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Background: The nucleotide-binding protein Fhit, among the earliest and most
frequently inactivated proteins in lung cancer, suppresses tumor formation by
inducing apoptosis. In invertebrates, Fhit is encoded as a fusion protein with
Nit, a member of the nitrilase superfamily. In mice, the Nit1 and Fhit genes
have nearly identical expression profiles. According to the Rosetta Stone
hypothesis, if the separate Nit and Fhit genes could be shown to occur in the
same subset of genomes (that is, to share a phylogenetic profile), then the
existence of a fusion protein in invertebrates and the coordinated expression
of separate mRNAs in mouse suggest that Nit and Fhit function in the same
pathway and that the structure of invertebrate NitFhit may reflect the nature
of Nit–Fhit interactions.

Results: To satisfy the phylogenetic profile criterion for functional significance
of protein fusion events, we cloned additional Nit homologs from organisms
with Fhit homologs. We used fluorescent nucleotide analogs of ApppA to
follow the purification and to characterize the nucleotide specificity of NitFhit
from Caenorhabditis elegans, crystallized the 200 kDa tetrameric complex, and
solved the structure of NitFhit from a single mercury derivative phased by two-
wavelength anomalous diffraction.

Conclusions: Nit monomers possess a new α–β–β–α sandwich fold with a
presumptive Cys–Glu–Lys catalytic triad. Nit assembles into a tetrameric,
52-stranded beta box that binds Fhit dimers at opposite poles and displays Nit
active sites around the middle of the complex. The most carboxy-terminal
β strand of each Nit monomer exits the core of the Nit tetramer and interacts with
Fhit. Residence in the NitFhit complex does not alter the nucleotide specificity of
Fhit dimers, which are oriented with ApppA-binding surfaces away from Nit.

Background
Loss of Fhit protein is a frequent and early event in the
development of lung cancer, the leading cause of cancer
deaths worldwide [1–4]. The FHIT gene is located at chro-
mosomal position 3p14.2 [5] and spans FRA3B [6], the most
fragile site in the human genome. Instability of the 1.5 Mb
FHIT locus [7], coupled with the small size of the transcript
and coding region [5], account for inactivation of the gene
principally by deletion [7] and, less frequently, by methyla-
tion [8], rather than by point mutation. Mutations in the
first FHIT allele are either inherited as a t(3;8) translocation
[5,9] or are acquired by exposure to tobacco carcinogens [3],
papilloma virus insertion [10], or other mechanisms. In fam-
ilies carrying a t(3;8) translocation, affected young adults
suffer bilateral, multifocal renal carcinomas [11]. Somatic
loss of Fhit in humans is associated with cancers in a wide
variety of sites, including lung [1–4], kidney [12,13],
stomach [14], pancreas [15,16], cervix [10], ovary [17], head
and neck [18,19], breast [20,21], and hematopoetic cells
[22–24]. In addition, loss of Fhit is found in murine cancer

cell lines [25], and targeted disruption of murine Fhit results
in predisposition to stomach and sebaceous tumors that
resemble human Muir–Torre syndrome [26].

Fhit is a member of the histidine triad (HIT) superfamily
of nucleotide-binding proteins [27,28]. Members of the
Fhit branch of the HIT superfamily bind and cleave
diadenosine polyphosphates (ApnA) such as AppppA and
ApppA to generate AMP plus ATP and ADP, respectively
[29,30]. The tumor-suppressing function of Fhit does not
depend on cleavage of ApnA [31]. The H96N allele of
Fhit, which maintains micromolar binding to ApppA at the
expense of a million-fold loss in catalytic activity [32], is
functional in tumor suppression [31,33]. Fhit binds two
ApnA substrates per dimer, presenting all of the phos-
phates and two adenosines on a surface of the protein that
is spatially and electrostatically altered in the substrate-
bound form [32]. Thus, by analogy with G proteins, Fhit
has been proposed to function as a nucleotide-substrate-
dependent molecular switch [28,32].
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Re-expression of Fhit in cancer cell lines with FHIT dele-
tions induces apoptosis [34,35] through an unknown
mechanism. Thus, identification of molecules that interact
with Fhit and/or participate in Fhit-dependent pathways
is of great interest. Recently, a general method was pro-
posed to identify interacting proteins by identifying a
‘Rosetta Stone’ protein consisting of two unrelated pro-
teins fused in one organism but expressed as separate
polypeptides in other organisms [36]. With few excep-
tions, experimental evidence and bioinformatic inference
suggest that the existence of a fusion protein in one
genome powerfully predicts that the separate polypep-
tides function in the same cellular or biochemical pathway
in other organisms [36,37]. The strongest case that Rosetta
Stone proteins decode real interactions can be made when
the separate genes have similar gene expression patterns
[38] and are found in the same subset of genomes (that is,
share a phylogenetic profile) [39]. 

In mammals [5,25,40] and fungi [27,29], Fhit homologs are
encoded as single polypeptides that are at least 42% iden-
tical within a core of 113 residues. In flies and worms,
Fhit-homologous domains are encoded at the carboxyl
termini of 460 and 440 amino acid polypeptides in which
the ~300 amino acid amino-terminal domains are 22%
identical to plant and bacterial nitrilases [41], enzymes
that hydrolyze compounds such as indoleacetonitrile to
indoleacetic acid plus ammonia [42]. Using Nit domains of
fly and worm NitFhit as search molecules, we identified
murine and human orthologs encoded as separate
polypeptides that are 48% identical to invertebrate Nit
domains [41]. We refer to this branch of the nitrilase
superfamily as Nit proteins.

Satisfying the first criterion for the likely functional signif-
icance of natural fusion proteins [38], we showed that
levels of Nit1 and Fhit mRNA are highly correlated in
seven of eight tissues examined in mouse, the exception
being brain, which has a high level of Fhit and a low level
of Nit1 message [41]. In the present work, to address the
second criterion [38], we cloned an additional Nit protein
from human and mouse, a Nit homolog from frog, two
homologs from budding yeast, and identified two Nit
sequences from fission yeast. Thus, Nit homologs, having
been identified in vertebrate and invertebrate animals and
fungi (Figure 1), cover the same phylogenetic space as
Fhit homologs [27,28].

Further, we report the purification of worm NitFhit by
following the GpppBODIPY (Gppp-S-(4-4-fluoro-5,7-
dimethyl-4-bora-3a,4a-diaza-s-indacine-3-yl)methylamino-
acetyl) hydrolysis activity [43] of its Fhit active site. We
characterized the nucleotide specificity of the Fhit active
site, establishing that NitFhit prefers AppppA > ApppA >
ApppppA > pyrophosphate > other compounds. Finally,
we determined the crystal structure of NitFhit, defining a

new α–β–β–α sandwich protein fold for the nitrilase
superfamily. Nit possesses a novel tetrameric superstruc-
ture, termed a beta box, that recognizes a pair of Fhit
dimers at opposite poles. Nit and Fhit domains are not
merely tethered together in the fusion protein. In contrast,
the most carboxy-terminal β strand encoded by the Nit
portion of the NitFhit sequence extends out of the Nit
globular domain and binds Fhit.

Results
Nit homologs are found in the same organisms as Fhit
homologs
In the course of cloning Fhit-homologous cDNAs from
Drosophila melanogaster and Caenorhabditis elegans, we iden-
tified NitFhit sequences [41]. The Nit domain of the
invertebrate NitFhit proteins was classified as a distinct
member of the nitrilase superfamily and used to clone the
single most homologous sequence from a human and from
a mouse cDNA library [41]. It has been pointed out that
events that fuse unrelated proteins [36,37] are most likely
to be functionally significant [38] if the separate proteins
have similar gene expression patterns and have similar
phylogenetic profiles [39]. At the level of tissue speci-
ficity, murine Fhit and Nit1 have nearly identical mRNA
accumulation patterns [41]. We therefore sought to iden-
tify Nit-related genes from divergent organisms known to
contain Fhit-homologous genes, namely Saccharomyces cere-
visiae, Schizosaccharomyces pombe [27] and Xenopus laevis
(our unpublished data). In each yeast, two Nit-related
sequences were identified (Figure 1) as well as sequences
related to plant nitrilases (our unpublished data). The frog
also yielded a Nit sequence and further examination of
human and murine expressed sequence tag databases
allowed us to identify a second Nit coding sequence from
human and mouse (Figure 1). Nit sequences have a low
level of identity with nitrilases and a substantial level of
identity with each other. Nit homologs, having been
found fused or coordinately expressed with Fhit homologs
[25] and in the same organisms as Fhit homologs
(Figure 1), are reasonable candidates for proteins that
interact with Fhit homologs.

Characterization of the Fhit active site of NitFhit
Because of the insolubility of D. melanogaster NitFhit
expressed in Escherichia coli [41], we chose to express
worm NitFhit, the product of the nft-1 gene of C. elegans
[41]. The enzyme was followed fluorimetrically with
GpppBODIPY [43], a quenched fluorescent nucleotide
substrate developed for use with Fhit. Worm NitFhit was
~20% soluble when expressed in E. coli at 20°C. Our con-
ventional purification of NitFhit, based on maximizing
GpppBODIPY-hydrolase specific activity, was performed
exclusively from the soluble fraction (Table 1). 

The function of Fhit is thought to depend on formation
of substrate complexes with ApnA [32] in the presence of
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higher cellular concentrations of purine mononucleotides
and other competitors [43]. To assess the nucleotide
specificity of the worm Fhit homolog, we performed a
series of assays with ApppBODIPY and GpppBODIPY.
Titration of non-labeled nucleotides and related com-
pounds into fluorescent nucleotide-hydrolysis assays
allows determination of the binding constant of each
compound for the Fhit active site [43]. As shown in
Table 1, the nucleotide specificity of the Fhit domain of
NitFhit was similar to that of Fhit. Whereas human Fhit
has a slight binding preference for ApppA over AppppA
[43], the worm enzyme, like the homolog from fission
yeast [44], preferred AppppA. As is the case for the
human enzyme, pyrophosphate competed for the Fhit
active site of NitFhit more effectively than did purine
mononucleotides. After ApppA and AppppA, both
enzymes preferred ApppppA > pyrophosphate > AMP and
ATP–αS > GTP–αS > monophosphate. The single most
important measure of an enzyme’s activity on a substrate,

kcat/Km, was measured for ApppBODIPY and GpppBOD-
IPY in substrate-decay assays and initial-rate assays,
respectively [43]. Although worm NitFhit displayed only
22% of the activity of human Fhit on ApppBODIPY, it
displayed 109% of the activity of human Fhit on Gppp-
BODIPY. Thus, the Nit domain of NitFhit does not
inhibit the nucleotide-binding or hydrolysis activity of
the associated Fhit domain.

Nit is a novel αα−−ββ−−ββ−−αα sandwich protein
To determine the structure of Nit and the nature of
Nit–Fhit interactions, worm NitFhit was crystallized and
its crystal structure was determined. The 440 amino acid
polypeptide (molecular weight 49,936 Da) had a molecu-
lar weight of 200,000 Da in solution (see Materials and
methods) and crystallized with a monomer in the asym-
metric unit in space group I222. The symmetry of these
crystals suggested that NitFhit tetramers were located at
the origin and center of the unit cell and that their
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Figure 1

Sequence alignment of Nit domains with a
plant nitrilase. The Nit domains of C. elegans
(Ce) and D. melanogaster (Dm) NitFhit
proteins are aligned with Nit homologs from
Homo sapiens (Hs), Mus musculus (Mm),
S. pombe (Sp), S. cerevisiae (Sc), X. laevis
(Xl), and nitrilase1 from Arabidopsis thaliana
(At). Human Nit2, murine Nit2, frog Nit1, and
budding yeast Nit2 and Nit3 are newly cloned
and have been deposited in GenBank with
accession numbers AF284574, AF284573,
AF284575, AF284571 and AF284572,
respectively. Secondary structural elements
and sequence numbers correspond to worm
NitFhit. Residues shaded purple are identical
in all aligned sequences. Residues shaded
yellow are identical to those of the worm Nit
domain. Triangles, positions of insertions
found in some of the sequences (the numbers
indicate the size of the insertions); filled
circles, residues found in the vicinity of
Cys169. The figure was prepared using
ALSCRIPT [58].
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oligomeric symmetry consisted of three mutually perpen-
dicular twofold rotation axes. These crystals were large
and single but diffracted weakly to no better than 3.5 Å
resolution at synchrotron sources. Crystals soaked with
thimerosal or ethylmercuric phosphate exhibited a reduc-
tion in crystallographic symmetry to P21212, a concomitant
increase in the size of the asymmetric unit to two
monomers, a 6% reduction in the length of one unit-cell
length, and a corresponding 2% reduction in solvent
content. These derivatized crystals showed a striking
increase in reflection intensities and resolution. Diffrac-
tion data from a single thimerosal-soaked crystal, col-
lected at the mercury absorption edge and at one remote
wavelength, were used to solve the structure of mercu-
rated NitFhit by two-wavelength anomalous diffraction
(TAD) phasing to 2.8 Å resolution (Table 2). The two
non-identical NitFhit monomers were built from a
density-modified TAD electron density map (Figure 2a)
and refined independently.

By sequence alignment, the Nit domain of NitFhit spans
from residue 1 through 296 (see reference [41] and
Figure 1) and the Fhit domain spans from residue
297–440 [27,28,41]. The Nit domain, defined by continu-
ous electron density from residue 10 to its carboxyl termi-
nus, is a novel protein fold (Figure 2b) consisting of five α
helices designated NH1 to NH5 and 13 β strands desig-
nated NS1 to NS13. In CATH (class, architecture, topol-
ogy, homologous superfamily) nomenclature [25], Nit can
be assigned to the α–β class and the four-layer sandwich
architecture and is the first of its kind in topology and
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Table 2

X-ray data collection, phasing and refinement statistics.

Data collection and phasing of P21212-thimerosal crystals

λedge λremote
Resolution (Å) 30.0–2.8 30.0–2.8
Completeness (%) (outer shell) 97.9 (91.4) 97.6 (90.3)
Multiplicity 7.5 7.0
I/σ 24.6 23.2
Rsym (%) (outer shell) 4.5 (8.8) 5.1 (9.9)
Ranom (%) (outer shell) 3.8 (6.2) 5.0 (7.5)
Hg sites 5
Phasing power 1.95
Figure of merit 0.47
Figure of merit after 0.96

density modification

Refinement statistics

Non-hydrogen atoms (water molecules) 6708 (161)
Unique reflections (free) 49,386 (3315)
Rwork (%) (Rfree) 19.0 (23.1)
Rmsd bond lengths (Å) 0.007
Rmsd bond angles (°) 1.4
Average B value (Å2) 28.5

The unit cell measured a = 68.74 Å, b = 100.44 Å, c = 158.65 Å. The λedge
was 1.008989 and λremote was 0.992782. The f′ and f′′ scattering factors
refined from reference values [57] of –17.79 e– and 7.24 e– to –13.49 e–
and 9.41 e– for λedge and –10.86 e– and 9.99 e– to –10.86 e– and
11.18 e– for λremote. Rsym = Σ |I – <I>| / Σ <I> in which I is a measured
intensity and <I> is the average intensity from multiple measurements of
symmetry-related reflections. Ranom = Σ |<F+> – <F–> / Σ <F> in which
<F+> and <F–> are the average structure factors of Friedel pairs. Phasing
power, figure of merit, and figure of merit after density modification were as
defined in CNS [54] for anomalous difference phasing.

Table 1

Purification and characterization of the Fhit active site of NitFhit.

Purification of NitFhit via the Fhit active site
Total protein Units Specific activity Cumulative Purification

Fraction (mg) (pmol min–1) (pmol min–1 mg–1) yield (%) (cumulative fold)

Cleared lysate 764 8.00 E7 1.05 E5 100 –
Ammonium sulfate 451 5.60 E7 1.24 E5 70 1.2
HQ 13.5 1.61 E7 1.19 E6 20 11.3
CM 8.9 2.12 E7 2.38 E6 27 22.7

Nucleotide specificity of the Fhit active site of NitFhit
kcat/KM kcat KM KI

(105 s–1 M–1) (s–1) (µM) (µM)

ApppBODIPY 5.0 ± 0.1
GpppBODIPY 6.3 2.4 3.7
ApppA 4.2 ± 0.4
AppppA 2.7 ± 0.3
ApppppA 4.5 ± 0.7
Pyrophosphate 78 ± 12
AMP 153 ± 13
ATP-αS 287 ± 73
GTP-αS 481 ± 27
Monophosphate 2660 ± 490



superfamily. The core of Nit is a highly regular α–β–β–α
sandwich structure containing helices NH1 through NH4
and strands NS1 through NS12 (Figures 2b and 3a). A
cross section of the Nit core reveals a layer containing two
α helices, followed by two layers of six β strands, followed
by a layer of two α helices. The most similar of the 12-
stranded α–β–β–α sandwich folds is that of DNase I [45]
and related nucleases. The α–β–β–α sandwich of DNase I
is topologically distinct from that of Nit and is unlikely to
be related, however. The pattern and direction of the first
eight elements of the Nit core (NS1, NH1, NS2, NH2,
NS3, NS4, NS5, NS6 with amino termini of NS1, NS2,
NS3, NS5 and carboxyl termini of NH1, NH2, NS4 and
NS6 facing the viewer in Figure 2b) are repeated by the
second eight elements (NS7 through NS12) by an internal
pseudo-twofold rotation axis. Carboxy terminal to NS12,
Nit contains helix NH5 and strand NS13 orthogonal to

the core. NS13, extended away from the globular Nit
core, makes extensive interactions with the Fhit domain
as discussed below.

At residue 297, the NitFhit polypeptide aligns with
residue 1 of human Fhit. Human Fhit structures are
defined for residues 2–106 and 128 to their carboxyl
termini at residue 147 [32,46]. The Fhit domain of worm
Fhit contains the seven β strands, FS1 through FS7, and
the two α helices, FH1 and FH2, of Fhit and is nearly
identical to human Fhit in all respects. Refined NitFhit
models contain a 20-residue gap in the same location as
the 21-residue gap within human Fhit models. The largest
root mean square differences between superimposed
human Fhit and worm Fhit domain are in the loop
between FH1 and FS6. Even there, aligned Cα positions
differ by 2 Å or less.
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Figure 2

Structure determination of NitFhit.
(a) A portion of the 2.8 Å experimental
electron density map in stereo. The map was
contoured at 1.5 σ and superimposed on the
refined atomic model. (b) Stereo ribbon view
of the Nit domain of a NitFhit monomer
(northern conformation). Secondary structural
elements are indicated. The Fhit domain,
carboxy terminal to the Nit domain, and three
additional subunits of the NitFhit tetramer are
not shown. N, amino terminus; C, carboxyl
terminus of the Nit domain.



Nit tetramers form a 52-stranded beta box
Nit monomer domains assemble into a tetramer that con-
tains two types of homotypic Nit–Nit interfaces termed
north–south and east–west (Figure 3). Heavy atom
binding locked the northern and southern hemispheres
into different conformations but did not disturb their
perfect east–west symmetry. Fhit dimers are located at the
north and south poles of the Nit tetramer.

The east–west dimer interface of Nit, parallel to an
already extensive Fhit dimer interface formed by FH1
and FS6, is formed by a four-helix bundle (NH3 and NH4
with their symmetry mates) and an anti-parallel β-interac-
tion mediated by NS13 (Figure 3). Thus, the east–west
Nit dimer turns a four-layered α–β–β–α sandwich into an
eight-layered α–β–β–α–α–β–β–α sandwich. Helices NH1
and NH2 are solvent-exposed on the external layers of the
sandwich. Furthermore, one edge of the β-sheets is
enclosed by NH5 while the other edge of the β-sheets is

exposed to solvent. According to amino-acid conservation
detected in our alignment (Figure 1), we would expect all
Nit proteins to form α–β–β–α–α–β–β–α dimers. 

The north–south Nit interface is formed by anti-parallel,
homotypic β interactions involving strands NS11 and NS12
(Figure 3). These interactions double the width of the four β
sheets in the α–β–β–α–α–β–β–α sandwich from six strands
north to south to 12 strands north to south. The tetrameric
Nit assembly can be termed a 52-stranded beta box. The east
and west sides of the beta box each consist of two 12-
stranded β sheets. Between the east and west sides are two
four-helix bundles. The north and south poles of the beta
box are capped by the final β strand (NS13) of each
monomer as an anti-parallel pair of strands on each pole. By
alignment, some of the salt bridges that stabilize the
north–south dimer interface appear to be absent in homolo-
gous Nit sequences. Thus, it remains to be seen whether ver-
tebrate and fungal Nit proteins will be dimers or tetramers. 
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Figure 3
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Structure of the NitFhit tetramer. (a) Levitt and Chothia [59]
representation of the NitFhit tetramer. The 222 point symmetry of the
tetramer is indicated by the manner in which labels are flipped across
symmetry axes. N, amino terminus; C, carboxyl terminus. (b) Stereo
ribbon representation of the NitFhit tetramer. NitFhit monomers are
colored green and blue in the northern hemisphere, red and yellow in

the southern hemisphere. Nit domains (residues 10–296) are in bold
colors and Fhit domains (residues 297–440) are in pastel colors. The
boldly colored elements in the northern and southern domains
correspond to the carboxy-terminal Nit β strand NS13, which is
physically located in Fhit domains.



Nit sequences bind Fhit 
The carboxy-terminal β strand encoded by Nit sequences,
NS13, exits the Nit core domain (Figure 2b). Formation of
the east–west Nit dimer allows NS13 strands to pair in an
anti-parallel fashion, and formation of the north–south Nit
tetramer allows these strands to form the top and bottom
sides of the beta box (Figure 3). Moreover, in worm
NitFhit, the NS13 elements have extensive interactions
with Fhit dimers and appear to be physically part of Fhit
dimer domains rather than the Nit tetramer (Figures 3 and
4). Nearly all of the interactions between Nit and Fhit are
mediated by binding of anti-parallel NS13 strands to the
anti-parallel FH1 helices at the bottom of Fhit dimers.
The two Nit–Fhit interaction surfaces are extensive, at
1080 Å each, but appear to be more reversible than the
east–west interface (7300 Å2, including 4900 Å2 of Nit–Nit
interactions and two 1200 Å2 patches of Fhit–Fhit interac-
tions) or the north–south interface (2350 Å2) within the
NitFhit tetramer. Consistent with biochemical data
(Table 1), the Nit tetramer does not interact with the
nucleotide-binding surface of Fhit dimers. In contrast, the
Nit tetramer binds Fhit in a manner that presents
nucleotide-binding surfaces of Fhit [32] at the two
extreme poles of the complex, potentially for interaction
with Fhit effectors. 

Plasticity in Nit and a candidate Nit active site
The differences in protein conformation between the
northern and southern molecules are localized to NH2
(Figure 5). Ethylmercury bound to Cys75 in the northern

but not the southern chains. Without ethylmercury bound,
residues 70 through 76 are not helical. Upon binding of
ethylmercury, NH2 becomes helical but bent at residue
75. Though it is not obvious what sequence feature in
worm NH2 disrupts helicity, NH2 is unique among the
Nit helices in that homologs have insertions, deletions and
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Figure 4

Nit fits. Molecular features of the physical interaction between Nit and
Fhit. At the north and south poles of the Nit tetramer, pairs of anti-
parallel NS13 Nit strands (bold colors) interact with Fhit domains

(pastel colors) beneath pairs of anti-parallel FH1 helices. Side chains
are shown at the interface.

Figure 5

Structural plasticity in Nit tetramers. Two conformations of the second
Nit helix, NH2. Portions of two non-identical Nit domains were
superimposed to show two conformations at a solvent-exposed
surface of the NitFhit tetramer. Without mercury binding, the segment
is not helical. With mercury bound, the helix is bent. Both
conformations distort helix NH2 at a site in which other Nit sequences,
but not worm NitFhit, contain Gly and/or Pro residues.



Gly and Pro substitutions in this region (Figure 1). Thus,
the disrupted nature of the NH2 helix appears to be a con-
served feature that may be functionally important. 

Nitrilases are thiol enzymes that attack the cyano carbon
of nitriles (R–C≡N) to form a covalent thioimidate
complex [47]. Addition of one water molecule is accompa-
nied by release of ammonia and transformation of the
planar thioimidate to a planar thiol acylenzyme through a
tetrahedral intermediate. Addition of a second water mole-
cule would allow the acid product to leave and regenerate
the enzyme [47]. A related family of aliphatic acid ami-
dases also uses the conserved cysteine to acylate and
release ammonia from acid amides (R-CONH2) [48].
Cys169, which aligns with the conserved Cys of nitrilases
and amidases, is located on the solvent exposed face of the
Nit β sheet and was modified by ethylmercury (Figure 6).
Only 3.0 Å and 3.7 Å from Cys169, we located Glu54 and
Lys127, both conserved in nitrilases. In nitrilases, the cor-
responding residues may function as a catalytic triad with
Glu acting as the general base for the thiol. 

Discussion
According to the theory of Rosetta Stone proteins, pro-
teins that engage in fusion events are expected to jointly
participate in a biochemical or cellular pathway and/or to
physically interact [36]. Nonetheless, the simplest expec-
tation about NitFhit would have been that homotypic

Fhit interactions would drive dimerization of NitFhit and
that Nit would neither be multimerized nor bound to
Fhit. Our results prove, however, that NitFhit is a stable
tetramer that displays Fhit dimers on opposite poles and
Nit active sites around the equator, and is held together
by extensive homo- and hetero-oligomeric interactions.
Strikingly, the most carboxy-terminal β strand of Nit
polypeptide sequences exits the tetrameric Nit domain
and binds Fhit dimer domains. Fhit dimer domains are
bound with their nucleotide-binding surfaces [32] facing
away from Nit. Thus, the Rosetta Stone hypothesis impli-
cates Nit as a candidate Fhit-interacting protein and the
crystal structure of NitFhit proves that Fhit can assemble
into a 200 kDa complex with Nit in a manner that poten-
tially allows two Fhit dimers to interact with effectors.

It was hypothesized that proteins with low-affinity het-
erotypic interactions that function in the same process
might provide a selection for fusion events [36]. Upon
fusion, the local concentration of the binding partner is
greatly increased from that of separate polypeptides. The
structure of NitFhit supports the view that Nit and Fhit
function in the same pathway and that a reversible interac-
tion between mammalian Nit and Fhit would depend on
the carboxy-terminal β strand of Nit, NS13.

Though substrates for animal Nit proteins have not been
identified, the structure of NitFhit is the basis for predic-
tion of a Cys–Glu–Lys catalytic triad in the nitrilase super-
family. The nitrilase from Rhodococcus rhodocrous J1 has
been purified and tested for pH dependence of benzoni-
trile hydrolysis. Consistent with Glu functioning as a
general base, recombinant R. rhodocrous J1 nitrilase
showed no pH dependence between pH 5.5 and 10.0,
which were the limits of the enzyme’s physical stability
(S.K. Milano, M. Schimerlik and C.B., unpublished data).

Cancer cells that are deficient in Fhit are defective in pro-
grammed cell death [34,35], but the point of action of Fhit
in apoptosis is unclear. Three well-known signals for cell-
cycle arrest and programmed cell death, namely contact
inhibition of growth [49], interferons [50] and etoposide
[51], induce synthesis of diadenosine polyphosphates, the
likely positive regulators of the cellular activity of Fhit [32].
Although Fhit is likely to function in an animal cell-death
pathway, identification of Fhit and Nit proteins in fungi
suggests that these proteins have a fundamental role in
maintaining the differentiated states of single cells. Because
indole-3-acetonitrile is not a substrate of animal Nit pro-
teins (data not shown), animal Nit proteins may function by
producing novel regulatory compounds that are not auxin.
By mutating residues in the putative active site of yeast or
animal Nit proteins, it may be possible to trap Nit sub-
strates and use genetic approaches to discover the cellular
consequences of Nit activity and inactivity, Nit–Fhit het-
eromultimerization, and the cellular targets of this pathway.
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Figure 6

A putative Nit active site. The region around Cys169, a residue
conserved in nitrilases, is conserved in Nit proteins. Residues aligning
with Cys169, Glu54 and Lys127 are predicted to form a catalytic triad
in the nitrilase superfamily.



Materials and methods
Protein expression and purification
The C. elegans NitFhit cDNA was amplified using primers that gener-
ated an NdeI site at the initiator codon and an XhoI site 3′ of the stop
codon. After restriction with NdeI and XhoI, the fragment was ligated to
plasmid pSGA02 [52] that had been digested with the same enzymes.
Protein was expressed in E. coli strain ER2566 (New England Biolabs)
and grown in LB with 150 µg ml–1 ampicillin; 1 L cultures, shaken at
24°C in 2800 ml Fernbach flasks, were induced with 0.4 mM IPTG at
an optical density (λ = 600 nm) of 0.4 and aerated for 9 h. Steps before
and including ammonium sulfate precipitation were performed at
0–4°C. Frozen cell pellets were resuspended in 50 mM NaHEPES
pH 7.0, 5 mM DTT, 10% glycerol, 0.5 mM PMSF, 2 µg ml–1 leupeptin
and 3.4 µg ml–1 pepstatin, and lysed by sonication. Cleared lysate was
subjected to protamine sulfate precipitation followed by centrifugation
to remove nucleic acids. A 20–60% ammonium sulfate fraction was
obtained, and resuspended and dialyzed into 50 mM NaHEPES pH 7.2,
5 mM DTT, 10% glycerol. The dialysate was loaded onto a 58 ml
POROS 20 HQ column (PE Biosystems) with 50 mM NaHEPES
pH 7.2, 5 mM DTT, 2% glycerol as running buffer and NaCl as eluant.
GpppBODIPY hydrolysis activity eluted at 0.2 M NaCl. Peak fractions
were pooled and buffer was exchanged to 25 mM NaHEPES pH 7.0,
5 mM DTT, 2% glycerol using 10,000 Da-retaining Ultrafree filters (Milli-
pore). Concentrated and desalted sample was loaded onto a 1.7 ml
POROS 20 CM column (PE Biosystems) and chromatographed as
before, with the peak of total protein eluting with enzymatic activity at
0.25 M NaCl. Purified NitFhit was concentrated to 7 mg ml–1 in 10 mM
NaHEPES pH 7.0, 50 mM NaCl, 5 mM DTT, microaliquoted, and stored
at –80°C. Data from Edman degradation, mass spectrometry and ana-
lytical ultracentrifugation indicated that purified NitFhit contains an
intact amino-terminal Met, displays mass/charge ratios consistent with
the predicted monomer size of 49,936 Da, and exists as a stable
200,000 Da tetramer in solution, independent of nucleotide occupancy.

Characterization of the Fhit active site of NitFhit 
Standard activity assays of the Fhit active site of NitFhit used Gppp-
BODIPY in an initial rate assay as developed for Fhit [43] except that
reactions were initiated by addition of 10–50 ng total protein diluted
into 20 mM NaHEPES pH 7.0, 10% glycerol, 5 mM DTT, 0.2 mg ml–1

BSA and incubated at 21°C. Determination of kcat/KM with ApppBOD-
IPY was performed as a substrate-decay assay [43] with 1.5 µM Appp-
BODIPY, initiated by 0.15 pmol NitFhit. For GpppBODIPY, substrate
concentration was titrated from 40 µM to 2.5 µM, and kcat and KM were
determined from initial rates using 0.5 pmol enzyme [43]. Assays of
non-labeled compounds as competitive inhibitors of ApppBODIPY
hydrolysis were also performed as developed for human Fhit. KM values
for ApppA, AppppA, ApppppA, ATP-αS, GTP-αS and KI values for
pyrophosphate, monophosphate and AMP were derived from titration
of each non-labeled compound into 1.5 µM ApppBODIPY assays at
five concentrations of the competitors [43].

Protein X-ray crystallography
NitFhit crystals were grown by hanging drop vapor diffusion by mixing
2 µl protein (7 mg ml–1) in 10 mM NaHEPES pH 7.0, 50 mM NaCl, 5 mM
DTT with 2 µl of 38% 2-methyl-2,4-pentanediol (MPD) and equilibrating
against 1 ml 38% MPD. After one week at room temperature, individual
microcrystals were seeded into similar drops, equilibrated against 35%
MPD, and grown for one month. Crystals (~100 µm × 200 µm × 300 µm)
were flash-frozen in liquid nitrogen. On the basis of data collected at
Cornell High Energy Synchrotron Source beamline F-1, native crystals
had the symmetry of space group I222 or I212121, contained a NitFhit
monomer in the asymmetric unit and 58% solvent, and were ordered to
3.5 Å resolution. A single frozen crystal was thawed into 10 µl 5 mM
NaHEPES, 25 mM NaCl, 2.5 mM DTT, 20% MPD with 1 mM thimerosal,
and refrozen after 8 h. 

At the National Synchrotron Light Source, beamline X8-C was tuned to
the measured absorption edge for the mercurated crystal (λedge =
1.008989 Å) and to a remote wavelength (λremote = 0.992782 Å), and

X-ray diffraction data were measured in 1° oscillations with an ADSC
Quantum-4 CCD camera 250 mm from the crystal. Data, indexed and
scaled with the HKL package [53], indicated the presence of mercury
atoms and a reduction in crystallographic symmetry to P21212 (from
I222). The change in space group was accompanied by a 6% reduction
in the b cell length, a 2% reduction in solvent content, and an increase in
resolution to 2.8 Å. Using the CNS package [54], a four atom mercury
solution was obtained for the λedge anomalous difference Patterson map.
Using diffraction data from both wavelengths, the heavy atom positions
and the scattering factors f′ and f′′ of the mercurated protein were refined
[54] and used to generate TAD phases (Table 2). The density-modified
TAD electron-density map of the refined, enantiomorphic heavy atom
solution was interpretable. A fifth mercury position, located in this map,
was used to generate the final density-modified TAD electron density map
(hereafter, the experimental map) that was used for model building
(Figure 3a) with O (http://imsb.au.dk/~mok/o/). 

Electron density corresponding to two non-identical Fhit dimers was
located. Each Fhit dimer occurs across a crystallographic twofold rota-
tion axis such that the east and west subunits of Fhit are identical. The
two non-identical Fhit dimers occur as an imperfect 222 tetramer with
an origin of noncrystallographic symmetry (NCS) at 0.5, 0.5, 0.25. The
experimental map was of sufficient quality to build from residues 13 to
the carboxyl terminus of each non-identical, 440 amino acid polypeptide
with 23 residues missing from the Fhit domain of one molecule and 30
residues missing from the other. Non-identical NitFhit molecules were
built independently and refined without NCS restraints. The protein
atomic model, containing additionally five mercury atoms and a bulk
solvent model, was refined by simulated annealing [54] against λedge
data with a maximal-likelihood target function based on experimental
phases [55]. All reflections from 30.0 Å to 2.8 Å were included in refine-
ment except 7% reserved for free R factor analysis [56]. The five
mercury atoms appear to be ethylmercuric adducts to cysteine residues
55, 75 and 169 of the (northern) A chain and residues 55 and 169 of
the (southern) B chain. These adducts were built and refined as ethyl-
mercury with occupancies of 40% to 57%. Nineteen additional amino
acids, 161 water molecules, four sodium ions, and one ordered MPD
molecule were built from sigma A weighted, cross-validated, phase
combined, 2Fo–Fc and Fo–Fc maps [54]. The final atomic model has
an Rwork of 19.0% and an Rfree of 23.1% with geometry that is neither
under-restrained nor over-restrained with respect to ten recently
released protein structures refined to 2.8 Å. Molecular graphics
methods were as described [32]. The coordinates (1EMS) and struc-
ture factors (1EMSsf) have been deposited into the Protein Data Bank.
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