
Discrete Mathematics 310 (2010) 83–91

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Dixon’s 3F 2(1)-series and identities involving harmonic numbers and
the Riemann zeta function
Xiaojing Chen, Wenchang Chu ∗
School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, PR China

a r t i c l e i n f o

Article history:
Received 31 March 2009
Received in revised form 29 July 2009
Accepted 29 July 2009
Available online 7 August 2009

Keywords:
Bell polynomial
Harmonic number
Dixon’s summation theorem

a b s t r a c t

Dixon’s classical summation theorem on 3F 2(1)-series is reformulated as an equation of
formal power series in an appropriate variable x. Then by extracting the coefficients of
xm, we establish a general formula involving harmonic numbers and the Riemann zeta
function. Several interesting identities are exemplified as consequences, including one of
the hardest challenging identities conjectured by Weideman (2003).
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1. Introduction and Notation

LetN andN0 stand respectively for the sets of natural numbers andnonnegative integers. Define the generalizedharmonic
numbers by

H〈m〉0 = 0 and H〈m〉n =
n∑
k=1

1
km

form, n ∈ N.

The casem = 1 reduces to the classical harmonic numbers: Hn := H
〈1〉
n .

One of the hardest challenging harmonic number identities is the following identity conjectured by Weideman [16, Eq
20]. For all n ∈ N, it holds that

n∑
k=0

(−1)k
(n
k

)3 {
3(Hk − Hn−k)2 +

(
H〈2〉k + H

〈2〉
n−k

)}
= 0. (1)

It has been confirmed by Driver, Prodinger, Schneider andWeideman [12] through the computer algebra package Sigma. The
partial fraction decomposition method has recently been utilized to prove this identity by Chu [5,7], where more identities
involving binomial coefficients and harmonic numbers were found.
By expressing Dixon’s classical formula as a formal power series identity in an appropriate variable x and then extracting

the coefficients of xm, we shall establish several finite and infinite series identities involving harmonic numbers and the
Riemann zeta function. The main tools consist of the two expansion formulae of the 0-function in terms of the exponential
function as well as two expressions connecting binomial coefficients to Bell polynomials.
Throughout the paper, the shifted factorials are defined by

(x)0 ≡ 1 and (x)n = x(x+ 1) · · · (x+ n− 1) for n ∈ N
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which are connected to the 0-function

0(x) =
∫
∞

0
τ x−1e−τdτ withR(x) > 0

via the following two relations

0(x+ n)
0(x)

= (x)n and
0(x)

0(x− n)
= (−1)n(1− x)n. (2)

Then Dixon’s theorem (cf. Bailey [1, Section 3.1]), which is well known in the theory of classical hypergeometric series, may
be reproduced as

3F2

[
a, b, c

1+ a− b, 1+ a− c

∣∣∣∣ 1] = ∞∑
n=0

(a)n(b)n(c)n
n!(1+ a− b)n(1+ a− c)n

= 0

1+ a2 , 1+ a− b, 1+ a− c, 1+
a
2
− b− c

1+ a, 1+
a
2
− b, 1+

a
2
− c, 1+ a− b− c


whereR(1+ a

2 − b− c) > 0 is assumed for convergence and the multivariate 0-notation reads as

0

[
a, b, . . . , c
A, B, . . . , C

]
=
0(a)0(b) · · ·0(c)
0(A)0(B) · · ·0(C)

.

Furthermore, we shall utilize the power series expansions of the 0-function [4]

0(1− x) = exp

{∑
k≥1

σk

k
xk
}
and 0

(
1
2
− x

)
=
√
π exp

{∑
k≥1

τk

k
xk
}

where σk and τk are defined respectively by

σ1 = γ and σm = ζ (m) form ≥ 2;
τ1 = γ + 2 ln 2 and τm = (2m − 1)ζ (m) form ≥ 2;

with γ being the Euler–Mascheroni constant defined by γ = limn→∞ (Hn − ln n) and ζ (x) the usual Riemann zeta function
given by ζ (x) =

∑
∞

n=1
1
nx .

For the sequence of indeterminates y := {yk}k∈N, the Bell polynomials Ωm(y) (or the cyclic indicators of symmetric
groups [10, Section 3.3]) are defined by the generating function

∑
m≥0

Ωm(y)xm = exp

{∑
k≥1

xk

k
yk

}
. (3)

There is the following explicit expression

Ωm(y) := Ωm(y1, y2, . . . , ym) =
∑
ω(m)

m∏
k=1

y`kk
`k!k`k

(4)

where the multiple sum runs over ω(m), the set of m-partitions represented by m-tuples of (`1, `2, . . . , `m) ∈ Nm0 subject
to the condition

∑m
k=1 k`k = m.

Let [xm]f (x) stand for the coefficient of xm in a formal power series f (x). By means of the generating function method, it
is not hard to show that these relations hold:

[xm]
( n+ λx

n

)
= Ωm(u), uk := (−1)k−1λkH〈k〉n ; (5a)

[xm]
( n− λx

n

)−1
= Ωm(v), vk := λ

kH〈k〉n . (5b)

In order to facilitate further applications, we display the first few Bell polynomials:

Ω0(y) ≡ 1, (6a)
Ω1(y) = y1, (6b)

Ω2(y) =
1
2
(y21 + y2), (6c)
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Ω3(y) =
1
6
(y31 + 3y1y2 + 2y3), (6d)

Ω4(y) =
1
24
(y41 + 6y

2
1y2 + 8y1y3 + 3y

2
2 + 6y4), (6e)

Ω5(y) =
1
120

(y51 + 10y
3
1y2 + 20y

2
1y3 + 15y1y

2
2 + 30y1y4 + 20y2y3 + 24y5). (6f)

2. Reformulation of Dixon’s classical identity

Introducing an indeterminate x and the parameters λ, θ, ϑ, ε, δ subject to condition λ = θ + ϑ = ε + δ, we may
equivalently consider Dixon’s formula as the following formal power series equation

3F2

[
−λx− n,−θx− n,−εx− n

1− ϑx, 1− δx

∣∣∣∣ 1] = 0

[
1− ϑx, 1− δx

1− λx− n, 1− λx+ θx+ εx+ n

]
(7a)

× 0

1− λx+ n2 , 1−
λx− 3n
2

+ θx+ εx

1−
λx− n
2
+ θx, 1−

λx− n
2
+ εx

 . (7b)

Let k be the summation index for the last 3F2-series. Observing the two relations

(1− x)k =
( k− x
k

)
k! and (−y− n)k = (−1)k

( n+ y
k

)
k!

we may reformulate the general hypergeometric terms in (7a) as

(−1)k
(
λx+n
k

) (
θx+n
k

) (
εx+n
k

)(
k−ϑx
k

) (
k−δx
k

) .

In view of (2), we can rewrite the Γ -function fraction in (7a) as

(−1)n

(
λx+n−1
n

)
(
θx+εx−λx+n

n

)0 [ 1− ϑx, 1− δx
1− λx, 1− λx+ θx+ εx

]
. (8)

For n = 2m, the Γ -function fraction in (7b) can be restated as

(−1)m (3m)!
(m!)3

(
3m+θx+εx− λx2

3m

)
(
m−1+ λx2
m

) (
m+θx− λx2

m

) (
m+εx− λx2

m

)0
1− λx2 , 1− λx2 + θx+ εx
1−

λx
2
+ θx, 1−

λx
2
+ εx

 . (9)

When n = 2m+ 1, we can similarly reformulate the Γ -function fraction in (7b) as

(−1)m
( 1−λx
2 + θx+ εx

)
3m+2(

λx+1
2

)
m

( 1−λx
2 + θx

)
m+1

( 1−λx
2 + εx

)
m+1

0

1− λx2 ,
1− λx
2
+ θx+ εx

1− λx
2
+ θx,

1− λx
2
+ εx


which can further be expressed in terms of binomial coefficients as

(−1)m(
λx+1
2

)
m

(
4+6m−λx+2θx+2εx

4+6m

) (
1+m− λx2 +θx

1+m

) (
1+m− λx2 +εx

1+m

)
(
2+3m− λx2 +θx+εx

2+3m

) (
2+2m−λx+2θx

2+2m

) (
2+2m−λx+2εx

2+2m

) (10a)

×
(m!)2(3+ 6m)!

21+2m{(1+ 2m)!}2(1+ 3m)!
0

1− λx2 ,
1− λx
2
+ θx+ εx

1− λx
2
+ θx,

1− λx
2
+ εx

 . (10b)
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Dividing both sides of the equation (7a) and (7b) by
(
λx+n
n

) (
θx+n
n

) (
εx+n
n

)
and keeping in mind the two relations(

λx+2m−1
2m

)
(
λx
2 +m−1
m

) =
(
λx+2m
2m

)
(
λx
2 +m
m

) ,
(
λx+ 2m
1+ 2m

)
( λx+12 )m

=
m!22mλx
(1+ 2m)!

( λx
2 +m
m

)
;

we may finally express the resulting equation as follows

x3W (x)+
n∑
k=0

(−1)k
( n
k

)3
Tk(x) =


(−1)m

(3m)!
(m!)3

U(x), n = 2m;

(−1)m+1

2
λx(3+ 6m)!(m!)3V (x)
{(1+ 2m)!}3(1+ 3m)!

, n = 2m+ 1;
(11)

where Tk(x), U(x), V (x) andW (x) are the formal power series explicitly given by

Tk(x) =

{(
k− ϑx
k

)(
k− δx
k

)(
λx+ n− k
n− k

)(
θx+ n− k
n− k

)(
εx+ n− k
n− k

)}−1
, (12a)

U(x) = 0

[
1− λx+ θx, 1− λx+ εx
1− λx, 1− λx+ θx+ εx

]
0

1− λx
2
, 1−

λx
2
+ θx+ εx

1−
λx
2
+ θx, 1−

λx
2
+ εx

 (12b)

×

(
3m+ θx+ εx−

λx
2

3m

)
(
m+ λx2
m

) (
m+θx− λx2

m

) (
m+εx− λx2

m

) (
θx+2m
2m

) (
εx+2m
2m

) (
θx+εx−λx+2m

2m

) , (12c)

V (x) =

(
4+6m−λx+2θx+2εx

4+6m

)
(
2+3m− λx2 +θx+εx

2+3m

) (
m+ λx

2

m

)(
m− λx

2 + θx
m

)(
m− λx

2 + εx
m

)
(12d)

×

0

[
1− λx+ θx, 1− λx+ εx
1− λx, 1− λx+ θx+ εx

]
0

 1− λx2 ,
1− λx
2
+ θx+ εx

1− λx
2
+ θx,

1− λx
2
+ εx


(
1+ 2m+ λx
1+ 2m

)(
1+ 2m+ θx
1+ 2m

)(
1+ 2m+ εx
1+ 2m

)(
1+ 2m− λx+ 2θx

1+ 2m

)(
1+ 2m− λx+ 2εx

1+ 2m

)(
1+ 2m− λx+ θx+ εx

1+ 2m

) , (12e)

W (x) = λθε
(−1)n+1

(n+ 1)3

∞∑
k=0

(k!)3

(n+ 2)3k

(
k− λx
k

)(
k− θx
k

)(
k− εx
k

)
(
n+ k+ 1− ϑx
n+ k+ 1

)(
n+ k+ 1− δx
n+ k+ 1

) . (12f)

By means of (5a) and (5b), we can compute without difficulty the coefficients

[xm]Tk(x) = Ωm(tk) with t
〈i〉
k = (ϑ

i
+ δi)H〈i〉k + (−1)

i(λi + θ i + εi)H〈i〉n−k;
and

[xm]W (x) = (−1)n+1λθε
∞∑
k=0

(k!)3

(n+ 1)3k+1
Ωm(wk)

where
w
〈i〉
k = (ϑ

i
+ δi)H〈i〉n+k+1 − (λ

i
+ θ i + εi)H〈i〉k .

Recalling the two expansion formulae of the 0-function mentioned before, we have the following two further coefficients
[xm]U(x) = Ωm(u)

where

u〈i〉 =

{
(λ− θ)i + (λ− ε)i +

(
λ

2

)i
+

(
λ

2
− θ − ε

)i}
σi −

{(
λ

2
− θ

)i
+

(
λ

2
− ε

)i
+ λi + (λ− θ − ε)i

}
σi

+ (−1)i
{(

λ

2

)i
+

(
θ −

λ

2

)i
+

(
ε −

λ

2

)i}
H〈i〉m + (−1)

i {θ i + εi + (θ + ε − λ)i}H〈i〉2m − (λ2 − θ − ε
)i
H〈i〉3m
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and
[xm]V (x) = Ωm(v)

where

v〈i〉 =
{
(λ− θ)i + (λ− ε)i − λi − (λ− θ − ε)i

}
σi −

{(
λ

2
− θ

)i
+

(
λ

2
− ε

)i
−

(
λ

2

)i
−

(
λ

2
− θ − ε

)i}
τi

− (−1)i
{(

λ

2

)i
+

(
θ −

λ

2

)i
+

(
ε −

λ

2

)i}
H〈i〉m + (−1)

i {λi + θ i + εi + (2θ − λ)i + (2ε − λ)i
+ (θ + ε − λ)i

}
H〈i〉1+2m +

(
λ

2
− θ − ε

)i
H〈i〉2+3m − (λ− 2θ − 2ε)

iH〈i〉4+6m.

Equating the coefficients of xm on both sides of (11), we establish the following formula.

Theorem 1 (Harmonic Number Identity). Let {tk, wk, u, v} be the four sequences just defined above. Then for m, ` ∈ N, there
holds the algebraic identity:

(−1)n+1λθε
∞∑
k=0

(k!)3

(n+ 1)3k+1
Ω`−3(wk)+

n∑
k=0

(−1)k
(n
k

)3
Ω`(tk)

=


(−1)m

(3m)!
(m!)3

Ω`(u), n = 2m;

(−1)m+1

2
λ(3+ 6m)!(m!)3

{(1+ 2m)!}3(1+ 3m)!
Ω`−1(v), n = 2m+ 1.

When one of the parameters λ, ε and θ equals zero, this theorem gives numerous finite sum formulae on harmonic numbers.
Instead for λεθ 6= 0, Theorem 1 will lead to several infinite series identities involving both harmonic numbers and the
Riemann zeta function. For further identities of finite and infinite series of similar type, the reader can refer to [5–8,12–14]
and [4,9,11,17], respectively. In addition, it is pointed out by an anonymous referee that the expansion of hypergeometric
sum expressions, as carried out in this paper, has applications in particle physics (cf. Vermaseren [15]).

3. Examples: Harmonic number identities

As applications of Theorem 1, this section will display several interesting finite and infinite series identities involving
harmonic numbers and the Riemann zeta function.

3.1. ` = 0

In this case, we recover Dixon’s classical identity on alternating sums of cubic binomial coefficients

n∑
k=0

(−1)k
( n
k

)3
=

(−1)m
(3m)!
(m!)3

, n = 2m;

0, n = 2m+ 1.

3.2. ` = 1

The corresponding identity displayed in Theorem 1 reads as
n∑
k=0

(−1)k
( n
k

)3
{(ϑ + δ)Hk − (λ+ θ + ε)Hn−k}

=


(−1)m+1

(3m)!
(m!)3

(
θ + ε −

λ

2

)
(Hm + 2H2m − H3m), n = 2m;

(−1)m+1λ
2

(3+ 6m)!(m!)3

(1+ 3m)!{(1+ 2m)!}3
, n = 2m+ 1.

Under the involution k→ n− k, this identity can be simplified as [12, Eq 2]

n∑
k=0

(−1)k
( n
k

)3
Hk =


(−1)m

2
(3m)!
(m!)3

(Hm + 2H2m − H3m), n = 2m;

(−1)m+1

6
(3+ 6m)!(m!)3

{(1+ 2m)!}3(1+ 3m)!
, n = 2m+ 1.

(13)
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3.3. ` = 2

When n = 2m, we have the following general identity.

n∑
k=0

(−1)k
( n
k

)3 {
(ϑ2 + δ2)H〈2〉k + (λ

2
+ θ2 + ε2)H〈2〉n−k + {(ϑ + δ)Hk − (λ+ θ + ε)Hn−k}

2
}

(14a)

= (−1)m
(3m)!
(m!)3

[{
λ2

4
+

(
θ −

λ

2

)2
+

(
ε −

λ

2

)2}
H〈2〉m +

{
θ2 + ε2 + (θ + ε − λ)2

}
H〈2〉2m

+

(
θ + ε −

λ

2

)2
(Hm + 2H2m − H3m)2 −

(
θ + ε −

λ

2

)2
H〈2〉3m

]
. (14b)

It is trivial to check that for λ = 4 and ε, θ = 1 ±
√
−3, the last identity becomes Weideman’s (1). Furthermore, we can

deduce, by specifying the parameters λ, ε and θ , the following harmonic number identities.

Example 1 (λ = 0 and ε, θ = ±1: [12, Eq 3] and [14, Eq 1.12]).
2m∑
k=0

(−1)k
( 2m
k

)3
{H〈2〉k + H

〈2〉
2m−k} = (−1)

m (3m)!
(m!)3

{
H〈2〉m + H

〈2〉
2m

}
.

Example 2 (λ = 4 and ε, θ = 1± 3
√
−1: [6, Example 8]).

2m∑
k=0

(−1)k
( 2m
k

)3
(Hk − H2m−k)2 =

(−1)m+1

3
(3m)!
(m!)3

{
H〈2〉m + H

〈2〉
2m

}
.

Example 3 (λ = 0, ε = 1 and θ =
√
−1: [6, Example 6] and [12, Eq 23]).

2m∑
k=0

(−1)k
( 2m
k

)3
(Hk + H2m−k)2 = (−1)m

(3m)!
(m!)3

{
(Hm + 2H2m − H3m)2 + H

〈2〉
2m − H

〈2〉
3m

}
.

According to linear combinations, the last two examples are equivalent to the following two identities (cf. [12, Eqs. 22 and 23]
and [14, Eqs. 1.10 and 1.11]).

2m∑
k=0

(−1)k
( 2m
k

)3
H2k =

(−1)m

12
(3m)!
(m!)3

[
3(Hm + 2H2m − H3m)2 − H〈2〉m + 2H

〈2〉
2m − 3H

〈2〉
3m

]
, (15a)

2m∑
k=0

(−1)k
( 2m
k

)3
HkH2m−k =

(−1)m

12
(3m)!
(m!)3

[
3(Hm + 2H2m − H3m)2 + H〈2〉m + 4H

〈2〉
2m − 3H

〈2〉
3m

]
. (15b)

Instead, for ` = 2 and n = 1+ 2m, the corresponding identity reduces to
n∑
k=0

(−1)k
( n
k

)3 {
(ϑ2 + δ2)H〈2〉k + (λ

2
+ θ2 + ε2)H〈2〉n−k + {(ϑ + δ)Hk − (λ+ θ + ε)Hn−k}

2
}

= (−1)m
λ(3+ 6m)!(m!)3( λ2 − θ − ε)
{(1+ 2m)!}3(1+ 3m)!

{Hm − 4H1+2m − H2+3m + 2H4+6m} .

Under the replacement k→ n− k, this identity simplifies to the following one.

Example 4 (Schneider [14, Section 3.3]).
1+2m∑
k=0

(−1)k
( 1+ 2m

k

)3
{3H2k + H

〈2〉
k } =

(−1)m

2
(3+ 6m)!(m!)3

{(1+ 2m)!}3(1+ 3m)!
{Hm − 4H1+2m − H2+3m + 2H4+6m} .

However, when the factor 3H2k + H
〈2〉
k is split into two terms, the corresponding sums do not have closed expressions.

Schneider [14, Eq 1.15] has verified this fact by showing the following interesting identity
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1+2m∑
k=0

(−1)k
( 1+ 2m

k

)3
H〈2〉k =

(−1)m

12
(3+ 6m)!(m!)3

{(1+ 2m)!}3(1+ 3m)!

{
−2+

m∑
i=1

(5+ 36i+ 72i2){(2i)!}3{(3i)!}2

2i(1+ 2i)(1+ 6i)!(i!)6

}
.

In order to reduce lengthy expressions, the following two abbreviated notations will be utilized in the rest of the paper:
Φm := Hm + 2H2m − H3m and Ψm = Hm − 4H1+2m − H2+3m + 2H4+6m.

3.4. ` = 3

By specifying the parameters λ, ε and θ concretely in Theorem 1, we can derive the following seven harmonic number
identities.

Example 5 (λ = 4 and ε, θ = 1±
√
−3).

∞∑
k=0

(k!)3

(1+ 2m)3k+1
+

2m∑
k=0

(−1)k
( 2m
k

)3
H〈3〉k =

(−1)m

2
(3m)!
(m!)3

{
2ζ (3)− H〈3〉2m + H

〈3〉
m

}
.

Example 6 (λ = 4 and ε, θ = 1±
√
−3).

∞∑
k=0

2(k!)3

(2+ 2m)3k+1
+

1+2m∑
k=0

(−1)k
( 1+ 2m

k

)3 {
9(H3k + HkH

〈2〉
k )− 9(H

〈2〉
k + 3H

2
k )H1+2m−k + 2H

〈3〉
k

}
= 2(−1)m+1

(3+ 6m)!(m!)3

{(1+ 2m)!}3(1+ 3m)!
ζ (2).

Example 7 (λ = 4 and ε, θ = 1± 3
√
−1).

∞∑
k=0

5(k!)3

(2+ 2m)3k+1
+

1+2m∑
k=0

(−1)k
( 1+ 2m

k

)3 {
9H3k − 4H

〈3〉
k − 27H

2
kH1+2m−k

}
=
(−1)m+1

2
(3+ 6m)!(m!)3

{(1+ 2m)!}3(1+ 3m)!

{
10ζ (2)+ 3H〈2〉m − 15H

〈2〉
1+2m

}
.

Example 8 (λ = 0, ε = 1 and θ =
√
−1).

2m∑
k=0

(−1)k
( 2m
k

)3 {
H3k − H

〈3〉
k + 3HkH

2
2m−k

}
=
(−1)m

2
(3m)!
(m!)3

{
Φ3m − 3Φm(H

〈2〉
3m − H

〈2〉
2m )− 2H

〈3〉
3m + H

〈3〉
2m − H

〈3〉
m

}
.

Example 9 (λ = 2, ε = 1+
√
−3 and θ = 0).

2m∑
k=0

(−1)k
( 2m
k

)3 {
(3H2m−k − 2Hk)H2k + (H2m−k − 2Hk)H

〈2〉
k

}
=
(−1)m

8
(3m)!
(m!)3

{
Φ3m + Φm(H

〈2〉
m + 4H

〈2〉
2m − 3H

〈2〉
3m )− 2H

〈3〉
3m + 2H

〈3〉
m

}
.

Example 10 (λ = 2, ε = 1+
√
−3 and θ = 0).

1+2m∑
k=0

(−1)k
( 1+ 2m

k

)3 {
HkH

〈2〉
1+2m−k + 3HkH

2
1+2m−k

}
=
(−1)m

24
(3+ 6m)!(m!)3

{(1+ 2m)!}3(1+ 3m)!

{
3Ψ 2m + 3H

〈2〉
2+3m + 8H

〈2〉
1+2m − H

〈2〉
m − 12H

〈2〉
4+6m

}
.

Example 11 (λ = 2, ε = 1 and θ = 0).
1+2m∑
k=0

(−1)k
( 1+ 2m

k

)3 {
3H3k + 5HkH

〈2〉
k + 2H

〈3〉
k − (9H

2
k + 5H

〈2〉
k )H1+2m−k

}
=
(−1)m

3
(3+ 6m)!(m!)3

{(1+ 2m)!}3(1+ 3m)!

{
H〈2〉m − 5H

〈2〉
1+2m

}
.
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We remark that the last identity can also be obtained by combining Example 6 with Example 7 and canceling the parts
containing ζ (2).

3.5. ` = 4

For ` ≥ 4, the identities specialized from Theorem 1 are generally quite complicated. We limit ourselves to present only
four summation formulae for exemplification.

Example 12 (λ = 0 and ε, θ = ±1).
2m∑
k=0

(−1)k
( 2m
k

)3 {
H〈4〉k + H

〈2〉
k H

〈2〉
k + H

〈2〉
k H

〈2〉
2m−k

}
=
(−1)m

2
(3m)!
(m!)3

{
H〈4〉m + H

〈4〉
2m + {H

〈2〉
m + H

〈2〉
2m }

2
}
.

Example 13 (λ = 1, ε = 0 and θ = −1).
1+2m∑
k=0

(−1)k
( 1+ 2m

k

)3 {
10H〈4〉k + 30H

2
kH
〈2〉
k + 7H

〈2〉
k H

〈2〉
k + 24HkH

〈3〉
k + 12H

2
kH
〈2〉
1+2m−k + 9H

4
k

}
=

(−1)m(3+ 6m)!(m!)3

4{(1+ 2m)!}3(1+ 3m)!

[
3Ψ 3m + 6H

〈3〉
m − 64H

〈3〉
1+2m − 6H

〈3〉
2+3m + 48H

〈3〉
4+6m

−Ψm

{
11H〈2〉m − 64H

〈2〉
1+2m − 9H

〈2〉
2+3m + 36H

〈2〉
4+6m

}]
.

Example 14 (λ = 4 and ε, θ = 1±
√
−3).

∞∑
k=0

(k!)3(Hk − H2+2m+k)
(2+ 2m)3k+1

+

1+2m∑
k=0

(−1)k
( 1+ 2m

k

)3 {
H〈4〉k + (Hk − H1+2m−k)H

〈3〉
k

}
=
(−1)m

6
(3+ 6m)!(m!)3

{(1+ 2m)!}3(1+ 3m)!

{
4ζ (3)+ H〈3〉m − 7H

〈3〉
1+2m

}
.

Finally, by combining the two special cases of Theorem 1 specified with λ = ±4, ε, θ = 4 ± (1 +
√
−1)

√
6+ 6

√
−1 and

2± (1+
√
−1)

√
6+ 12

√
−1, we find the following strange looking identity.

Example 15 (Harmonic Number Identity).
∞∑
k=0

(k!)3 {Hk + H1+2m+k}
(1+ 2m)3k+1

+

2m∑
k=0

(−1)k
( 2m
k

)3 {
H〈4〉k + (Hk + H2m−k)H

〈3〉
k

}
=
(−1)m

2
(3m)!
(m!)3

{
3ζ (4)+ 2Φmζ (3)+ H〈4〉m − 2H

〈4〉
2m + Φm(H

〈3〉
m − H

〈3〉
2m )
}
.

Whenm = 0, it recovers the identity (cf. [2, Eq 4], [4, Eq 1.3], [9, B7a] and [11, Eq 7])
∞∑
n=1

Hn
n3
=
5
4
ζ (4) =

π4

72
.

Further infinite series identities of this type have been derived by Zheng [17]. Moreover, analogous multiple Euler sums are
heavily used in physics [3,15], where highly non-trivial computations have been accomplished.
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