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This paper is devoted to studying the uniqueness problem of entire functions sharing one
value or fixed points. We improve some results given by Fang and extend some results
given by Fang and Qiu and by Lin and Yi.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Let f (z) be a nonconstant meromorphic function in the complex plane C. We shall use the standard notations in the
Nevanlinna value distribution theory of meromorphic functions such as T (r, f ), N(r, f ) andm(r, f ) (see, e.g., [7,14,15]). The
notation S(r, f ) is defined to be any quantity satisfying S(r, f ) = o (T (r, f )) as r →∞ possibly outside a set r of finite linear
measure. Ameromorphic function a(z)(6≡ ∞) is called a small functionwith respect to f (z), provided that T (r, a) = S(r, f ).
Let p be a positive integer and a ∈ C

⋃
{∞}. We denote by Np

(
r, 1
f−a

)
the counting function of the zeros of f − awhere

anm-fold zero is countedm times ifm ≤ p and p times ifm > p.
We say that two meromorphic functions f and g share a small function a IM (ignoring multiplicities) when f − a and

g − a have the same zeros. If f − a and g − a have the same zeros with the same multiplicities, then we say that f and g
share a CM (counting multiplicities).
Hayman [8] and Clunie [3] proved the following result.

Theorem A. Let f be a transcendental entire function, n ≥ 1 be a positive integer, then f nf ′ = 1 has infinitely many zeros.

Fang and Hua [6] and, Yang and Hua [13] obtained a unicity theorem corresponding to the above result.

Theorem B. Let f and g be two nonconstant entire functions, and let n ≥ 6 be a positive integer. If f nf ′ and gng ′ share 1 CM,
then either f (z) = c1ecz , g(z) = c2e−cz , where c1, c1 and c are three constants satisfying (c1c2)n+1c2 = −1 or f = tg for a
constant t such that tn+1 = 1.

Hennekemper [9], Chen [2], and Wang [12] extended Theorem A by proving the following theorem.
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Theorem C. Let f be a transcendental entire function, and n, k be two positive integers with n ≥ k + 1. Then (f n)(k) = 1 has
infinitely many zeros.

Fang [4] proved the following result corresponding to Theorem C.

Theorem D. Let f and g be two nonconstant entire functions, and let n, k be two positive integers with n > 2k + 4. If
(f n)(k) and (gn)(k) share 1 CM , then either f (z) = c1ecz , g(z) = c2e−cz , where c1, c1 and c are three constants satisfying
(−1)k(c1c2)n(nc)2k = 1 or f = tg for a constant t such that tn = 1.

A similar result for meromorphic functions appears in [1, Theorem 2]. Unfortunately, the proof there contains an incorrect
detail. (See the final Section.)
In [4], Fang also obtained the following results.

Theorem E. Let f be a transcendental entire function, n, k be two positive integers with n ≥ k+ 2. Then (f n(f − 1))(k) = 1 has
infinitely many zeros.

Theorem F. Let f and g be two nonconstant entire functions, and let n, k be two positive integerswith n ≥ 2k+8. If (f n(f−1))(k)
and (gn(g − 1))(k) share 1 CM , then f = g.

For the case k = 1 in Theorem F, Lin and Yi [10] obtained the following result.

Theorem G. Let f and g be two nonconstant entire functions, and let n ≥ 7 be a integer. If f n(f−1)f ′ and gn(g−1)g ′ share 1CM ,
then f = g.

Theorem G means that n ≥ 2k+ 6 in Theorem F when k = 1, so a natural question is that can n ≥ 2k+ 8 in Theorem F
be replaced by n ≥ 2k+ 6? In this paper, we give an affirmative answer to the above question and get the following results
improving Theorems E and F.

Theorem 1. Let f be a transcendental meromorphic function, and n, k be two integers with n ≥ 4 and k ≥ 1. Then
(f n(f − 1))(k) = 1 has infinitely many zeros.

Remark 1. From the proof of Theorem 1, we get that if f is an entire function and k = 1, we only need n ≥ 3.

Theorem 2. Suppose that f is a transcendental meromorphic function with finite number of poles, g is a transcendental entire
function, and let n, k be two positive integers with n ≥ 2k+ 6. If (f n(f − 1))(k) and (gn(g − 1))(k) share 1 CM , then f = g.

Obviously, Theorem 2 is a generalization of Theorem G.
We say that a finite value z0 is a fixed point of f if f (z0) = z0. Define

Ef = {z ∈ C : f (z) = z, counting multiplicities}. (1)

It is easy to see that a polynomial P with degree n ≥ 2 has n fixed points (counting multiplicities). A transcendental
function may not have a fixed point. For example, f = ez + z.
Fang and Qiu [5] obtained the following result.

Theorem H. Let f and g be two nonconstant entire functions, and let n ≥ 6 be a positive integer. If f nf ′ and gng ′ share z CM,
then either f (z) = c1ecz

2
, g(z) = c2e−cz

2
, where c1, c2 and c are three constants satisfying 4(c1c2)n+1c2 = −1 or f = tg for a

constant t such that tn+1 = 1.

Lin and Yi [11] obtained:

Theorem I. Let f and g be two nonconstant entire functions, and let n ≥ 7 is an integer. If f n(f − 1)f ′ and gn(g − 1)g ′ share z
CM, then f = g.

In this paper, we prove the following results concerning fixed points.

Theorem 3. Let f be a transcendental entire function, and n, k be two positive integers with n ≥ k+2, then (f n)(k) has infinitely
many fixed points.

Theorem 4. Let f and g be two nonconstant entire functions, and let n, k be two positive integers with n > 2k + 4. If
E(f n)(k) = E(gn)(k) , then either

(1) k = 1, f (z) = c1ecz
2
, g(z) = c2e−cz

2
, where c1, c1 and c are three constants satisfying 4(c1c2)n(nc)2 = −1 or

(2) f = tg for a constant t such that tn = 1.



J. Zhang / Computers and Mathematics with Applications 56 (2008) 3079–3087 3081

Theorem 5. Let f be a transcendental entire function, and n, k be two positive integers with n ≥ k+ 2. Then (f n(f − 1))(k) has
infinitely many fixed points.

Theorem 6. Let f and g be two nonconstant entire functions, and let n, k be two positive integers with n ≥ 2k + 6. If
E(f n(f−1))(k) = E(gn(g−1))(k) , then f = g.

Remark 2. Noting that f nf ′ = 1
n+1 (f

n+1)′, we can get Theorem H from Theorem 4 when k = 1. Thus Theorem 4 extends
Theorem H. Similarly, Theorem 6 extends Theorem I.

2. Some lemmas

For the proof of our results, we need the following lemmas.

Lemma 1 (Milloux Inequality [7]). Suppose that f is a nonconstant meromorphic function and k is a positive integer. Then

T (r, f ) ≤ N(r, f )+ N(r, 1/f )+ N
(
r,

1
f (k) − 1

)
− N

(
r,

1
f (k+1)

)
+ S(r, f ).

Lemma 2 ([12], Lemma 1). Suppose that f is a transcendental meromorphic function, k ≥ 3 is an integer and ε > 0. Then

(k− 2)N(r, f )+ N(r, 1/f ) ≤ 2N(r, 1/f )+ N(r, 1/f (k))+ εT (r, f )+ S(r, f ).

Lemma 3 ([10], Lemma 2). Let

H =
(
F ′′

F ′
−
2F ′

F − 1

)
−

(
G′′

G′
−
2G′

G− 1

)
, (2)

where F and G are two nonconstant meromorphic functions. If F and G share 1 CM and H 6= 0, then

T (r, F)+ T (r,G) ≤ 2 (N2(r, 1/F)+ N2(r, 1/G)+ N2(r, F)+ N2(r,G))+ S(r, F)+ S(r,G). (3)

Lemma 4 ([16], Lemma 2.4). Let f be a nonconstant meromorphic function, p, k be positive integers. Then

Np

(
r,
1
f (k)

)
≤ T (r, f (k))− T (r, f )+ Np+k

(
r,
1
f

)
+ S(r, f ), (4)

Np

(
r,
1
f (k)

)
≤ kN(r, f )+ Np+k

(
r,
1
f

)
+ S(r, f ). (5)

Lemma 5 ([7], Theorem 3.10). Suppose that f is a nonconstant meromorphic function, k ≥ 2 is an integer. If

N(r, f )+ N(r, 1/f )+ N(r, 1/f (k)) = S(r, f ′/f ),

then f = eaz+b, where a 6= 0, b are constants.

Lemma 6. Suppose that f and g are two nonconstant entire functions, and n, k are two positive integers, and denote F =
(f n(f − 1))(k), G = (gn(g − 1))(k). If there exist two non-zero constants c1 and c2 such that N(r, 1

F−c1
) = N(r, 1G ) and

N(r, 1
G−c2

) = N(r, 1F ), then n ≤ 2k+ 3.

Proof. By the second fundamental theorem (see, e.g., [14], Theorem 1.8), we have

T (r, F) ≤ N(r, 1/F)+ N
(
r,

1
F − c1

)
+ S(r, F)

≤ N(r, 1/F)+ N(r, 1/G)+ S(r, F).

By Lemma 4 and the above inequality, and using the standard Valiron–Mohon’ko theorem (see, e.g., [14], Theorem 1.13),
we get

(n+ 1)T (r, f ) ≤ Nk+1

(
r,

1
f n(f − 1)

)
+ Nk+1

(
r,

1
gn(g − 1)

)
+ S(r, f )

≤ (k+ 1)
(
N(r, 1/f )+ N(r, 1/g)

)
+ T (r, f )+ T (r, g)+ S(r, f ).

Similarly,

(n+ 1)T (r, g) ≤ (k+ 1)
(
N(r, 1/f )+ N(r, 1/g)

)
+ T (r, f )+ T (r, g)+ S(r, g).
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The above two inequalities yield

(n− 2k− 3) (T (r, f )+ T (r, g)) ≤ S(r, f )+ S(r, g),

resulting in n ≤ 2k+ 3, completing the proof.

Lemma 7. Suppose that F and G are given by Lemma 6. If n > 2k+ 1 and F = G, then f = g.

Proof. From F = G, we have

(f n(f − 1))(k) = (gn(g − 1))(k).

By integration, we get

(f n(f − 1))(k−1) = (gn(g − 1))(k−1) + ck−1,

where ck−1 is a constant. If ck−1 6= 0, we get from Lemma 6 that n ≤ 2k + 1, which is a contradiction. Hence ck−1 = 0.
Repeating the same reasoning, we obtain

(f n(f − 1))(k−2) = (gn(g − 1))(k−2).

Continuing inductively, we arrive at

f n(f − 1) = gn(g − 1).

Let h = f /g . If h 6= 1, then by the above equation we have

g =
1+ h+ · · · + hn−1

1+ h+ · · · + hn
.

Thus, we deduce by Picard’s theorem that h has two Picard exceptional values at most if h is a nonconstant function. Noting
that n ≥ 4, there exists a ω such that h − ω has zeros, where ωn+1 = 1. Thus g must have poles from the last equation,
which is impossible. Hence h is a constant, g is a constant too, which is a contradiction. Thus, f (z) ≡ g(z).

Lemma 8. Suppose that f is a transcendental meromorphic function with finite number of poles, g is a transcendental entire
function, and n, k are two positive integers. Denote F = (f n(f −1))(k), G = (gn(g−1))(k). If F ·G = α, where α = 1 or α = z2,
then n ≤ k+ 2.

Proof. Suppose that n > k+ 2. From F · G = α, we have

(f n(f − 1))(k)(gn(g − 1))(k) = α. (6)

If z0 is a zero of f with the order p, then z0 is a zero of (f n(f − 1))(k) with the order np − k. Noting that g is an entire
function and n > k+ 2, then z0 is a zero of α with the order at least 3 from (6), which is impossible. Thus f has no zeros. Let

f (z) =
eβ

h
,

where β is a nonconstant entire function and h is a polynomial. Thus, by induction we get

(f n+1)(k) =
(
e(n+1)β

hn+1

)(k)
= P1(β ′, β ′′, . . . , β(k), h)e(n+1)β , (7)

(f n)(k) =
(
e(n)β

hn

)(k)
= P2(β ′, β ′′, . . . , β(k), h)enβ , (8)

where P1 and P2 are differential polynomials in β ′, β ′′, . . . , β(k), with coefficients which are rational functions in h or its
derivatives. Obviously, P1 6= 0, P2 6= 0, T (r, P1) = S(r, f ), T (r, P2) = S(r, f ). From (7), (8) and (6) we have

N
(
r,

1
P1eβ − P2

)
= S(r, f ).

By the second fundamental theorem for small functions (see, e.g., [14], Theorem 1.36), we have

T (r, f ) ≤ T (r, P1eβ)+ S(r, f )

≤ N
(
r,

1
P1eβ − P2

)
+ N

(
r,
1
P1eβ

)
+ S(r, f )

= S(r, f ),

which is a contradiction. Hence n ≤ k+ 2. The proof of Lemma 8 is completed. �
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The following lemmas can be proved similarly as Lemmas 6 and 7, respectively.

Lemma 9. Suppose that f and g are two nonconstant entire functions, and n, k are two positive integers, and denote F = (f n)(k),
G = (gn)(k). If there exist two non-zero constants c1 and c2 such that N(r, 1

F−c1
) = N(r, 1G ) and N(r,

1
G−c2

) = N(r, 1F ), then
n ≤ 2k+ 4.

Lemma 10. Suppose that F and G are given as in Lemma 9. If n > 2k and F = G, then f = tg for a constant t such that tn = 1.

3. Proofs of results

Proof of Theorem 1. Denote F = f n(f − 1). From Lemmas 1 and 2 and the standard Valiron–Mohon’ko theorem, we have

(n+ 1)T (r, f ) = T (r, F)+ S(r, f )

≤ N(r, F)+ N(r, 1/F)+ N
(
r,

1
F (k) − 1

)
− N

(
r,

1
F (k+1)

)
+ S(r, f )

= N(r, f )+ N(r, 1/F)+ N
(
r,

1
F (k) − 1

)
− N

(
r,

1
F (k+1)

)
+ S(r, f ),

(k− 1)N(r, f )+ N(r, 1/F) ≤ 2N(r, 1/F)+ N(r, 1/F (k+1))+ εT (r, f )+ S(r, F).

The two inequalities above yield

(n+ 1− ε)T (r, f ) ≤ 2N(r, 1/F)+ N
(
r,

1
F (k) − 1

)
+ S(r, f )

≤ 2N
(
r,
1
f

)
+ 2N

(
r,

1
f − 1

)
+ N

(
r,

1
F (k) − 1

)
+ S(r, f )

≤ 4T (r, f )+ N
(
r,

1
F (k) − 1

)
+ S(r, f ).

Noting that n ≥ 4, we conclude that (f n(f − 1))(k) − 1 has infinitely many zeros.
Next, we suppose that k = 1. From the second fundamental theorem, we have

T (r, F ′) ≤ N
(
r,
1
F ′

)
+ N

(
r,

1
F ′ − 1

)
+ N(r, f )+ S(r, f ).

By the above inequality and Lemma 4 applied to F , we have

(n+ 1)T (r, f ) ≤ N2

(
r,

1
f n(f − 1)

)
+ N

(
r,

1
F ′ − 1

)
+ T (r, f )+ S(r, f )

≤ 2N
(
r,
1
f

)
+ N2

(
r,

1
f − 1

)
+ N

(
r,

1
F ′ − 1

)
+ T (r, f )+ S(r, f )

≤ 4T (r, f )+ N
(
r,

1
F ′ − 1

)
+ S(r, f ),

that is

(n− 3)T (r, f ) ≤ N
(
r,

1
(f n(f − 1))′ − 1

)
+ S(r, f ).

Noting that n ≥ 4, (f n(f − 1))′ − 1 has infinitely many zeros from the above inequality. �

Proof of Theorem 2. Denote

F = (f n(f − 1))(k), G = (gn(g − 1))(k). (9)

Then F and G share 1 CM. Let H be given by (2). If H 6= 0, by Lemma 3 we know that (3) holds. From Lemma 4, we have

N2

(
r,
1
F

)
≤ T (r, F)− (n+ 1)T (r, f )+ Nk+2

(
r,

1
f n(f − 1)

)
+ S(r, f ),

N2

(
r,
1
G

)
≤ T (r,G)− (n+ 1)T (r, g)+ Nk+2

(
r,

1
gn(g − 1)

)
+ S(r, g),

N2

(
r,
1
F

)
≤ Nk+2

(
r,

1
f n(f − 1)

)
+ S(r, f ),
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N2

(
r,
1
G

)
≤ Nk+2

(
r,

1
gn(g − 1)

)
+ S(r, g).

Noting that f has only finite number of poles, from the last four inequalities and (3), we get

(n+ 1)(T (r, f )+ T (r, g)) ≤ N2

(
r,
1
F

)
+ N2

(
r,
1
G

)
+ Nk+2

(
r,

1
f n(f − 1)

)
+ Nk+2

(
r,

1
gn(g − 1)

)
+ S(r)

≤ 2Nk+2

(
r,

1
f n(f − 1)

)
+ 2Nk+2

(
r,

1
gn(g − 1)

)
+ S(r)

≤ (2k+ 4)
(
N
(
r,
1
f

)
+ N

(
r,
1
g

))
+ 2Nk+2

(
r,

1
f − 1

)
+ 2Nk+2

(
r,

1
g − 1

)
+ S(r),

where S(r) = S(r, f )+ S(r, g). That is

(n− 2k− 5) (T (r, f )+ T (r, g)) ≤ S(r),

which contradicts the assumption n ≥ 2k+ 6. Hence H = 0. Integrating twice, we get from (2) that

1
F − 1

=
A

G− 1
+ B, (10)

where A (6= 0) and B are constants. From (10) we have

F =
(B+ 1)G+ (A− B− 1)

BG+ (A− B)
, G =

(B− A)F + (A− B− 1)
BF − (B+ 1)

. (11)

We discuss the following three cases.
Case 1. Suppose that B 6= 0,−1. From (11) we have N

(
r, 1/

(
F − B+1

B

))
= N(r,G). From the second fundamental theorem,

we have

T (r, F) ≤ N(r, 1/F)+ N

(
r,

1(
F − B+1

B

))+ S(r, F)
= N(r, 1/F)+ N(r,G)+ S(r, F)

= N(r, 1/F)+ S(r, F).

From the above inequality and (4) applied to F , we have

T (r, F) ≤ N1(r, 1/F)+ S(r, f )

≤ T (r, F)− T
(
r, f n(f − 1)

)
+ Nk+1

(
r,

1
f n(f − 1)

)
+ S(r, f ),

namely,

(n+ 1)T (r, f ) ≤ (k+ 1)N
(
r,
1
f

)
+ Nk+1

(
r,

1
f − 1

)
+ S(r, f )

≤ (k+ 2)T (r, f )+ S(r, f ),

which contradicts the assumption n ≥ 2k+ 6.
Case 2. Suppose that B = 0. From (11) we have

F =
G+ (A− 1)

A
, G = AF − (A− 1). (12)

If A 6= 1, from (12) we obtain N
(
r, 1
F− A−1A

)
= N(r, 1/G) and N

(
r, 1
G+(A−1)

)
= N(r, 1/F). By Lemma 6, n ≤ 2k + 3

contradicting the assumption n ≥ 2k + 6. Thus A = 1 and consequently F = G, so that f does not have any pole and
f (z) ≡ g(z) by Lemma 7.
Case 3. Suppose that B = −1. From (11) we have

F =
A

−G+ (A+ 1)
, G =

(A+ 1)F − A
F

. (13)

If A 6= −1, we obtain from (13) that N
(
r, 1/

(
F − A

A+1

))
= N(r, 1/G), N (r, 1/ (G− A− 1)) = N(r, F). By the same

reasoning in Case 1 and Case 2, we get a contradiction. Hence A = −1. From (13), we have F · G = 1, which is not possible
by Lemma 8. This completes the proof of Theorem 2. �
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Since the proof of Theorem 3 is similar to the proof of Theorem 5, we only prove Theorem 5 here.

Proof of Theorem 5. Denote F = f n(f − 1). From the second fundamental theorem for small functions, we have

T (r, F (k)) ≤ N
(
r,
1
F (k)

)
+ N

(
r,

1
F (k) − z

)
+ S(r, F).

By the above inequality and Lemma 4 with p = 1 applied to F , we have

(n+ 1)T (r, f ) ≤ Nk+1

(
r,
1
F

)
+ N

(
r,

1
F (k) − z

)
+ S(r, f )

≤ (k+ 2)T (r, f )+ N
(
r,

1
(f n(f − 1))(k) − z

)
+ S(r, f ).

Noting that n ≥ k+ 2, (f n(f − 1))(k) has infinitely many fixed points from the above inequality. �

Proof of Theorem 6. By the assumption and Theorem 5 we know that either both f and g are transcendental entire
functions or both f and g are polynomials.
First, we consider the case when f and g are transcendental entire functions. Let

F =
(f n(f − 1))(k)

z
, G =

(gn(g − 1))(k)

z
.

Then F and G share 1 CM. By the same argument in the proof of Theorem 2, we get F = G or F · G = 1.
If F = G, then (f n(f − 1))(k) = (gn(g − 1))(k). From Lemma 7, we obtain f = g .
If F · G = 1, then (f n(f − 1))(k)(gn(g − 1))(k) = z2. From Lemma 8, we get a contradiction.
Now we consider the case where both f and g are polynomials. Then there exists a non-zero constant c such that

(f n(f − 1))(k) − z = c
(
(gn(g − 1))(k) − z

)
. (14)

Taking the derivative of (14) gives

(f n(f − 1))(k+1) = c(gn(g − 1))(k+1) + 1− c. (15)

If c 6= 1, we deduce by Lemma 6 that n ≤ 2k+ 5 from (15), which is a contradiction. Thus c = 1. From (14), we have

(f n(f − 1))(k) = (gn(g − 1))(k). (16)

By Lemma 7, we obtain f = g . This completes the proof of Theorem 6. �

Proof of Theorem 4. From Theorem H, we need to consider the case k ≥ 2 only. By the assumption and Theorem 3 we
know that either both f and g are transcendental entire functions or both f and g are polynomials.
First, we consider the case when f and g are transcendental entire functions. Let

F =
(f n)(k)

z
, G =

(gn)(k)

z
.

Then F and G share 1 CM. By the same argument as in the proof of Theorem 2, we can get F = G or F · G = 1.
If F = G, then (f n)(k) = (gn)(k). From Lemma 10, we obtain f = tg , where t is a constant satisfying tn = 1.
Therefore, we may now assume that F · G = 1, hence

(f n)(k)(gn)(k) = z2. (17)

Since f and g are entire functions and n > 2k+ 4, we can deduce from (17) that f and g have no zeros.
In fact, suppose that z0 is a zero of f with the multiplicity p ≥ 1. Then z0 is a zero of (f n)(k) with the multiplicity np− k.

Since g is an entire function, z0 is a zero of z2 with the multiplicity np− k, which is a contradiction. Thus, we may nowwrite

f = eα, g = eβ , (18)

where α, β are two nonconstant entire functions. Then T (r, (f
n)′

f n ) = T (r, nα
′). From (17), we know that either both α and

β are transcendental functions or both α and β are polynomials. From (17), we conclude that

N
(
r, 1/(f n)(k)

)
= N

(
r, 1/z2

)
= O(log r).

From this and (18), we have

N(r, f n)+ N
(
r, 1/f n

)
+ N

(
r, 1/(f n)(k)

)
= O(log r).

Suppose thatα is a transcendental entire function.We deduce from Lemma5 thatα is a polynomial, which is a contradiction.
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Wemay assume that α is a polynomial of degree p and β is a polynomial of degree q. If p = q = 1, we write

f = eAz+B, g = eCz+D,

where A, B, C and D are constants such that AC 6= 0. Substituting above f and g into (17), we get

AkCkn2ken(A+C)z+n(B+D) = z2,

which is impossible. Then max{p, q} > 1. Without loss of generality, we suppose that p > 1. Then (f n)(k) = Penα , where P
is a polynomial of degree kp− k ≥ k ≥ 2. From (17), we have p = k = 2, and then q = 1 again from (17). Suppose that

f n = en(A1z
2
+B1z+C1), gn = en(D1z+E1)

where A1 (6= 0), B1, C1, D1 (6= 0) and E1 are constants. Then

(f n)′′ = n(4nA21z
2
+ 4nA1B1z + nB21 + 2A1)e

n(A1z2+B1z+C1),

(gn)′′ = n2D21e
n(D1z+E1).

Substituting the last two equations into (17), we have

Q (z)en(A1z
2
+(B1+D1)z+C1+E1) = z2, (19)

where Q (z) is a polynomial of degree 2. Since A1 6= 0, we get a contradiction from (19).
Next, we consider the case where both f and g are polynomials. Then there exists a non-zero constant K such that

(f n)(k) − z = K((gn)(k) − z). (20)

If K 6= 1, taking the derivative of (20) gives

(f n)(k+1) = K(gn)(k+1) + 1− K . (21)

By Lemma 9 and (21), we obtain n ≤ 2k+ 4, which is a contradiction. Hence, K = 1 and (20) yields

(f n)(k) = (gn)(k). (22)

From Lemma 10 and (22), we obtain f = tg , where t is a constant satisfying tn = 1. This completes the proof of Theorem 4.
�

4. Annex remarks

In this section, we point out an incorrect detail in the proof of Theorem 2 in [1] as follows.
In [1, p. 1200], on the third line above formula (4.10), the authors say:
‘‘Similarly,
∞ is a Picard exceptional value of f and g ’’.
In fact, by the reasoning suggested, one can conclude that the poles of f can occur at zeros of (gn)(k), and not at the zeros

of g itself. (In fact, g has no zeros.)
For example. Suppose that k = 2. From (4.8), we obtain

n2f n−2gn−2
(
(n− 1)f ′2 + ff ′′

) (
(n− 1)g ′2 + gg ′′

)
= 1.

If z0 is a pole of f with multiplicity p, then z0 is a pole of f n−2
(
(n− 1)f ′2 + ff ′′

)
with multiplicity np + 2. If z0 is a zero

of
(
(n− 1)g ′2 + gg ′′

)
with multiplicity np+ 2 but not a zero of g , we cannot get the contradiction stated in [1].
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