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Suppose a closed orientable 3-manifold M has a genus g Heegaard surface P with distance
d(P ) = 2g. Let Q be another genus g Heegaard surface which is strongly irreducible. Then
we show that there is a height function f : M → I induced from P such that by isotopy,
Q is deformed into a position satisfying the following; (1) f |Q has 2g + 2 critical points
p0, p1, . . . , p2g+1 with f (p0) < f (p1) < · · · < f (p2g+1) where p0 is a minimum and p2g+1
is a maximum, and p1, . . . , p2g are saddles, (2) if we take regular values ri (i = 1, . . . ,

2g + 1) such that f (pi−1) < ri < f (pi), then f −1(ri)∩ Q consists of a circle if i is odd, and
f −1(ri) ∩ Q consists of two circles if i is even.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Hempel [3] introduced the concept of distance of a Heegaard splitting, and it is shown by many authors that it well rep-
resents various complexities of 3-manifolds. For example, Scharlemann and Tomova [10] show that high distance Heegaard
splittings are “rigid”. More precisely:

Theorem 1.1. (Corollary 4.5 of [10]) If a compact orientable 3-manifold M has a genus g Heegaard surface P with distance d(P ) > 2g,
then

1. any other Heegaard surface of the same genus is isotopic to P ;
2. moreover, any Heegaard surface Q of M with 2g(Q )�d(P ) is isotopic to a stabilization or boundary stabilization of P .

Recently, Berge and Scharlemann [1] have shown the following fact:

Fact. If a closed orientable 3-manifold M has a genus 2 Heegaard surface P with distance d(P ) = 4, then any other genus 2 Heegaard
surfaces of M is isotopic to P . Moreover there exist examples of 3-manifolds each of which admits mutually non-isotopic genus 2
Heegaard surfaces with distance 3.

Hence, it seems that it is natural to call P with distance d(P ) = 2g(P ) a critical distance Heegaard surface. Then we have
the following question:

Question. If a closed orientable 3-manifold M has a genus g Heegaard surface P with distance d(P ) = 2g , then are any
genus g Heegaard surfaces of M isotopic to P ?
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In this paper, we tackle the above question. Unfortunately, we do not have the answer for the above yet. We show that
any other genus g Heegaard surface Q can be isotoped to a neat position with respect to a height function induced from
the genus g Heegaard surface P , if Q is not isotopic to P and d(P ) = 2g . Precisely speaking:

Theorem 1.2. Suppose that a closed orientable 3-manifold M has a genus g Heegaard surface P with distance d(P ) = 2g. Let Q be
another genus g Heegaard surface which is strongly irreducible. Then there is a height function f : M → I induced from P (that is, the
level surfaces of f with height t (�= 0,1) are isotopic to P ) such that by isotopy, Q is deformed into a position satisfying the following:

1. f |Q has 2g + 2 critical points p0, p1, . . . , p2g+1 with f (p0) < f (p1) < · · · < f (p2g+1) where p0 is a minimum and p2g+1 is a
maximum, and p1, . . . , p2g are saddles,

2. if we take regular values ri (i = 1, . . . ,2g + 1) such that f (pi−1) < ri < f (pi), then f −1(ri) ∩ Q consists of a circle if i is odd,
and f −1(ri) ∩ Q consists of two circles if i is even.

The main tool of the proof of Theorem 1.2 is Reeb graphs derived from horizontal arcs of the Rubinstein–Scharlemann
graphic (or graphic for short). Graphic is introduced by Rubinstein and Scharlemann [9] for studying Reidemeister–Singer
distance of two strongly irreducible Heegaard splittings. Moreover, under certain technical conditions, Li [8] shows that
there exist horizontal arcs disjoint from the union of the regions each of which is labeled X, x, Y or y (for the definitions,
see Section 3) of the graphic. He gives an alternative proof of Theorem 1.1 by using such horizontal arcs.

In [4], to give a more detailed treatment for such horizontal arc, we introduce Reeb graphs derived from such horizontal
arcs, and by introducing a method of assigning positive integer to each edge of Reeb graph, we give an estimation of Hempel
distance (see Section 4). In this paper, by using Reeb graphs and the assigning method, we prove Theorem 1.2, and we hope
that this could help giving the answer to the above question.

2. Preliminaries

2.1. Heegaard splittings

A genus g(� 1) handlebody H is the boundary sum of g copies of a solid torus. Note that H is homeomorphic to the
closure of a regular neighborhood of some finite graph Σ in R

3. The image Σ of the graph is called a spine of H . By a
technical reason, throughout this paper, we suppose that each vertex of spines of genus g(> 1) handlebodies is of valency
three (for a detailed discussion, see Section 2 of [7]). Let M be a closed orientable 3-manifold. We say that A ∪P B is a
(genus g) Heegaard splitting of M if A, B are genus g handlebodies in M such that M = A ∪ B and A ∩ B = ∂ A = ∂ B = P .
Then P is called a (genus g) Heegaard surface of M . A disk D properly embedded in a handlebody H is called a meridian
disk of H if ∂ D is an essential simple closed curve in ∂ H . If there are meridian disks D A, D B in A, B respectively so that
∂ D A = ∂ D B , A ∪P B is said to be reducible. If there are meridian disks D A , D B in A, B respectively so that ∂ D A, ∂ D B are
disjoint on P , A ∪P B is said to be weakly reducible. It is easy to see that if a Heegaard splitting M = A ∪P B is reducible, it
is weakly reducible. If A ∪P B is not weakly reducible, it is said to be strongly irreducible.

2.2. Curve complexes

Let S be a closed connected orientable surface S of genus at least two, and C(S) the 1-skeleton of Harvey’s complex
of essential simple closed curves on S (see [2]), that is, C(S) denotes the graph whose 0-simplices are isotopy classes of
essential simple closed curves and whose 1-simplices connect distinct 0-simplices with disjoint representatives. We remark
that C(S) is connected. Let x, y be 0-simplices of C(S). Then we define the distance between x and y, denoted by dS(x, y),
as the minimum of such d that there is a path in C(S) with d 1-simplices joining x and y. Let X , Y be subsets of the
0-simplices of C(S). Then we define

dS(X, Y ) = min
{

dS(x, y)
∣∣ x ∈ X, y ∈ Y

}
.

Suppose that S is the boundary of a handlebody V . Then M(V ) denotes the subset of C(S) consisting of the 0-simplices
with representatives bounding meridian disks of V . For a genus g(� 2) Heegaard splitting A ∪P B , its Hempel distance,
denoted by d(P ), is defined to be dP (M(A), M(B)).

3. Rubinstein–Scharlemann graphics

Let M be a smooth closed orientable 3-manifold. A sweep-out is a smooth map f : M → I such that for each x ∈ (0,1),
the level set f −1(x) is a closed surface, and f −1(0) (resp. f −1(1)) is a connected, finite graph such that each vertex has
valency three. Each of f −1(0) and f −1(1) is called a spine of the sweep-out. It is easy to see that each level surface of f
is a Heegaard surface of M and the spines of the sweep-outs are spines of the two handlebodies in the Heegaard splitting.
Conversely, given a Heegaard splitting A ∪P B of M , it is easy to see that there is a sweep-out f of M such that each level
surface of f is isotopic to P , f −1(0) is a spine of A, and f −1(1) is a spine of B . We call it a sweep-out obtained from A ∪P B .
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Given two sweep-outs, f and g of M , we consider their product f × g (that is, ( f × g)(x) = ( f (x), g(x))), which is a
smooth map from M to I×I . Kobayashi and Saeki [7] have shown that by arbitrarily small deformations of f and g , we
can suppose that f × g is a stable map on the complement of the four spines. At each point in the complement of the
spines, the differential of the map f × g is a linear map from R

3 to R
2. This map have a one-dimensional kernel for a

generic point in M . The discriminant set for f × g is the set of points where the differential has a higher-dimensional kernel.
Mather’s classification of stable maps [6] implies that at each point of the discriminant set, the dimension of the kernel of
the differential is two, and the discriminant set is a one-dimensional smooth submanifold in the complement of the spines
in M . Moreover the discriminant set consists of all such x that a level surface of f is tangent to a level surface of g at x
(here, we note that the tangent point is either a “center” or “saddle”).

Let f , g be as above with f × g stable. The image of the discriminant set is a graph in I × I , which is called the
Rubinstein–Scharlemann graphic. It is known that the Rubinstein–Scharlemann graphic is a finite 1-complex Γ with each
vertex having valency four or two. Each valency four vertex is called a crossing vertex, and each valency two vertex is called
a birth-death vertex. There are valency one or two vertices of the graphic on the boundary of I × I . Each component of the
complement of Γ in I × I is called a region. At each point of a region, the corresponding level surfaces of f and g are
disjoint or intersect transversely. The stable map f × g is generic if each arc {s}× I or I ×{t} contains at most one vertex of
the graphic. By Proposition 6.14 of [7], by arbitrarily small deformation of f and g , we may suppose that f × g is generic.

3.1. Labeling regions of the graphic

Let f and g be sweep-outs obtained from Heegaard splittings A ∪P B , X ∪Q Y , respectively with f ×g stable. Now
we introduce how to label each region of the graphic with following the convention of [9]. For each s ∈ I , we put that
P s = f −1(s) (in particular, ΣA denotes P0 and ΣB denotes P1), As = f −1([0, s]) and Bs = f −1([s,1]). Similarly, for t ∈ I , we
put that Q t = g−1(t) (in particular, ΣX denotes Q 0 and ΣY denotes Q 1), Xt = g−1([0, t]) and Yt = g−1([t,1]). Let (s, t) be a
point in a region of the graphic. Then either P s ∩ Q t = φ, or P s and Q t intersect transversely in a collection C = {c1, . . . , cn}
of simple closed curves.

Definition 3.1. Let C = {c1, . . . , cn} be as above. Then C P denotes the subset of C consisting of the elements which are
essential on P s . Furthermore the subset C A of C P is defined by:

C A = {
c ∈ C P

∣∣ c bounds a disk D in Q t \ C P such that N(∂ D, D) ⊂ As
}
,

where N(∂ D, D) is a regular neighborhood of ∂ D in D . Analogously C B ⊂ C P and C X , CY ⊂ C Q are defined.

If C A (resp. C B , C X , CY ) is non-empty, the region is labeled A (resp. B , X , Y ). If C P and C Q are both empty and As (resp.
Bs) contains an essential curve of Q t , then the region is labeled b (resp. a). If C P and C Q are both empty and Xt (resp. Yt )
contains an essential curve of P s , then the region is labeled y (resp. x). R A (resp. R B , R X , RY , Ra , Rb , Rx , R y) denotes the
closure of the union of the regions labeled A (resp. B , X , Y , a, b, x, y). Rφ denotes the closure of the union of the unlabeled
regions. The next lemma is proved in the proof of Lemma 3.2 of [8] (see also [4], [5]).

Lemma 3.2. Let M, P , Q be as above. Suppose P , Q are strongly irreducible. If Q is not isotopic to P , then there exists t ∈ (0,1) such
that I × {t} is disjoint from R X ∪ Rx and RY ∪ R y .

For a proof of the next lemma, see Corollary 5.6 of [4].

Lemma 3.3. Let t be as in Lemma 3.2. There is a subarc [s0, s1] × {t} ⊂ I × {t} such that:

• (s1, t) ∈ {an edge of the graphic}, and
• for any s ∈ (s0, s1), (s, t) ∈ Rφ , and for any small ε > 0, (s0 − ε, t) ∈ R A and (s1 + ε, t) ∈ R B .

Then we apply the argument of the proof of Lemma 2.1 of [8] to obtain such Q ′ from Q t by an ambient isotopy whose
support is contained in f −1([s0 + ε, s1 − ε]) that satisfies the following conditions.

Conditions 3.4. Let Q ∗ = f −1([s0 + ε, s1 − ε]) ∩ Q ′ . Then,

1. at each s ∈ (s0, s1), Q ∗ is transverse to each P s , except for finitely many critical levels x1, . . . , xn ∈ (s0, s1);
2. at each critical level xi , Q ∗ is transverse to Pxi except for a saddle or circle tangency, as shown in Fig. 2.1(a) of [8];
3. at each regular level s ∈ (s0, s1), each component of P s ∩ Q ∗ is a simple closed curve which is essential in both P s

and Q ∗ .

In the remainder of this paper, we abuse notion by denoting Q for Q ′ .
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Fig. 1. Assigning an integer to each edge of G .

4. An estimation of Hempel distance by Reeb graph

We continue with Section 3. Particularly, let s0, s1 be as in Lemma 3.3, and Q ∗ as in Conditions 3.4. Define the equiv-
alence relation ∼ on points on Q ∗ by x ∼ y whenever x, y are in the same component of a level set of f |Q ∗ : Q ∗ →
[s0 + ε, s1 − ε]. The Reeb graph corresponding to f |Q ∗ is the quotient space of Q ∗ by the relation ∼. Then G denotes the
Reeb graph corresponding to f |Q ∗ . Note that G is a finite 1-complex such that the edges of G come from annuli in Q ∗
fibered by level loops, and that the valency two vertices correspond to circle tangencies, the valency three vertices corre-
spond to saddle tangencies, and the valency one vertices correspond to components of ∂ Q ∗ . In particular, if a valency one
vertex corresponds to a component of f −1(s0 +ε)∩ Q (resp. f −1(s1 −ε)∩ Q ), then it is called a ∂−-vertex (resp. ∂+-vertex).
The union of ∂−-vertices (resp. ∂+-vertices) is denoted by ∂−G (resp. ∂+G). Let f ∗ : G → [s0 + ε, s1 − ε] be the function
induced from f |Q ∗ . Note that for each s ∈ (s0 + ε, s1 − ε), f ∗−1(s)(⊂ G) consists of a finite number of points corresponding
to the components of P s ∩ Q ∗ .

In [4], a method of estimating Hempel distance by using Reeb graph is given. We note that the Reeb graphs in [4] are
slightly different from the above Reeb graphs, since circle tangencies did not come to appear in [4]. However it is easy to
see that the arguments in [4] work in the setting of this paper. We introduce it here.

Let G , ∂±G , f ∗ be as above. We assign a positive integer to each edge of G according to the following steps. Let
w1, . . . , wk be the vertices of G which are not ∂-vertices. We suppose that w1, . . . , wk are positioned in this order from
the left, i.e., f ∗(w1) < f ∗(w2) < · · · < f ∗(wk).

Now we define Steps 0, 1 and 2 inductively for assigning positive integers to the edges of G (see Fig. 1).

Step 0. We assign 1 to every edge adjacent to ∂−G .

Step 1. Suppose that there is a valency two vertex wi adjacent to edges el , el′ such that el has already been assigned and
el′ has not been assigned yet. Then we assign the same integer as that of el to el′ . We apply this assignment as much as
possible.

In our assigning process, we will repeat applications of Steps 1 and 2. Before describing Step 2, we will give a general
condition that the assignments have in the process. Suppose we finish Step 1 in repeated applications of Steps 1 and 2.
At this stage, either every edge of G is assigned exactly one integer, or there is a unique vertex wi such that there is
an unassigned edge adjacent to wi , and that each edge of G containing a point x with f ∗(x) < f ∗(wi) has already been
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assigned exactly one integer. Then we suppose that the assigned integers satisfy the following condition (∗). (Note that the
conditions are clearly satisfied after Steps 0 and 1.)

(∗) For a small ε > 0, let Li be the set of the edges of G each containing a point x with f ∗(x) = f ∗(wi)−ε . Then it satisfies
one of the following conditions:
(1) All of the elements of Li are assigned with the same integer, say n.
(2) The set of the integers assigned to the elements of Li consists of consecutive two integers, say n − 1 and n.

Step 2.

1. Suppose that the vertex wi satisfies the condition (1). Then we assign n + 1 to the unassigned edge(s) adjacent to wi .
2. Suppose that the vertex wi satisfies the condition (2). Then we assign n to the unassigned edge(s) adjacent to wi .

After finishing Step 2, we apply Step 1. Here we note that there are no multiple assignments. If all of the edges are
assigned integers, then we are done. Suppose there is an unassigned edge. Then there is a unique vertex w j such that
there is an unassigned edge adjacent to w j , and that each edge of G that contains a point y such that f ∗(y) < f ∗(w j) has
already been assigned. Then we can show that the assignments at the current stage, also satisfies (∗) (for the proof, see
Lemma 7.1 of [4]). And by repeating the processes, we finally assign an integer to each edge of G .

The next theorem is proved as in the proof of Theorem 7.3 of [4].

Theorem 4.1. Let P , Q and G be as above. Let n be the minimum of the integers assigned to the edges adjacent to ∂+G. Then the
distance d(P ) is at most n + 1.

5. Proof of main theorem

Let P , Q , Q ∗ , G , ∂±G , f , f ∗ be as in Section 4. In this section, we suppose that P and Q are genus g Heegaard surfaces
and d(P ) = 2g , and then we consider the Reeb graph G derived from Q ∗ .

Since Q is connected, there is a component of Q ∗ , say Q̂ ∗ , whose Reeb graph contains a ∂−-vertex and a ∂+-vertex. Let
Ĝ∗ be the Reeb graph corresponding to Q̂ ∗ .

Claim 5.1. The Reeb graph Ĝ∗ contains exactly 2g − 2 valency three vertices, and each component of cl(Q \ Q̂ ∗) is an annulus.

Proof. By 3 of Condition 3.4, each component of ∂ Q̂ ∗ is essential on Q . Hence by Euler characteristic argument, we see that
Q̂ ∗ contains at most 2g − 2 saddles. By the rule in the assigning process, for each valency three vertex v , the difference in
the integers assigned to the edges adjacent to v is at most one. Hence the integer assigned to the edges of Ĝ∗ containing ∂+-
vertex is at most 2g −1. This fact together with Theorem 4.1 and the assumption d(P ) = 2g show that each edge containing
∂+-vertex is assigned 2g − 1. Moreover by the rule in the assigning process, we see that Q̂ ∗ contains exactly 2g − 2 saddles.
Hence χ(Q \ Q̂ ∗) = χ(Q ) − χ(Q̂ ∗) = 0, and this implies that each component of cl(Q \ Q̂ ∗) is an annulus. �

Let G be any path in the Reeb graph Ĝ∗ joining a ∂−-vertex and a ∂+-vertex.

Claim 5.2. The path G contains all of the valency three vertices in Ĝ∗ .

Proof. Assume that G does not contain all of the valency three vertices. Then by Claim 5.1, G contains at most 2g − 3
valency three vertices. This fact together with the rule in the assigning process show that the edge of G adjacent to an
∂+-vertex is assigned an integer less than 2g − 1. Then Theorem 4.1 shows that d(P ) < 2g , a contradiction. Hence this claim
holds. �

Let v1, . . . , v2g−2 be the valency three vertices contained in G . By the proof of Claim 5.2, we see that by changing
subscripts if necessary, we may suppose for each i, the set of the integers assigned to the edges adjacent to vi consists of
consecutive two integers {i, i + 1}.

Claim 5.3. f ∗(v1) < f ∗(v2) < · · · < f ∗(v2g−2).

Proof. Suppose that there exists i such that f ∗(vi) > f ∗(vi+1), then there is a point x in the path G , which joins vi+1 and
a ∂+-vertex such that f ∗(vi+1) < f ∗(x) < f ∗(vi). Note that by Claim 5.2, the edge containing x is assigned at least i + 2.
Then there is a point x′ in the path G , which joins a ∂−-vertex and vi such that f ∗(x) = f ∗(x′). By Claim 5.2, the integer
assigned to the edge containing x′ is at most i, contradicting condition (∗). �
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Fig. 2. The Reeb graph Ĝ∗ .

Fig. 3. i is odd. Fig. 4. i is even.

Fig. 5. The possible patterns of assigned edges adjacent to vi .

By Claim 5.1 and the assumption d(P ) = 2g , we see that Q̂ ∗ is the unique component whose Reeb graph contains both
a ∂−-vertex and a ∂+-vertex (Fig. 2).

Claim 5.4. For vi (i = 1, . . . ,2g − 2), if i is odd, then the number of edges assigned i adjacent to vi is exactly two. If i is even, then the
number of edges assigned i adjacent to vi is exactly one.

Proof. By the fact that each component of cl(Q \ Q̂ ∗) is an annulus (Claim 5.1) and 3 of Conditions 3.4, we see that each
component of Q ∗ other than Q̂ ∗ is an annulus. This fact together with Theorem 4.1 and the assumption d(P ) = 2g show
that both of the boundary components of each annulus are contained in f −1(s0 + ε) or f −1(s1 − ε). This shows that the
number of edges containing ∂−G is even, and the number of ∂−-vertices contained in Ĝ∗ is even. This together with the fact
that v1 is the only vertex which is adjacent to edges assigned 1, show that the number of edges assigned 1 in Ĝ∗ adjacent
to ∂−G is exactly two. This implies that the number of edges assigned 1 in Ĝ∗ adjacent to v1 is two and the number of
edges assigned 2 adjacent to v1 is one. This implies that the number of edges assigned 2 adjacent to v2 is exactly one. By
this fact and the fact that for each i, the set of the integers assigned to the edges adjacent to vi consists of consecutive
two integers {i, i + 1}, we see that the remaining two edges are assigned 3. By repeating the arguments, we have this claim
(Figs. 3 and 4). �

We say that vi is in a normal position, if vi satisfies the following:

For each edge e adjacent to vi , if e is assigned i (resp. i + 1), then for each x ∈ e, f ∗(x) < f ∗(vi) (resp. f ∗(x) > f ∗(vi)).

Claim 5.5. For each vi , there is an ambient isotopy ϕ
(i)
t of M whose support is contained in f −1([ f ∗(vi) − ε, f ∗(vi) + ε]) such that

ϕ
(i)
1 (Q ∗) satisfies Conditions 3.4, hence, the Reeb graph of ϕ

(i)
1 (Q ∗) is defined, where the Reeb graph contains exactly one valency

three vertex between the levels f ∗(vi) − ε and f ∗(vi) + ε , which is in a normal position.

Proof. Suppose that vi is not in a normal position. Then the possible patterns of assigned edges adjacent to vi are shown
in Fig. 5 (1)–(6).

We consider the pattern (1). The component of f −1([ f ∗(vi) − ε, f ∗(vi) + ε]) ∩ Q ∗ containing the critical point of f |Q ∗
is a wedge of two circles c1, c2 on Q ∗ . Here, c1 corresponds to the edge assigned i + 1. Now we take a narrow annulus A
such that A ∩ Q ∗ = ∂A ∩ Q ∗ = c1, f |A has no critical point, and f (∂A \ c1) = f ∗(vi) + ε/2. Then we push c1 along A to
deform Q ∗ as in Fig. 6. By this figure, we see that this ambient isotopy gives ϕ

(i)
t .
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Fig. 6. The pattern (1).

Fig. 7. The patterns (2) and (5).

Fig. 8. The patterns (3) and (6).

The pattern (4) can be treated in a similar argument as in the pattern (1).
The patterns (2), (5) can be treated by two successive applications of the above arguments as described in Fig. 7. Details

the left to the reader.
The patterns (3), (6) can be treated by three successive applications of the above arguments as described in Fig. 8. Details

the left to the reader. �
Here, for simplicity, we use Q ∗ for ϕ1

1(ϕ2
1 (· · · (ϕ2g−2

1 (Q ∗)) · · ·)).

Claim 5.6. There is an ambient isotopy ψ
(1)
t of M whose support is contained in f −1([s0 + ε, f ∗(v2)]) such that ψ

(1)
1 (Q ∗) satisfies

Conditions 3.4, hence, the Reeb graph of ψ
(1)
1 (Q ∗) is defined, and it satisfies the following. There is exactly one valency three vertex in

the levels (s0 + ε, f ∗(v2)), which has the level f ∗(v1) and is in a normal position, and every edge which is assigned 1 is contained in
between the levels s0 + ε and f ∗(v1).

Proof. Let P1, P2, be the path in Ĝ∗ each of which joins a ∂−-vertex and v1. We consider the subset Qi of Pi consisting
of the point x with f ∗(x) � f ∗(v1). Since v1 is in a normal position (Claim 5.5), Qi is a union of subarcs contained in
Int(Pi). By condition (∗) in Section 4, we see that Qi is contained between the levels f ∗(v1) and f ∗(v2). Note that the
preimage of each arc is an annulus properly embedded in the product region f −1([ f ∗(v1), f ∗(v2)]), whose boundary is
contained in the boundary component of f −1( f ∗(v1)). This shows that there is an ambient isotopy of M whose support
is contained in a small neighborhood of f −1([ f ∗(v1), f ∗(v2)]), which pushes the annuli corresponding to Q1 ∪ Q2 out of
f −1([ f ∗(v1), f ∗(v2)]). Note that this ambient isotopy does not affect the vertex v1. Hence we obtained a desired ambient
isotopy (Fig. 9). �
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Fig. 9. Ambient isotopy ψ
(1)
t .

Fig. 10. Ambient isotopy ψ
(2)
t .

Here, for simplicity, we use Q ∗ for ψ
(1)
1 (Q ∗). By using similar arguments as in the proof of Claim 5.6, we have the

following.

Claim 5.7. There is an ambient isotopy ψ
(2)
t of M whose support is contained in f −1([ f ∗(v1), f ∗(v3)]) which satisfies Conditions 3.4,

hence, the Reeb graph of ψ
(2)
1 (Q ∗) is defined, and it satisfies the following. There is exactly one valency three vertex in the levels

( f ∗(v1), f ∗(v2)), which has the level f ∗(v2) and is in a normal position, and every edge which is assigned 2 is contained in between
the levels f ∗(v1) and f ∗(v2).

Then we successively apply similar argument to v3, v4, . . . , v2g−2, and we finally obtain the next claim (see Fig. 10).

Claim 5.8. We may suppose that Q ∗ satisfies the following:

1. each vi in G∗ is in a normal position;
2. for each i (1 � i � 2g − 3), each edge assigned i + 1 is contained in between the levels f ∗(vi) and f ∗(vi+1). The edge assigned 1

is contained in the levels s0 + ε and f ∗(v1), and the edge assigned 2g − 1 is contained in the levels f ∗(v2g−2) and s1 − ε .

Claim 5.9. There is an ambient isotopy Φt of M such that Φ1(Q ∗) satisfies Condition 3.4, hence, the Reeb graph of Φ1(Q ∗) is defined,
and it satisfies the following. For each i (1 � i � 2g − 3), each edge assigned i + 1 joins vi and vi+1 , each edge assigned 1 joins a
∂−-vertex and v1 , and each edge assigned 2g − 1 joins v2g−2 and ∂+-vertex.

Proof. By Claim 5.8, we see that for each i (1 � i � 2g − 3), each component of the subset of Q ∗ between the levels
f ∗(vi) and f ∗(vi+1), or between the levels s0 + ε and f ∗(v1), or between the levels f ∗(v1) and s1 + ε , is an annulus
(with pinches introduces by saddles) properly embedded in the corresponding product regions f −1([ f ∗(vi), f ∗(vi+1)]), or
f −1([s0 + ε, f ∗(v1)]), or f −1([ f ∗(v2g−2), s1 − ε]). Hence by using ambient isotopy, we can straighten each annulus with
the boundary components fixed so that no critical point exists in the interior of the annulus. The composition of the above
ambient isotopes gives Φt (Fig. 11). �

Here, for simplicity, we use Q ∗ for Φ1(Q ∗).
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Fig. 11. The Reeb graph of Q̂ ∗ .

Completion of the proof. We have obtained Q with Q ∗ satisfies the conditions in Claim 5.9. Recall that Q̂ ∗ is the compo-
nent of Q ∗ joining a ∂−-vertex and a ∂+-vertex. By Claim 5.1 and 3 of Conditions 3.4, we see that each component of Q ∗
other than Q̂ ∗ is an annulus properly embedded in the product region f −1([s0 + ε, s1 − ε]). Then by the proof of Claim 5.6,
we can push such annulus out of the product region. Hence we may suppose that Q̂ ∗ = Q ∗ , and this implies that cl(Q \ Q̂ ∗)
consists of two annuli, say A−, A+ such that A− is properly embedded in the handlebody f −1([0, s0 +ε]), and A+ is prop-
erly embedded in the handlebody f −1([s1 −ε,1]). Assume that A− is compressible in the handlebody f −1([0, s0 +ε]). Then
by compressing A− , we see that each component of ∂A− bounds a disk in the handlebody, and hence has distance 0 in
the handlebody. This together with the saddles in Q ∗ show that d(P ) is at most 2g − 1, a contradiction. Hence A− is
incompressible in the handlebody. Then we have the following two cases.

Case 1. A− is not essential in the handlebody (that is, A− is ∂-parallel in the handlebody).

In this case, we can isotope A− with fixing ∂A− so that A− is contained in a small collar neighborhood of the boundary
of the handlebody, which is the union of level surfaces. Then it is easy to see that we can further isotope A− in the collar
neighborhood so that the critical points of f |A− consists of one minimal point, and one saddle point.

Case 2. A− is essential in the handlebody.

In this case, we can ∂-compress A− to obtain a meridian disk, say D− , in the handlebody. Then we can take a spine
Σ− of the handlebody such that Σ− intersects D− transversely in a single point. Then we retake f with respect to Σ−
so that Σ− ∩ D− is the unique critical point (which is obviously minimal) of f |D− . Note that A− can be recovered from
D− by adding a band. We may suppose that the band is contained in a collar neighborhood as in Case 1. Hence we may
suppose that this band contains exactly one critical point which is a saddle. Hence the critical points of f |A− consists of
one minimal point and one saddle point.

In either case we have shown that the critical points of f |A− consists of one minimal point and one saddle point. The
annulus A+ properly embedded in the handlebody f −1([s1 − ε,1]) is treated in same manner. These fact together with
Claim 5.9 completes the proof of Theorem 1.2.
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