derived by
(Pouya, 2012) to establish a semi-analytical solution for the case
of an elliptical disc-shaped crack. It was shown that this solution
takes a closed-form expression for the case of superconducting cir-
cular cracks. It has been also shown that the flow solution for an
elliptical disc-shaped crack obeying the Poiseuille’s law is different
from that obtained as the limiting case of flattened ellipsoidal
inclusions. The results were then used to establish dilute Mori–
Tanaka and self-consistent estimates of the effective permeability
of porous media containing Poiseuille’s type elliptical cracks. Fur-
thermore Pouya and Vu (2012b) have been first completed the
work of Pouya and Ghabezloo (2010) by the mass balance equation
at crack intersection points. Then a numerical method has been
developed to solve the general system of singular equations for
the case of an infinite body containing a dense family of curvilinear
and intersecting cracks. This method has been based on the resolu-
tion of the equations for a finite number of collocation points. A
special choice of collocation points has been given to simplify the
computation. All the elementary integral terms have been explic-
itly presented that lead to a highly efficient and fast calculation
method. After presenting the method, a successful validation has
been first presented by comparing the numerical results obtained
for a single superconductive crack with the closed-form solution
for this case. Subsequently, the flow has been modeled around sev-
eral curvilinear and intersecting cracks and the mass balance has
been checked carefully at intersection points. The same authors
have also presented the improvements achieved of the method
presented by Liolios and Exadaktylos (2006), namely the numerical
solution of intersecting cracks (although in the paper by Liolios and
Exadaktylos (2006) the mathematical formulation permitted the
consideration of either intersection or non-intersecting cracks as
was mentioned above) and the consideration of anisotropic
hydraulic conductivity. In the sequel, the effective permeability
of a material containing a random crack distribution, inspired from
geological observations on a rock formation, has been studied for
the illustration of their method. Finally, the effective permeability
of a periodic crack network has been calculated with this method
and the result is compared to those obtained by theoretical
methods. Seyedi et al. (2011), have also studied the effects of CO2

injection on the hydromechanical behavior of a fault running
across a reservoir which is a significant problem in view of risk
assessment of CO2 storage. At the fault-zone scale, the equivalent
permeability of the statistically distributed fractures has been
modeled by the singular integral equations method. At the site
scale, a fault has been modeled as a shallow layer of filling material
surrounded on both sides by a series of hydromechanical joint ele-
ments and an equivalent porous media representing the damaged
zone. The capacities of the model have been demonstrated through
a large-scale simulation. The fluid flow across the fault due to the
injection has been also studied.

Since the above presented theories have been concerned only
with rigid porous media, Vernerey (2011) has proposed a unified
mathematical framework based on mixtures theory to describe
the macroscopic mechanical behavior of porous continua with
embedded interfaces filled with an inviscid fluid. Interfaces whose
thickness is significantly smaller than the typical length-scale of
applications (size of solid, characteristic length scale of physical
processes), have been modeled as two-dimensional surfaces across
which fields such as displacement, strain, fluid pressure and pres-
sure gradient are discontinuous. This paper showed the need for
future research activities aiming at deriving material constants
from homogenization techniques, as well as deriving a numerical
strategy to obtain a solution of the proposed formulation for the
general case of curved interfaces in elastic porous bodies.

When interfaces are present, significant fluid velocity gradients
may develop in the vicinity of the interface, giving rise to boundary
layers. The characteristic length-scale of the boundary layers is
very sensitive to the fluid viscosity a phenomenon that is well cap-
tured by considering Darcy–Brinkman equation. Vernerey (2012)
has considered the microscopic problem of Darcy–Brinkman flow
near a microscopic interface of finite thickness, and he investigated
the nature of microscopic interface fluxes in terms of various inter-
face and bulk properties. The information obtained from this study
was then utilized in conjunction with the concept of thickness
averaging so that a relationship between microscopic and macro-
scopic flows could be established. This subsequently enabled the
derivation of macroscopic permeabilities in terms of microscopic
interface properties.

Furthermore, in order to understand pore-fluid driven mineral-
ization in porous crack-like inclusions and fault, theoretical studies
have been conducted to derive analytical solutions for steady-state
pore-fluid flow and related heat transfer within and around cracks
and geological faults in fluid-saturated porous media (Zhao et al.,
2006a, 2006b, 2008a, 2008b). When the heat transfer (i.e. heat
flow) process is considered in geothermal reservoirs and the frac-
ture of Earth’s crust, convective pore-fluid flow can take place in
large cracks and geological faults (Zhao et al., 2004, 2008b).

The above studies provide very good models of fluid flows with-
in porous solids containing cracks (and can be extended to arbitrary
porous interfaces), with significant technological applications in
petroleum engineering and CO2 storage among many others. How-
ever, in the above works, the transient behavior or the interstitial
fluid flow around cracks was not considered. Herein, the general
solution of the transient fluid flow problem for a homogeneous
and hydraulically isotropic fully-saturated porous medium with a
semi-infinite straight crack lying along the positive Ox-axis as is
illustrated in Fig. 1, is found. We are considering a semi-infinite
crack because in a first place we want to study the state-of-affairs
of the pore pressure and fluid discharge close to the crack tip. In or-
der to further simplify our analysis in this first attempt, we consider
that the solid skeleton is rigid, hence the lips of the crack are unde-
formable. Then, for illustration purposes the Dirichlet initial-
boundary value problem for a prescribed arbitrary pore pressure
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along the crack is reduced to a Cauchy singular integral equation of
the 2nd kind, which is subsequently solved by recourse to Gauss–
Chebyshev numerical integration scheme. This solution is the first
step towards the solution of transient fluid flow around multiple
cracks and of the coupled poromechanical problem of a crack or
cracks in deformable porous media. Generally, the derivation pre-
sented here serves as a closed form solution that can be used as
benchmark for subsequent numerical solutions. This solution could
be extended to an arbitrary number of finite cracks, but this is out of
the scope of the present paper.

The theory of porous media, originally introduced by Biot
(1941) in the context of consolidation has been very successful at
describing the interactions between fluid flow and deformation
of porous solids. In this context for isothermal conditions of fluid
flow in fluid infiltrated and deformable isotropic porous bodies
without internal fluid sinks or sources, the governing equation that
may be derived from mass balance of the pore fluid, applicability of
Darcy’s law and the assumption that the porosity of the medium
depends on pore pressure and effective hydrostatic stress (i.e. the
stress exerted on the solid skeleton) both considered as state vari-
ables, has the following form in the plane Oxy

b
@p
@t
þ c

@r0

@t
¼ kr2p ð1aÞ

wherein the symbol p stands for the increment of fluid pressure
[F L�2],r2 for the Laplacian operator in the Cartesian coordinates sys-
tem Oxy, b ¼ @n=@p denotes the pore volume compressibility with units
[F�1 L2], n stands for the porosity of the medium, c ¼ @n=@r0 with
units [F�1 L2] represents the change of porosity due to the change of
the effective hydrostatic stress indicated by the symbol r0, and k with
units [L4 F�1 T�1] (L = length, F = force and T = time)1 denotes the per-
meability of the porous medium and depends among other things on
the viscosity of the interstitial fluid. It is related with the physical per-
meability j of the porous medium that has dimensions of surface and
the dynamic viscosity of the fluid ld with units [F L�2 T] by the relation
k ¼ j=ld. The physical or intrinsic permeability stands as a measure of
the cross-sectional area of the microscopic channels in the intercon-
nected void space. The ratio D ¼ k=b is also used as ‘‘diffusivity coeffi-
cient’’ with units [L2 T�1]; for example for rocks it ranges from
10�4 cm2/s for low porosity shales up to 104 cm2/s for very permeable
sandstones (Detournay and Cheng, 1993). As is noted by the same
authors, this means that for a core length of 5 cm, the time required
for the pore pressure to reach equilibrium could thus vary from less
than one second for a sandstone to the order of days for a shale. The
l.h.s. of Eq. (1a) represents fluid storage, while the term on the r.h.s.
represents the fluid transport. In the sequel, in order to simplify our
analysis we assume an undeformable fluid infiltrated body with
c� b, hence Eq. (1a) reduces to a pure diffusion equation for p. It is
worth noting that by substituting pore volume compressibility b with
qc, with q denoting density of the medium and c the specific heat, k
also denoting thermal conductivity, and instead of pressure p putting
temperature T, then Eq. (1a) (for c ¼ 0 or @r0=@t ¼ 0) represents the
heat conduction equation obeying Fourier’s law without a heat source
or sink inside the body. The behavior of thermal stresses in the vicinity
of the crack tips when a steady heat flow is disturbed by the presence
of cracks, and large thermal stresses arise in the neighborhood of the
crack tips and cause crack propagation in structural components has
been studied by Sekine (1977) and Barzokas and Exadaktylos (1995),
both by recourse to temperature and stresses complex potentials func-
tions and singular integral equations theories.

The so-called specific discharge vector q or discharge velocity
[L/T] obeys Darcy’s law that has been already assumed valid to de-
rive Eq. (1a) and is given in the following complex form
1 We could have used the units M = mass, L = length, and T = time, instead.
q ¼ �k
@p
@x
þ i

@p
@y

� �
ð1bÞ

where i denotes the imaginary unit, i.e. i �
ffiffiffiffiffiffiffi
�1
p

.
A simple numerical approximation of first order differentials is

the backward or implicit finite difference method, i.e.

@p
@t
� pðt þ DtÞ � pðtÞ

Dt
þ oðDtÞ ð2Þ

where oð�Þ denotes Landau’s order-of-magnitude symbol and repre-
sents the error of the method. Hence by substituting Eq. (2) into Eq.
(1a) we end-up with a non-homogeneous modified Helmholtz’s
equation that must be solved at each time step t þ Dt, i.e.

r2uðx; yÞ � k2uðx; yÞ ¼ f ðx; yÞ ð3Þ

where we have set

k ¼
ffiffiffiffiffiffiffiffi
b

kDt

r
¼ 1ffiffiffiffiffiffiffiffiffi

DDt
p

u ¼ p½tþDt�ðx; yÞ
f ¼ �k2p½t�ðx; yÞ

ð4Þ

The superscript t in brackets i.e. [t] denotes time with units [T],
and k has units [L�1]. That is to say, u, stands for the current pore
pressure at t þ Dt. In order to find the solution of the parabolic par-
tial differential equation Eq. (1a) in the space and time domains,
the initial and boundary conditions should be known a priori. In or-
der to get reasonable accuracy it is needed to choose Dt sufficiently
small because the global error is proportional to Dt; however,
regarding stability, any Dt may be used without the solution being
blown-up.

2. Construction of the Riemann function

An elegant technique has been developed by Vekua (1967) for
the solution of the non-homogeneous second order elliptical linear
partial differential equations (pdes) of the form

EðuÞ ¼ r2uþ aðx; yÞ @u
@x
þ bðx; yÞ @u

@y
þ cðx; yÞu ¼ f ðx; yÞ ð5Þ

where u(x,y) is the desired solution of the problem. By introducing
the complex variables

z ¼ xþ iy and �z ¼ x� iy ð6aÞ

we have

x ¼ zþ �z
2
^ y ¼ z� �z

2i
ð6bÞ

By considering the following differential operators

2
@

@z
¼ @

@x
� i

@

@y
; 2

@

@�z
¼ @

@x
þ i

@

@y
ð7Þ

then Eq. (5) takes the complex form

FðuÞ ¼ @2u
@z@�z

þ Aðz;�zÞ @u
@z
þ Bðz;�zÞ @u

@�z
þ Cðz;�zÞu ¼ Fðz;�zÞ ð8Þ

wherein

Aðz;�zÞ ¼ 1
4

a
zþ �z

2
;
z� �z

2i

� �
þ ib

zþ �z
2

;
z� �z

2i

� �� �

Bðz;�zÞ ¼ 1
4

a
zþ �z

2
;
z� �z

2i

� �
� ib

zþ �z
2

;
z� �z

2i

� �� �

Cðz;�zÞ ¼ 1
4

c
zþ �z

2
;
z� �z

2i

� �

Fðz;�zÞ ¼ 1
4

f
zþ �z

2
;
z� �z

2i

� �
ð9Þ
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Young et al. (2002) have previously proposed the Riemann
Complex Boundary Element Method (RCBEM) based on the bound-
ary element method (BEM) and the theory of Vekua and its modi-
fication, as well as complex Riemann function as the fundamental
solution. The same authors verified the feasibility and accuracy of
RCBEM by applying it to different case studies of potential flows,
Helmholtz equation problem and advection–diffusion problem
and results were compared with analytical solutions and
other numerical models. The results have been found to be satis-
factory and proved the applicability of RCBEM for various two-
dimensional elliptic equation problems. Herein, Vekua’s method
is extended to consider diffusive-like flows around cracks.

As it is demonstrated in Appendix A the solution of Eq. (3) for
the current pore pressure field attains the following final form

uðz;�zÞ¼Re I0ðkr�ÞuðzÞþk
ffiffiffi
�z
p

2

Z z

0

I1ðk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�zðz� tÞ

p
Þffiffiffiffiffiffiffiffiffi

z� t
p uðtÞþ4Fðt;�zÞ

k2

� �
dt

( )

ð10Þ

where we have set r� ¼
ffiffiffiffiffi
z�z
p
¼ jzj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and uðzÞ represents a

potential that is found from boundary conditions (i.e. Appendix A).
It is worth noting that for k! 0 the potential uðzÞ represents the
steady-state pore pressure solution, since for this limit, the above
Eq. (10) with 4Fðt;�zÞ=k2 ¼ �p½t�ðtÞ (from the last of relationships
(9) and (4)) takes the form

uðz;0Þjk!0 ¼ uðzÞjk!0 ð11Þ
3. Solution of the Dirichlet initial-boundary value problem

In a first step we attack Dirichlet’s problem, i.e. when along the
entire contour of the crack C of the rigid body (e.g. Fig. 1) the value
of the pore pressure is prescribed that may also vary with time (i.e.
the crack is pressurized by an injected fluid according to some
manner along its lips through time)

uþ ¼ g½v�ðx;0Þ ¼ g½v�ðsÞ; s 2 C; v P 0 ð12Þ

with s to denote the abscissa running along the crack, the Greek
lowercase letter v appearing as superscript in brackets to denote
hereafter the current time, and assuming that prior to pressuriza-
tion of crack lips, there is zero pore pressure everywhere in the fluid
saturated porous medium (or in the more realistic case of given res-
ervoir or formation pore pressure, then this should be added to the
transient solution of the pore pressure field that will be found from
the above initial-boundary value problem). Lagging of the fluid
front behind the crack tip (fracture front) could be also considered
since it is of great interest in hydraulic fracturing processes in oil
industry. Assuming that both g½v�ðsÞ and the boundary value of the
potential function uðtÞ satisfy the Hoelder condition2 (Muskhelish-
vili, 1953) on boundary C, then the latter is a real function and may
be expressed in the form of modified simple layer potential (Liolios
and Exadaktylos, 2006)

uðzÞ ¼ 1
2p

Z
C

lðtÞdr
r
¼ 1

2p

Z
C
lðtÞd ln r

¼ 1
2p

Z 1

0

lðtÞdjt � zj
jt � zj ð13Þ
2 In mathematics, a real or complex-valued function f on d-dimensional
Euclidean space satisfies a Hoelder condition, or is Hoelder continuous or H-
continuous, when there are nonnegative real constants C, a, such that

jf ðxÞ� f ðyÞj6Cjx�yja

for all x and y in the domain of f .
where lðtÞ is the real unknown value of the density of the Cauchy
integral, r ¼ jt � zj denotes the distance between the points t and
z, and j � j denotes the modulus of the complex variable that it en-
closes. It should be noticed that the Cauchy integral is interpreted
in its principal value sense. The physical meaning of Eq. (13) is that
the pore pressure at every point z of the plane, depends only on its
inverse distance r from every point t of the crack contour C multi-
plied by the appropriate weight, which is represented by the den-
sity function lðtÞ defined along the crack lips.

Based on the representation (13) the fluid discharge vector q at
a given point z ¼ xþ iy of the plane in steady-state conditions, may
be found from that is given by Eq. (1b) as follows

qðzÞ ¼ qsðzÞ þ iqnðzÞ

¼ k
2p

Z
C

lðtÞ cos aðt; zÞdr

ðt � zÞ2
þ i

k
2p

Z
C

lðtÞ sin aðt; zÞdr

ðt � zÞ2
ð14Þ

where qsðzÞ; qnðzÞ denote the tangential and the normal fluid dis-
charge, respectively, and aðt; zÞ is the angle enclosed by the vector
tz
!

and the positive direction of Ox-axis that is measured anti-
clockwise (Muskhelishvili, 1953).

Substituting the above value of uðzÞ as is given by Eq. (13) into
Eq. (10) the following integral representation of u is obtained

uðx; yÞ ¼
Z 1

0
lðtÞMðz; tÞdt

þ Re
2
ffiffiffi
�z
p

k

Z z

0

I1ðk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�zðz� sÞ

p
Þffiffiffiffiffiffiffiffiffiffiffi

z� s
p F

sþ �z
2

;
s� �z

2

� �
ds

( )
ð15Þ

in which

Mðz;tÞ ¼Re
I0ðkr�Þðdjt� zj=dtÞ

2pjt� zj þk
ffiffiffi
�z
p
=dt

4p

Z z

0

I1ðk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�zðz� t1Þ

p
Þdjt� t1jffiffiffiffiffiffiffiffiffiffiffiffi

z� t1
p

jt� t1j
dt1

( )

ð16Þ

Now take the limit of Eq. (15) as the point z ¼ xþ iy approaches
some point x0 of C (i.e. along positive Ox-axis) from the domain Dþ

(Fig. 1) by using Plemelj formulae or theorem depicting the basic
relationships among boundary values of Cauchy integrals
(Muskhelishvili, 1953) and substituting the result into the
boundary condition (12) we obtain the following singular integral
equation of the 2nd kind that must be solved at each instant of
time

1
2
lðx0Þþ

Z 1

0
lðtÞMðx0;tÞdt¼ g½v�ðx0Þ�

�2
ffiffiffiffiffi
x0
p

k

Z x0

0

I1ðk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0ðx0�sÞ

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

x0�s
p F

sþx0

2
;
s�x0

2

� �
ds

t0 2 ½0;1Þ

Mðx0; tÞ¼Re
I0ðkx0Þðdjt�x0j=dtÞ

2pjt�x0j
þk

ffiffiffiffiffi
x0
p

=dt
4p

Z x0

0

I1ðk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0ðx0� t1Þ

p
Þdjt� t1jffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x0� t1
p

jt� t1j
dt1

( )

ð17Þ

For easy reference we also recapitulate below the derived formulae

k2 ¼ b
kDv ;uðx; yÞ ¼ p½v�ðx; yÞ

F
zþ �z

2
;
z� �z

2i

� �
¼ 1

4
f

zþ �z
2

;
z� �z

2i

� �

f ðx; yÞ ¼ � b
kDvp½v�Dv�ðx; yÞ ¼ �k2p½v�Dv�ðx; yÞ

uðzÞ ¼ 1
2p

Z 1

0

lðsÞdjs� zj
js� zj

ð18Þ

wherein the symbol Dv appearing as superscript in brackets de-
notes the time increment. For the solution of the above problem
an initial condition for the instant of time v = 0 is also needed for
the pore pressure along the crack. Furthermore, by taking into
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account that along the crack the potential assumes the following
value

uðxÞ ¼ 1
2p

Z 1

0

lðtÞdjt � xj
jt � xj ¼ 1

2p

Z 1

0

lðtÞdt
t � x

ð19Þ

then Eq. (17) at the time instant v simplifies as follows

1
2
lðx0Þ þ

1
2p

Z 1

0
I0ðkx0Þ þ

k
ffiffiffiffiffi
x0
p ðx� x0Þ

2

	

	
Z x0

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0 � x1
p I1ðk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0ðx0 � x1Þ

p
Þdx1

x� x1

)
lðxÞdx
x� x0

¼ g½v�ðx0Þ þ
k
2

ffiffiffiffiffi
x0
p Z x0

0
g½v�Dv�ðxÞ I1ðk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0ðx0 � xÞ

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

x0 � x
p dx; x0

2 ½0;1Þ; v > 0 ð20Þ

If the density function along the crack lðx0Þ; x0 2 ½0;1Þ is found
from the above singular integral equation of the 2nd kind by virtue
of an appropriate quadrature rule, then by substituting this func-
tion into (Eq. (13)) the modified simple layer potential uðzÞ is also
found. Subsequently, at every instant of time the solution for the
pore pressure uðz;�zÞ is found from Eq. (10). Finally it is worth noting
that if the prescribed pore pressure along the crack lips given by the
function gðxÞ remains constant through time, then in the above Eq.
(20) one must set g½v�ðx0Þ ¼ g½v�Dv� ¼ gðx0Þ; x0 2 ½0;1Þ.

4. Solution of the singular integral equation of the second kind

4.1. Solution of the steady-state Dirichlet problem

Next, we investigate the behavior of the above singular integral
Eq. (20) of the 2nd kind by taking the limit k! 0, that corresponds
to either very long time after the application of the pressure on
crack lips, or to a very large permeability k of the porous medium,
or for very low compressibility b of the latter. This case corre-
sponds obviously to the steady-state solution of the pressure field
problem. It is therefore rather obvious from the preceding analysis,
that the steady-state solution for the pore pressure (albeit not true
for the fluid discharge) will be independent of the permeability k of
the porous medium (e.g. see Eq. (21) below). Taking into account
the limiting values of the involved Bessel functions one may easily
end-up from Eq. (20) into a much simpler singular integral equa-
tion of the 2nd kind

1
2
lðx0Þ þ

1
2p

Z 1

0

lðxÞdx
x� x0

¼ gðx0Þ; x0 2 ½0;1Þ; k! 0 ð21Þ

in which we assume that the known (input) function at the r.h.s. is
Hoelder or H- continuous.

The endpoint of the crack at x ¼ 0 is a point of geometric singu-
larity. Physical arguments provide sufficient information about the
behavior of the unknown density function l(x0). Invariably, these
arguments simply account to stating that if the unknown function
is a potential (i.e. pore pressure, temperature, displacement, etc.) it
has to be bounded at the singular point x = 0. It can be shown that
the fundamental function or weight function of Eq. (21) which
characterizes the behavior of lðx0Þ at the singular point of the
crack tip at (0,0) is given by (Muskhelishvili, 1953; Erdogan and
Gupta, 1972; Erdogan et al., 1973; Liolios and Exadaktylos, 2006)

ŵðx0Þ ¼
ffiffiffiffiffi
x0
p

ð22Þ

Substituting the transformation lðxÞ ¼ ŵðxÞl̂ðxÞ into Eq. (21) it
is found

1
2

ŵðx0Þl̂ðx0Þ þ
1

2p

Z 1

0

ŵðxÞl̂ðxÞdx
x� x0

¼ gðx0Þ ð23Þ
The function l̂ðxÞ along the semi-infinite crack is the new unknown
density that is bounded at the crack tip and satisfies the Hoelder
condition in order to ensure existence of the principal value of the
Cauchy integral in Eq. (23).

For numerical reasons it is advantageous, although not impera-
tive, to eliminate the infinite boundary in the integral of Eq. (23).
This can be achieved by suitable coordinate transformation. The
following variable transformation proposed by Ioakimidis and The-
ocaris (1980) is adopted here

x ¼ 1
c

ln
2

1� t
ð24Þ

or

t ¼ 1� 2 expð�cxÞ ð25Þ

with

dx ¼ 1
c

dt
1� t

¼ expðcxÞ
2c

dt ð26Þ

where c is a scaling constant. In view of the transformation (25) the
semi-infinite integration interval ½0;1Þ of the variable x changes
into the integration interval ½�1;1� of the corresponding variable
t. Having surpassed this difficulty, the unknown density l̂ðx0Þ
may be calculated by recourse to the Gauss–Chebyshev numerical
integration method for singular integral equations (Erdogan and
Gupta, 1972; Erdogan et al., 1973) exploiting the properties of
orthogonal Chebyshev polynomials of the first and second kind.
By applying numerical integration rule to Eq. (23), and considering
Eqs. (24)–(26) there results the following system of linear algebraic
equations with unknowns the densities l̂ðxrÞ at the collocation
points xr along the crack,

1
2

ffiffiffiffi
xr
p

l̂ðxrÞ þ
1
2

Xn

j¼1

BjðxjÞ
xj � xr

l̂ðxjÞ ¼ gðxrÞ; r ¼ 1;2; . . . ;nþ 1

BjðxjÞ ¼ AjðtjÞ
ffiffiffiffi
xj
p

w�ðtjÞ
dx
dt
¼ AjðtjÞ

ffiffiffiffi
xj
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ð1� 2 expð�cxjÞÞ2
q expðcxjÞ

2c
;

w�ðtjÞ ¼ ð1� t2
j Þ

1=2
; AjðtjÞ �

1� t2
j

nþ 1
; xj ¼

1
c

ln
2

1� tj

� �
;

xr ¼
1
c

ln
2

1� tr

� �
ð27Þ

wherein n is the number of integration points and r is the number of
collocation points. According to Erdogan and Gupta (1972) the inte-
gration points tj in the interval ½�1;1� are the roots of the Cheby-
shev polynomials of the second kind and of order n denoted as
usual as UnðtjÞ ¼ 0

tj ¼ cos
jp

nþ 1

� �
; j ¼ 1;2; . . . ;n ð28Þ

while the collocation points tr also in the interval ½�1;1� are the
roots of the Chebyshev polynomials of the first kind and of order
nþ 1 denoted as usual as Tnþ1ðtrÞ ¼ 0, that is

tr ¼ cos
pð2r � 1Þ
2ðnþ 1Þ

� �
; r ¼ 1;2; . . . ;nþ 1 ð29Þ

It may be noticed that the new abscissas xj and weights Bj in the
semi-infinite interval ½0;1Þ are related to the initial abscissas tj

and the corresponding weights Aj in the interval ½�1;1� according
the transformation of Eq. (26) and the second of relations (27),
respectively. In addition we may note that there are n + 1 collocation
points to determine the n unknown densities l̂ðx1Þ; l̂ðx2Þ; . . . ; l̂ðxnÞ.
It is also worth noticing that there is no need to satisfy in this case
the single-valuedness of the pore pressure since the body is simply
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connected. Thus, it is sufficient to choose only n of these points to
determine the densities l̂ðxkÞ. Herein the most harmless point to ne-
glect is that one located farther from the crack tip, i.e. that one cor-
responding to r ¼ 1.

Having found the density of the Cauchy integral along the crack,
then the pore pressure and flow discharge may be found at any
point of the unbounded medium. Indeed, from Eq. (13), and the
integration scheme of Eq. (27), the potential function at any point
z ¼ xþ iy of the plane may be derived by employing the related
Gauss–Chebyshev integration formula for non-singular integrals
(Abramowitz and Stegun, 1965)

uðzÞ ¼ 1
2p

Z 1

0

ffiffiffi
s
p

l̂ðsÞdjs� zj
js� zj ¼ 1

2p

Z 1

0

ffiffiffi
s
p

l̂ðsÞðs� xÞds
js� zj2

� 1
2

Xn

j¼1

BjðxjÞ
ðxj � xÞ
jxj � zj2

l̂ðxjÞ ð30Þ

The above solution represents the steady-state pore pressure field
around the crack tip pðzÞ. Further, it is not difficult to derive the
components of the fluid discharge vector qðzÞ ¼ qsðzÞ þ iqnðzÞ from
Eq. (14)

qðzÞ ¼ qsðzÞ þ iqnðzÞ

¼ k
2p

Z 1

0

ffiffi
t
p

l̂ðtÞ cos aðt; zÞdr

jt � zj2
þ i

k
2p

Z 1

0

	
ffiffi
t
p

l̂ðtÞ sinaðt; zÞdr

jt � zj2

� k
2

Xn

j¼1

BjðxjÞ cos aðt; zÞ ðxj � xÞ
jxj � zj3

l̂ðxjÞ þ i
k
2

Xn

j¼1

BjðxjÞ

	 sin aðt; zÞ ðxj � xÞ
jxj � zj3

l̂ðxjÞ ð31Þ

In the following the convergence of the proposed numerical
solution of the pressure and flow discharge fields around the crack
tip is studied. In order to explore the convergence of the solution,
we consider a straight semi-infinite crack lying along the positive
Ox-axis and with the origin of the coordinate system placed at its
tip. The crack lips are subjected to uniform dimensionless unit
pressure gðxÞ ¼ 1 (using the sign convention of positive compres-
sive stresses and negative tensile stresses), whereas the scaling fac-
tor is taken as c = 0.1 in order to produce collocation points
sufficiently far from the crack tip. Also, the pressure is made
dimensionless by dividing it with 1 Pa, whereas the permeability
coefficient of the porous medium is taken equal to 1 m2=ðPa sÞ
and the fluid discharge is made dimensionless by dividing it with
the permeability coefficient. Figs. 2 and 3 display the dimension-
less pore pressure p distribution along Ox and Oy-axes, respectively
for 12, 18, 24, and 30 integration points, respectively. Also, Figs. 4
and 5 illustrate the dimensionless specific flow discharges qx and
qy along Ox and Oy-axes, respectively. Finally, Fig. 6 illustrates
the distribution of the steady-state dimensionless pore pressure
field around the crack tip region. These figures illustrate that the
Gauss–Chebyshev integration scheme of the derived singular inte-
gral equation of the second kind converges rapidly to the analytical
pore pressure solution. Hence, this quadrature scheme will be fol-
lowed also for the solution of the transient problem in Section 4.2.

4.2. Solution of the transient Dirichlet problem

Having solved the steady-state Dirichlet problem, the solution
of the corresponding transient problem may be performed without
any difficulty by following a similar Gauss–Chebyshev integration
scheme of the singular integral equation (20) at each time step.
That is to say, for an arbitrary time-invariant pore pressure distri-
bution suddenly applied at instant of time v ¼ 0þ on the crack lips,
and considering the numerical integration scheme given by Eqs.
(27)–(29), then Eq. (20) becomes

1
2

ffiffiffiffi
xr
p

l̂ðxrÞ þ
I0ðkxrÞ

2
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j¼1
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xj � xr
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� k
ffiffiffiffi
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p ðxj � xrÞ

4
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j¼1

BjðxjÞl̂ðxjÞ
Z xr

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xr � x1
p I1ðk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xrðxr � x1Þ

p
Þdx1

x1 � xj

¼ g½v�ðxrÞ þ
k
ffiffiffiffi
xr
p

2

Z xr

0
g½v�Dv�ðxÞ I1ðk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xrðxr � xÞ

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

xr � x
p dx;

r ¼ 1;2; . . . ;nþ 1

g½v�ðxÞ ¼ g½v�Dv�ðxÞ ¼ � � � ¼ g½0�ðxÞ ¼ gðxÞ
0 6 x <1; y ¼ 0

ð32Þ

The definite integral in the l.h.s. of the above Eq. (32) may be
also approximated as a finite sum with appropriate quadrature
abscissas and weights based on properties of orthogonal polynomi-
als, that is to say

Z xr

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xr � x1
p I1ðk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xrðxr � x1Þ

p
Þdx1

x1 � xj
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1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxr � x1Þx1

p ffiffiffiffiffi
x1
p

I1ðk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xrðxr � x1Þ

p
Þdx1

x1 � xj

� p
n1

Xn1

k¼1

ffiffiffiffiffi
xk
p

I1ðk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xrðxr � xkÞ

p
Þ

xk � x̂j
ð33Þ

wherein n1 is the number of integration points, and xr; xj are the col-
location and integration points, respectively, given by relationships
(29) and (28), through the transformation (24). In the above quad-
rature rule the integration points in the interval [0,xr] may be found
by the linear transformation of the integration points x0k in the inter-
val [�1,1] as follows

xk ¼
xr

2
x0k þ

xr

2
; k ¼ 1;2; . . . ;n1 ð34Þ

According to Erdogan and Gupta (1972) the integration points
x0k in the interval ½�1;1� are the roots of the Chebyshev polynomials
of the first kind and of order n denoted as usual as Tn1 ðtjÞ ¼ 0

x0k ¼ cos
ð2k� 1Þp

2n1

� �
; k ¼ 1;2; . . . ;n1 ð35Þ

For the evaluation of the above integral we may distinguish two
cases, namely one with xj > xr and another with 0 < xj < xr . In the
first case the above integral is non-singular and the integration is
performed with Eq. (33) by simply setting x̂j ¼ xj. However, in
the second case the integral in (33) is singular and should be eval-
uated accordingly. In this case the abscissas xj are chosen in such a
manner so as: (1) to be roots of Chebyshev polynomials of the sec-
ond kind Un1�1ðx0jÞ ¼ 0, and (2) to be located as close as possible to
xj, that is

r � n1

p
cos�1 2xj

xr
� 1

� �
 �

x0j ¼ cos
pr
n1

� �

x̂j ¼
xr

2
ðx0j þ 1Þ

ð36Þ

Finally, the quadrature scheme of the definite integral in the
r.h.s. of Eq. (32) is also based on the above relations with Cheby-
shev polynomials of the first kind in the following manner



Fig. 2. Dimensionless pore pressure distribution in front of the crack tip along Ox axis.

Fig. 3. Dimensionless pore pressure distribution along Oy axis.
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where the integration points are given by Eqs. (34) and (35).
Regarding the previously examined case of crack lips sub-

jected to a constant uniform unit pressure gðxÞ ¼ 1, with the
scaling factor c = 0.1, the solutions for the distribution of the
density l̂ðxrÞ of the Cauchy integral at the collocation points xr

along the crack for various values of k ranging from 0 to 0.3,
and for a fixed number of integration points n1 ¼ 15, are shown
in Fig. 7.

From the density numerical data such as those displayed in
Fig. 7 it was found that the following approximate albeit accurate
formula, that considerably simplifies the transient problem since it
links the density of the latter problem with the corresponding den-
sity of the steady-state problem at some abscissa along the crack,
holds true
l̂ðxÞ � 1� k
0:4

� �
l̂0ðxÞ ¼ 1� 1

0:4
ffiffiffiffiffiffiffiffiffi
D � t
p

� �
l̂0ðxÞ

0 6 x <1; y ¼ 0 ð38Þ

wherein l̂0ðxÞ denotes the density of the steady-state problem that
was solved in the preceding paragraph. This means that the upper
limit for the parameter k is the value of 0.4. Eq. (38) clearly repre-
sents a similarity transformation in the sense described by Barenblatt
(1996). According to Barenblatt a time-developing phenomenon is
called self-similar if the spatial distribution of its properties (in this
case the pore pressure) at various different moments of time can be
obtained from one another by a similarity transformation such as
relationship (38). The comparison of the predictions of the above
formula (38) with the numerical solution of Eq. (32) is shown in
Fig. 7 for three values of parameter k.

In turn, the potential function for any k ranging from 0 to 0.4 is
the following

uðzÞ �
1� k

0:4

� 
2p

Z 1

0

ffiffi
t
p

l̂0ðtÞdjt � zj
jt � zj ð39Þ



Fig. 4. Distribution of the component qx of the fluid discharge vector in front of the crack tip along Ox axis.

Fig. 5. Distribution of the component qy of the fluid discharge vector along Oy axis.
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Having found the density of the Cauchy integral at the colloca-
tion points along the crack either by solving Eq. (32) or by using
approximate formula (38), then the pore pressure and flow dis-
charge may be found at any point of the unbounded medium out-
side the crack. First, the potential function uðzÞ at any point
z ¼ xþ iy of the plane may be derived by virtue of Eq. (30) as
was done for the steady-state problem attacked previously. The
only task is the computation of the integral appearing in Eq. (10),
at the current time t i.e.

I0ðzÞ ¼ Re
k
ffiffiffi
�z
p

2

Z z

0

I1ðk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�zðz� tÞ

p
Þffiffiffiffiffiffiffiffiffiffi

z� t
p ½uðtÞ � p½t�Dt�ðtÞ�dt

( )
ð40Þ

Since the above integral is path-independent, a straight line
integration from 0 to z is adequate, i.e.

tðsÞ ¼ xðsÞ þ iyðsÞ ¼ sþ i
y
x

s; 0 6 s 6 x;

dt ¼ 1þ i
y
x

� �
ds

ð41Þ
Substituting relationships (41) into Eq. (40) and after some
algebraic manipulations it is found
I01ðzÞ ¼Re
k
ffiffiffiffiffi
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ð42Þ

Due to Eq. (42) the final form of the current pore pressure
p½t�ðx; yÞ from Eqs. (10) and (30) takes the form
p½t�ðx; yÞ � I0ðk
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Fig. 6. Contour plot of the dimensionless pore pressure around the crack tip located on x = 0, y = 0 and extending along the positive Ox-axis.

Fig. 7. Distribution of the density of the Cauchy integral along the crack for various values of k at hand.
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Now, taking the limit
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
! 0 and considering the asymp-

totic formula I0ðkrÞ � 1þ ðkrÞ2=4þ oðr3Þ, then the pore pressure
field around the crack tip has as follows

p½t�ðx; yÞ �
Xn

j¼1

BjðxjÞ
ðxj � xÞ

jxj � ðxþ iyÞj2
l̂ðxjÞ ð44Þ

Finally, considering the simple approximation (38) the transient
pore pressure field may be easily found without solving the cum-
bersome system (32) but rather from the steady-state solution
l̂0ðxÞ as follows

p½t�ðx; yÞ � 1� k
0:4

� �Xn

j¼1

BjðxjÞ
ðxj � xÞ

jxj � ðxþ iyÞj2
l̂0ðxÞ

¼ 1� 1
0:4

ffiffiffiffiffiffiffiffiffi
DDt
p

� �Xn

j¼1

BjðxjÞ
ðxj � xÞ

jxj � ðxþ iyÞj2
l̂0ðxÞ ð45Þ

For example, Figs. 8 and 9 illustrate the distribution of the pore
pressure along Ox and Oy-axes for the values of k ¼ 1=

ffiffiffiffiffiffiffiffiffi
DDt
p

at
hand.
This is a significant theoretical result since it greatly simplifies
the study of the transient pore pressure problem around the crack
tip by knowing only the solution of the much simpler steady-state
problem.

4.3. Physical significance of the solution

This work may constitute the first step of attacking the tran-
sient poroelastic problem of the pressurized Griffith crack which
is related to the hydraulic fracturing process in petroleum engi-
neering. Hydraulic fracturing involves the propagation of a frac-
ture in a porous brittle material, such as rock, due to the
pressure exerted on the fracture surfaces by a viscous fluid that
is pumped into the fracture. During the process of a hydraulic
fracturing, the pumping rate is maintained at a higher rate than
the fluid leak-off rate trough the interconnected pores, and the
newly created fracture will continue to propagate and grow in
the formation until shut-in. The analysis of the problem of a
fluid-driven fracture propagating through a poroelastic medium
involves the formulation of such model of an hydraulic fracture
that is at the cross-road of four classical disciplines of engineering



Fig. 8. Dimensionless pore pressure distribution in front of the crack tip along Ox axis for various values of k-parameter.

Fig. 9. Dimensionless pore pressure distribution along Oy axis for various values of k-parameter.
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mechanics: lubrication theory consisting from the continuity
equation and Poiseuille’s equation along the crack, filtration the-
ory, fracture mechanics, and poroelasticity, with the latter includ-
ing both elasticity and diffusion. Such a resulting mathematical
model consists of a set of linear or non-linear integrodifferential
history-dependent equations with singular behavior at the
moving fracture front (Kovalyshen, 2010). It is noted here that
most papers on hydraulic fracturing assume one-dimensional dif-
fusion around the crack, thus neglecting the two-dimensional
character of the diffusion problem presented here. Detournay
and Garagash (2003) have presented a comprehensive literature
review of the poroelastic problem of propagating cracks in
permeable formations.

5. Concluding remarks

In this paper the parabolic partial differential equation of
fluid mass balance in a porous medium is first transformed into
the modified Helmholtz’s equation by virtue of an implicit (back-
ward) finite difference approximation of the time derivative.
Subsequently by following Vekua’s method of solving elliptical
pde’s we find the corresponding Riemann function that is used
to construct the general solution. By assuming that the pore
pressure field is described by a modified simple layer potential
in the form of Cauchy integral the Dirichlet boundary value
problem of prescribed pore pressure along a semi-infinite crack
was formulated. The resulting singular integral equation of the
second kind is first solved for the steady-state problem by virtue
of Gauss–Chebyshev quadrature scheme. It was demonstrated
that the applied quadrature method converges rapidly. Subse-
quently, the more elaborate transient problem is solved by fol-
lowing a similar procedure. From the numerical solution of the
resulting equation for various values of the time parameter it
was found that the density of the Cauchy integral for the tran-
sient problem may be found from the corresponding density
along the crack by means of a similarity relationship.



3 For Laplace’s eqn it is obvious that Rðz;�z; t; sÞ ¼ 1 and from (A.5)
uðz;�zÞ ¼ RefuðzÞg.
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Another possible application of the analytical solution pre-
sented herein, apart from being used as benchmark solution for
studying the accuracy of numerical methods, is to be used for
developing some new types of transient tip elements, so that the
near-tip pore-fluid flow systems can be accurately simulated in
numerical models.

Accordingly, the Neumann boundary value problem could be
solved albeit following another integration method as is described
by Liolios and Exadaktylos (2006). This analysis will be presented
in a following paper since it is also of significant technological
interest. Also, the present theory can be extended to anisotropic
permeability as has been done in (Barzokas and Exadaktylos,
1995).

Appendix A. Derivation of the explicit solution of the elliptic
pde

Herein for easy reference the method proposed by Vekua (1967)
is first outlined. Subsequently, the Riemann function of the non-
homogeneous modified Helmholtz’s equation (3) in the main text
is found, and finally the general solution of the problem at hand
is given.

By integrating the adjoint form of the homogeneous pde given by
Eq. (8) of the main text, we obtain the so-called ‘Riemann function’
that satisfies the following Volterra equation of the 2nd kind
(Vekua, 1967)

Rðz;�z; t; sÞ �
Z z

t
Bðn;�zÞRðn;�z; t; sÞdn

�
Z �z

s
Aðz;gÞRðz;g; t; sÞdgþ

Z z

t
dn
Z �z

s
Cðn;gÞRðn;g; t; sÞdg ¼ 1 ðA:1Þ

as well as equations

Rðt;�z; t; sÞ ¼ exp
Z �z

s
Aðt;gÞdg; ðt 2 Dþ;�z; s 2 D�Þ;

Rðz; s; t; sÞ ¼ exp
Z z

t
Bðn; sÞdn; ðz; t 2 Dþ; s 2 D�Þ;

Rðt; s; t; sÞ ¼ 1; ðt 2 Dþ; s 2 D�Þ:

ðA:2Þ

The last of the above equations represents the normalization
condition that is satisfied by the Riemann function. Also, the func-
tions Aðz;�zÞ; Bðz;�zÞ; Cðz;�zÞ are analytic functions of the two com-
plex variables enclosed in parentheses for z 2 Dþ; �z 2 D� (e.g.
Fig. 1).

Then the solution of Eq. (8) in the simply connected domain Dþ

is given in terms of the Riemann function as follows (Vekua, 1967)

uðz;�zÞ ¼ uðz0;�z0ÞRðz;�z; z0;�z0Þ þ
Z z

z0

U1ðtÞRðz;�z; t;�z0Þdt

þ
Z �z

�z0

U2ðsÞRðz;�z; z0; sÞdsþ
Z z

z0

dt

	
Z �z

�z0

Fðt; sÞRðz;�z; t; sÞds ðA:3Þ

where we have set

U1ðzÞ ¼
@uðz;�z0Þ

@z
þ Bðz;�z0Þuðz;�z0Þ

U2ð�zÞ ¼
@uðz0;�zÞ

@�z
þ Aðz0;�zÞuðz0;�zÞ

ðA:4Þ

Since the coefficients of the pde (5) of the main text are real
functions, then integrating by parts Eq. (A.3) we obtain the result

uðz;�zÞ¼Re H0ðzÞuðzÞþ
Z z

z0

Hðz;tÞuðtÞdtþ
Z z

z0

dt
Z �z

�z0

Fðt;sÞRðz;�z;t;sÞds
	 �

ðA:5Þ
where Reð�Þ denotes the real part of what encloses, uðzÞ is an arbi-
trary holomorphic function in the region D determined by the
boundary condition, and

H0ðzÞ ¼ Rðz;�z; z0;�z0Þ ^ Hðz; tÞ

¼ � @

@t
Rðz;�z; t;�z0Þ þ Bðt;�z0ÞRðz;�z; t; z0Þ ðA:6Þ

Also, the holomorphic function uðzÞ admits the representation

uðzÞ ¼ 2uðz;�z0Þ � uðz0;�z0ÞRðz;�z0; z0;�z0Þ ðA:7Þ

It will not affect the generality of the solution if we assume that
the point z0 ¼ �z0 ¼ 0 belongs to the domain D. Furthermore our
problem is characterized by Aðz;�zÞ ¼ Bðz;�zÞ ¼ 0, hence Eqs. (A.6)
and (A.7) take the form

H0ðzÞ ¼ Rðz;�z; 0;0Þ ^ Hðz; tÞ ¼ � @

@t
Rðz;�z; t;0Þ;

uðzÞ ¼ 2uðz;0Þ � uð0;0ÞR; ðz;0; 0;0Þ
ðA:8Þ

The Riemann function of our problem at hand is derived directly
from Eq. (A.1). In this case Cðz;�zÞ ¼ �k2=4, hence Eq. (A.1) takes the
form3

Rðz;�z; t; sÞ � k2

4

Z z

t
dn
Z �z

s
Rðn;g; t; sÞdg ¼ 1 ðA:9Þ

The solution of the above equation by employing the method of
successive approximations (Tricomi, 1985) turns out to be

Rðz;�z; t; sÞ ¼ I0ðk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� tÞð�z� sÞ

p
Þ ðA:10Þ

where I0 is the modified Bessel function of the first kind and of order
zero. The same expression was also presented by Young et al.
(2002). Substituting this value in Eq. (A.8) we find

H0ðzÞ ¼ I0ðkr�Þ; r� ¼
ffiffiffiffiffi
z�z
p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
;

Hðz; tÞ ¼ 1
2

k
ffiffiffi
�z
p I1ðk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�zðz� tÞ

p
Þffiffiffiffiffiffiffiffiffiffi

z� t
p ;

uðzÞ ¼ 2uðz;0Þ � uð0;0Þ or uðzÞ ¼ 2u
z
2
;

z
2i

� �
� uð0;0Þ

ðA:11Þ

where I1 is the modified Bessel function of the first kind and of first
order. Finally, taking into account the above formal results, the
solution for the current pore pressure attains the form

uðz;�zÞ¼Re I0ðkr�ÞuðzÞþk
ffiffiffi
�z
p

2

Z z

0

I1ðk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�zðz� tÞ

p
Þffiffiffiffiffiffiffiffiffi

z� t
p uðtÞdtþ

Z z

0
dt
Z �z

0
I0ðk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� tÞð�z�sÞ

p
ÞFðt;sÞds

( )
ðA:12Þ

By virtue of the identity (Abramowitz and Stegun, 1965)Z �z

0
I0ðk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� tÞð�z� sÞ

p
Þds ¼ 2

ffiffiffi
�z
p

I1ðk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�zðz� tÞ

p
Þ

k
ffiffiffiffiffiffiffiffiffiffi
z� t
p ðA:13Þ

as well as the last of relations (9) in the main text, then Eq. (A.12)
simplifies as follows

uðz;�zÞ¼Re I0ðkr�ÞuðzÞþk
ffiffiffi
�z
p

2

Z z

0

I1ðk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�zðz� tÞ

p
Þffiffiffiffiffiffiffiffiffi

z� t
p uðtÞþ4Fðt;�zÞ

k2

� �
dt

( )

ðA:14Þ
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