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Abstract This paper presents a procedure for response prediction in high-rise buildings under wind

loads. The procedure is illustrated in an application example of a tall building exposed to both

cross-wind and along-wind loads. The responses of the building in the lateral directions combined

with torsion are estimated simultaneously. Results show good agreement with recent design stan-

dards; however, the proposed procedure has the advantages of accounting for complex mode

shapes, non-uniform mass distribution, and interference effects from the surrounding. In addition,

the technique allows for the contribution of higher modes. For accurate estimation of the acceler-

ation response, it is important to consider not only the first two lateral vibrational modes, but also

higher modes. Ignoring the contribution of higher modes may lead to underestimation of the accel-

eration response; on the other hand, it could result in overestimation of the displacement response.

Furthermore, the procedure presented in this study can help decision makers, involved in a tall

building design/retrofit to choose among innovative solutions like aerodynamic mitigation, struc-

tural member size adjustment, damping enhancement, and/or materials change, with an objective

to improve the resiliency and the serviceability under extreme wind actions.
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1. Introduction

1.1. Background

It is true that we cannot see the wind but we can see its effects.
For instance, looking from a window and seeing branches and

leaves of trees moving will give an indication that the weather
is windy. Wind effects on the infrastructure can be low, mod-
erate, strong, and extremely destructive. While low and moder-

ate winds are beneficial for pollution dispersion and electric
power generation, strong and extreme wind events can have
devastating effects on the infrastructure. Extreme winds may
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cause damage to low-rise buildings in a form of windows dam-
age, roof loss, or even complete collapse of wooden structures.
In tall buildings however, both cladding loads and the dynam-

ics of the structure become a concern. The use of high-
strength, lightweight materials, longer floor spans, and more
flexible framing systems results in structures that are more

prone to vibrations. In tall buildings, wind events can cause se-
vere and/or sustained vibratory motion, which can be detri-
mental to the structure and human occupants. Wind-induced

vibrations may cause annoyance to the occupants (especially
in the upper floors), impaired function of instruments, or struc-
tural damage. The evaluation of the wind-induced loads and
responses is an important step for the design of the main

force-resisting system of high-rise buildings, to balance safety
and serviceability issues with the reality of limited resources.
1.2. Literature

Traditionally, wind-induced response of tall buildings in
along-wind direction may be evaluated using formulae pro-

vided in the literature [15,14,11,21,1,9]. However, the literature
has little guidance for the evaluation of the critical cross-wind
and torsional responses. This is due to the fact that cross-wind

and torsional responses result mainly from the aerodynamic
pressure fluctuations in the separated shear layers and the
wake flow fields, which made it difficult to have an acceptable
direct analytical relation to the oncoming flow fluctuations

[31,16]. In addition, the interference effects of surrounding tall
buildings represent another challenge. Moreover, the responses
evaluated using those formulae are restricted to a few modes,

and the process depends on much assumption. On the other
hand, wind tunnel pressure measurements and finite element
(FE) modeling of the structures are the effective alternatives

for determining these responses.
Wind tunnel tests have been industry wide accepted reliable

tools for estimating wind loads on tall buildings. There are two

types of rigid model testing that can provide overall structural
wind loads. One technique relays on high-frequency base bal-
ance (HFBB) measurements and the other is based on high-fre-
quency pressure integration (HFPI) of loads. Inherent in the

HFFB approach is the fact that only the global wind loads
at the base of the test model are known. The test results from
the HFBB measurements can be analyzed using frequency do-

main or time domain techniques to get the building responses.
The frequency domain approach has been dominant over time
domain approach for its lesser requirement of computational

power though it involves more approximations compared to
the time domain approach. Nevertheless, with the current tech-
nology where computational power has been significantly im-
proved, the time domain method will become a popular

analysis technique. The time domain method allows the deter-
mination of wind responses directly from the equation of mo-
tion using the measured time history of wind loads, thereby

avoiding all the simplifying assumptions used in the frequency
domain method. However, even if the more accurate time do-
main approach is used for the analysis of the response, the

three-dimensional (3D) mode shapes found in complex tall
buildings complicate the use of the HFBB test results for pre-
dicting the structural response [24,13]. In general, mode shape

correction factors for the HFBB technique are necessary for
the assessment of wind-induced responses of a tall building.
This is to account for the significant uncertainties in the esti-
mation of generalized forces due to the nonideal mode shapes
as well as presumed wind loading distributions [23,17]. HFPI

technique with the time domain approach can be more accu-
rate, providing that enough coverage of pressure taps on the
model’s outer surface is considered [22,3,5,2,19,30,31].

The HFPI technique is based on simultaneous pressure
measurements at several locations on a building’s outer sur-
face. Pressure data can be used for the design of the claddings

as well as the estimation of the overall design loads for the
main force-resisting system. The HFPI technique cancels out
any inertial effects that may be included in the overall loads
measured by the base balance when the HFBB technique is

used. Time histories of wind forces at several levels of tall
building models can be obtained from a boundary-layer wind
tunnel experiment, with a multichannel pressure scanning sys-

tem. This enables the building responses to be computed di-
rectly in the time domain for buildings with simple or
complex mode shapes.

Aly [2] used wind tunnel pressure data with a FE model of a
tall building to predict its responses in the time domain. Yeo
and Simiu [26] presented an illustration of the use of pressure

time histories to estimate structural wind effects on tall build-
ings. The method allows for the estimation of the response
from the time histories of simulated pressures at the exterior
surface of a structure [27,25]. Yeo and Simiu [28] presented a

procedure within a database assisted design (DAD) framework
that accounts approximately for veering effects on tall building
design. Their results show that veering effects on demand-to-

capacity indexes for structural members are significant for cer-
tain building orientations, and that they increase with the
length of the mean recurrence intervals.

1.3. Paper layout

The purpose of the study presented herein is to evaluate the re-

sponses of a high-rise building through the use of wind loads
simulated in a boundary-layer wind tunnel and FE modeling
of the full-scale structure. The study goes into the direction
of comparing the results with recent design standards and

the explanation of the physics behind the response of the build-
ing. The paper is organized as follows: In Section 2 a descrip-
tion of the boundary-layer test setup is presented. Section 3

introduces a modal approach to describe the dynamic behavior
of a tall building under wind. Section 4 presents the HFPI ap-
proach followed to predict time histories of wind loads on a

full-scale building. Section 5 presents the dynamic response
of the tower obtained using the methodology followed in the
current paper along with the comparison of recent codes and
standards. Section 6 summarizes the conclusions drawn by

the current study.

2. Experimental tests

The first step in the proposed procedure is to obtain time his-
tories of actual wind loads on a tall building. This was
achieved by a wind tunnel experiment on a high-rise building

model which was carried out at the PoliMI wind tunnel,
Milano, Italy [2,19]. The objectives of the tests were to conduct
both pressure and force measurements on the building tower.

Force measurements at the base of the model were conducted



Figure 2 Boundary-layer wind tunnel test setup of the tower and

its surrounding. The surrounding structures within a radius of

500 m from the center of the tallest building were modeled on the

turntable.
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using a six-component force balance. The pressure measure-
ments were performed using high speed PSI-system 8400.
The overall base loads obtained from the force balance mea-

surements were compared with those attained from the inte-
gration of the pressures to ascertain enough pressure tap
coverage.

The experiment was carried out in a boundary-layer test
section of the wind tunnel of Politecnico di Milano (PoliMI).
The dimensions of the test section are 4 m height, 14 m width

and 36 m length. These huge dimensions allow for testing civil
engineering structural models with large scales (up to 1:50)
with low blockage effects. The long length of the test section
allows for the turbulent boundary-layer to turbulence be fully

developed. The empty test section provides a very uniform
smooth flow. The boundary-layer thickness is about 0.2 m
and the turbulence intensity Iu outside the boundary-layer is

below 2%, due to a special type of painting used. Passive vor-
tex generators in the form of spires, brick and roughness ele-
ments in the shape of pyramids were used at the entrance of

the test section to simulate the growth of the boundary-layer.
The configuration used represents a typical urban terrain pro-
file [29]. Mean velocity profile normalized at a reference height

of 1 m (which represents 100 m at full-scale) is shown in
Fig. 1(a). It is worth noting that although the mean velocity
profile can be obtained through simple measurements using a
Pitot Static tube, a high sensitivity velocity measuring device

is important to capture the flow fluctuations, and hence the
turbulence intensities and the spectral content. Turbulence
intensity profiles, integral length scale profiles, and the velocity

spectrum at the reference height are shown in Fig. 1(b–d).
The building used in this study is 209 m · 57.6 m · 22 m

steel tower with a total weight of 4 · 107 kg. A rigid model
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Figure 1 (a) Mean wind speed profile, (b) turbulence intensity profi

velocity component.
of the building was made of carbon fiber and scaled 1:100
(the tallest model in Fig. 2). To allow for pressure measure-

ments, hundreds of pressure taps were instrumented on the
outer surfaces through tubes passing through the outer skin
of the model. These tubes were collected into groups (inside

the test model) and then connected to individual pressure scan-
ners. The measurements of the pressure distribution over the
outer surface area of the model were conducted through a total
number of 448 taps. The measurements of the pressure were

carried out using a high speed PSI-system 8400; such system
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Figure 3 ESP pressure scanners with 16 and 32 channels. Due to

their small size, they can be accommodated inside the test model

(see [12]).
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supports scanners of type ESP (see Fig. 3). Due to the small

size of the scanner, it can be mounted inside the test model.
This reduces the length of the pneumatic connectors used lead-
ing to an improvement in conducting measurements at high
frequencies. Plastic tubes are used to connect the taps on the

surface of the model to the scanners.
Overall wind loads at the base of the test model were mea-

sured using a stiff high-frequency balance. It is worth to men-

tion that a high stiffness force balance was required to reduce
the inertial effects under wind loads (rigid model experiment).
The balance is capable of capturing six components of reac-

tions at the base of the model (three components of force
and three moments). Two accelerometers were mounted at
the top of the rigid model from inside for acceleration mea-

surements. These measurements were used later in order to re-
move the inertial effects from the force balance measurements
to obtain the equivalent loads for the static case (in which the
model is rigidly fixed with no flexibility).

The wind tunnel tests were conducted for 32 wind direc-
tions at 11.25� intervals for three different wind speeds. The
pressure data were acquired at 22.5� intervals. The test was

done for each one of the three buildings as alone and later
for each building with the existence of the other models. Both
force and pressure measurements were conducted over a time

period of 2 min. Pressure and force data were acquired at sam-
ple rates of 62.5 Hz and 250 Hz, respectively.

3. FE modeling

The second step in the proposed procedure is to build the FE
model of the full-scale structure to be used with wind load data

in order to predict the dynamic behavior in a real world sce-
nario. Fig. 4 shows the FE model of the full-scale building
tower. The model has 2644 elements; each floor has a total
number of 55 elements. Two main columns to carry the verti-

cal loads were assumed to have hollow rectangular cross-sec-
tional areas with a wall thickness varying with height in a
step manner (rigidity changing with height). Floor masses were

assumed to be distributed over the beams and the columns.
The structural damping ratio for the first mode is 1%. The
modal parameters of the FE model for the first six modes
are given in Table 1. The equation of motion governing the
behavior of the structure under wind loads is

M €Xþ C _Xþ KX ¼ FðtÞ ð1Þ

where M is a mass matrix, X= [x,y]T is a 2n · 1 vector and n
is the number of nodes while x and y are vectors of displace-
ments in x- and y-directions; C is a damping matrix and K is
a stiffness matrix. F(t) = [Fx(t),Fy(t)]

T, in which Fx(t) and

Fy(t) are n · 1 vectors of external forces acting on the nodes
in x- and y-directions, respectively. Using the first nine modes
given from the FE model, with the next transformation

X ¼ UQ ð2Þ

In which F is 2n · 9 matrix of eigenvectors and Q is 9 · 1
vector of generalized displacements

U ¼

/1ðx1Þ /2ðx2Þ . . . /9ðx1Þ
/1ðx2Þ /2ðx2Þ . . . /9ðx2Þ
..
. ..

. ..
.

/1ðxnÞ /2ðxnÞ . . . /9ðxnÞ
/1ðy1Þ /2ðy1Þ . . . /9ðy1Þ
/1ðy2Þ /2ðy2Þ . . . /9ðy2Þ
..
. ..

. ..
.

/1ðynÞ /2ðynÞ . . . /9ðynÞ

2
66666666666666664

3
77777777777777775

; Q ¼

q1

q2

..

.

..

.

q9

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
; ð3Þ

Substituting Eq. (2) into (1) and premultiplying by FT, one
obtains

UTMU €Qþ UTCU _Qþ UTKUQ ¼ UTFðtÞ ð4Þ

By assuming proportional damping, the above equation re-
sults in nine uncoupled equations

m11€q1 þ c11 _q1 þ k11q2 ¼
X2n
i¼1

/1ðxiÞFi;t

m22€q2 þ c22 _q2 þ k22q2 ¼
X2n
i¼1

/2ðxiÞFi;t

m99€q9 þ c99 _q9 þ k99q9 ¼
X2n
i¼1

/9ðxiÞFi;t

9>>>>>>>>>>=
>>>>>>>>>>;

ð5Þ

where mii, cii, and kii are generalized mass, generalized damp-
ing, and generalized stiffness of mode i, respectively. The
qj(t) is then solved from each of the above equations. A MAT-

LAB code was written to compute the time history of the re-
sponses [18].

4. Time history of the forces

The equations of motion defined in the previous section have
the time history of the wind loads at full-scale as one parame-

ter. So it is required to scale up the wind loads measured in the
wind tunnel experiment. Using the measurements obtained by
the pressure transducers, Cp at each tap was obtained as a

function of both space and time. The geometric scale of the
model to the prototype kL is 1:100. The mean wind speed at
full-scale is assumed to be 30 m/s at a height of 100 m and
the mean wind speed during the wind tunnel tests was

14.7 m/s. This gives a velocity scale kV of 1:2.04. Accordingly,
the timescale can be calculated as kT = kL/kV = 1:49. This
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Table 1 Modal parameters of the FE model.

Mode

number

Generalized

mass · 10e7

(kg m2)

Generalized

stiffness · 10e9

(N m)

Frequency

(Hz)

Modal

damping

1 1.2953 0.0147 0.1694 0.0102

2 0.9937 0.0178 0.2132 0.0112

3 0.4945 0.0222 0.3370 0.0150

4 0.8724 0.1115 0.5689 0.0234

5 0.8273 0.2153 0.8120 0.0326

6 0.3544 0.1600 1.0695 0.0426

Note: Modes 1 and 4 are lateral modes in x-direction; modes 2 and

5 are lateral modes in y-direction while modes 3 and 6 are torsional.
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means that the 2 min wind data correspond to 98 min at full-
scale. The pressure values on the surface of the full-scale model

can be calculated as follows:

Pðspace; timeÞ ¼ 1

2
qV2Cpðspace; timeÞ ð6Þ

where P(space, time) is a matrix containing pressure values on

the surface of the full-scale model as a function of space and
time, q is the air density which is assumed to be 1.225 kg/m3,
V is the mean velocity of the wind at full-scale, and Cp is the

pressure coefficient obtained at the location of each tap as a
function of time. The wind load at each node of the outer sur-
face (see Fig. 5) is the integration of the pressure over the sur-

face area in the vicinity of the node (tributary are, see [4]) as
follows:
Fðnodes; timeÞ ¼
Z

Pðspace; timeÞdA: ð7Þ

This means that once the time history of the pressures on

the outer surfaces is calculated, the external forces acting on
the nodes of the surface can be computed. The excitation
forces acting on the internal nodes are of course equal to zero.
To allow for sufficient pressure measurements, 448 taps were

mapped on the outer surface of the model (for the wind tunnel
experiment). Pressure taps were distributed to cover the entire
outer surface with more intense at the upper part of the test

model (see Fig. 6(a)). Pressure data were integrated on the out-
er surface of the building (see Fig. 6(b)) to obtain the corre-
sponding time history of wind loads. Codes were written in

MATLAB to estimate the time histories of the wind forces act-
ing at the center of each smaller area.

Mean wind loads along x- and y-direction as a function of

the approaching wind direction are shown in Fig. 7. The wind
loads measured by the balance are scaled up to represent the
loads on the full-scale real building. It is shown that there is
a good agreement between the results obtained by the balance

and the pressure integration technique. It can be seen from the
results presented in the figure that the effects from the sur-
rounding tall buildings that have building heights about

71.8% and 81.3% of the tower height are significantly depen-
dent on the incident wind direction. The effect is a reduction in
the mean wind loads if the wind is coming from the direction

of the surrounding buildings (sheltering effects). The maxi-
mum values of the mean wind loads in x- and y-direction occur
at 202.5� and 270�, respectively. It can be seen also that

magnitudes of the loads in the along-wind direction are larger
than those in the cross-wind direction.



Figure 5 Wind load estimation from pressure data: the tributary area of floor N was divided into smaller areas; pressure forces acting on

each smaller area Ai, were calculated based on pressure data at the nearest pressure tap, m.

Figure 6 Pressures on the outer surface were obtained: (a) pressure tap distribution (elevation and side view), and (b) mean surface

pressure coefficient distribution for a wind direction of 292.5�.
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Fluctuating wind loads along x- and y-direction as a func-
tion of the approaching wind direction are shown in Fig. 8.

The effect of the surrounding buildings is seen again as a
dependent on the incident wind direction. The maximum val-
ues of the fluctuating wind loads in both x- and y-directions

occur at an incident angle of 270�. The fluctuating wind loads
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in the y-direction are larger than those in the x-direction. This
is due to the fact that the building is wider in the y-direction

and thinner in the x-direction. However, the building is more
flexible in the x-direction which means the dynamic displace-
ments in this direction can be higher than that in the y-
direction.

The generalized forces (GF) are obtained as follows:

GF ¼ UTFðnodes; timeÞ: ð8Þ
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Figure 8 Standard division of the wind loads as a function of the
Fig. 9 shows time history and Fast Fourier Transform
(FFT) of the generalized forces for the first two modes under

a wind direction angle of 270�.

5. Dynamic response

Table 2 gives the response of the tower in the along-wind direc-
tion and the cross-wind directions for a wind direction angle of
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270� with different considerations of the mode shape. It is
shown that the displacement response of the building may be
evaluated by the first two vibrational modes. However, the

acceleration response is contributed by not only the first two
lateral vibrational modes but also by the contribution of high-
er modes. In any case, for accurate evaluation of the accelera-
tion response it is important to consider not only the first two

lateral vibrational modes but also higher modes. Ignoring con-
tribution of higher modes may lead to underestimation of the
acceleration response; however, it could result in overestima-

tion of the displacement responses. After mode number 8 the
change in the response is not significant. This is the reason
for which only the first nine modes were considered. It is

shown that the fluctuating cross-wind displacement (standard
deviation) is higher than that of the along-wind.

Time history and FFT of the displacement and acceleration
responses of the top corner of the building are shown in

Figs. 10 and 11. Again it is shown that the acceleration
Table 2 Response of the top corner of the building tower for an in

Mode rx, m Xmean, m Xm

A C A C A

1 0.0003 0.1509 0.0000 0.0098 0.0

1:2 0.1177 0.1509 0.2818 0.0098 0.7

1:3 0.1188 0.1516 0.2770 0.0113 0.7

1:4 0.1188 0.1513 0.2770 0.0107 0.7

1:5 0.1182 0.1513 0.2696 0.0107 0.7

1:6 0.1183 0.1513 0.2701 0.0105 0.7

1:7 0.1183 0.1512 0.2701 0.0106 0.7

1:8 0.1183 0.1512 0.2708 0.0106 0.7

1:9 0.1183 0.1512 0.2708 0.0106 0.7

rx is the root mean square value of the fluctuating deflection, A means a
response is contributed by higher modes of vibration while
the displacement is dominant by lower modes.

Standard deviation (STD) of the displacements in x- and y-

direction is shown in Fig. 12 as a function of the approaching
wind direction. It can be seen from the figure that the maxi-
mum STD displacements of the building along x- and y-direc-
tion for all incident wind angles are 0.191 m and 0.135 m,

which occur at 90� and 0�, respectively. Both directions are
cross-wind for x- and y-direction, respectively.

Fig. 13 shows peak values of displacements of the top cor-

ner of the tower for both x- and y-direction as a function of the
coming wind direction. The maximum displacements of the
building along x- and y-direction for all incident wind angles

are 0.704 m and 0.727 m, which occur at 292.5� and 270�,
respectively.

STD acceleration responses of the top corner along x-axis
and y-axis are shown in Fig. 14 as a function of the approach-

ing wind direction. It is shown that the maximum STD
cident angle of 270�.

ax, m r€x;m=s
2 €Xmax;m=s

2

C A C A C

013 0.5911 0.0004 0.1637 0.0014 0.6424

510 0.5911 0.1805 0.1637 0.5616 0.6424

350 0.5894 0.2018 0.1670 0.6904 0.6567

350 0.5845 0.2018 0.1683 0.6904 0.6561

243 0.5845 0.2037 0.1683 0.6693 0.6560

257 0.5847 0.2071 0.1688 0.7079 0.6729

257 0.5858 0.2071 0.1678 0.7079 0.7026

270 0.5858 0.2078 0.1678 0.7315 0.7026

270 0.5856 0.2078 0.1684 0.7316 0.7018

long-wind and C means cross-wind.
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Figure 10 Top corner’s displacement for a wind direction of 270�. Note: the mean value was subtracted from the time history data.
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Figure 11 Top corner acceleration for a wind direction of 270�.
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acceleration responses of the building along x- and y-direction

for all incident wind directions are 0.222 m/s2 and 0.273 m/s2,
which occur at 90� and 180�, respectively (cross-wind in both
directions).

Maximum acceleration responses along x-axis and y-axis
under the design wind speed action are shown in Fig. 15 as a
function of the approaching wind direction. It can be seen
from the figure that the maximum acceleration responses of
the building along x- and y-direction for all incident wind an-

gles are 0.847 m/s2 and 1.122 m/s2, which occur at 90� and
180�, respectively (cross-wind for both directions). Generally,
the building acceleration is the most appropriate response

component for checking the structural serviceability under
wind loads. It is shown that the maximum acceleration is
about 11.44% g which is considered by Simiu and Scanlan
[20] to be very annoying. High responses are expected in this
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Figure 13 Peak values of the displacements of the top corner: (a) x-direction and (b) y-direction. Note: the mean value of displacements
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Figure 12 Standard deviation of the overall displacement of the top corner: (a) x-direction and (b) y-direction.
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study because the wind profile used is highly turbulent and the

structure is flexible with an aspect ratio of 9.5. In any case, a
mitigation approach is presented in Aly et al. [3].

The Engineering Sciences Data Unit [10], the ASCE 7-2010

[1] and the Eurocode 1 [11] were used to obtain the along-wind
response of the tower, assuming that the building shape is a
rectangular prism. For the ASCE 7-2010, the basic wind speed

is defined over a period of 3-s. Using the formula ([20], Eq.
(2.3.37))

UtðzÞ ¼ U3600ðzÞ 1þ b1=2cðtÞ
2:5 lnðz=z0Þ

 !
ð9Þ
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Figure 15 Peak accelerations of the top corner: (a) x-direction and (b) y-direction.
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Figure 14 Standard deviation of the top corner accelerations: (a) x-direction and (b) y-direction.
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From Simiu and Scanlan [20] (Tables 2.3.1 and 2.3.3),
b = 5 and c(t) = c(600) = 0.36 the mean hourly wind speed,

U3600(10) is 22.3 m/s for U3600(10) = 25 m/s. Again from the
same equation for c(t) = c(3) = 2.8 the gust speed, U3(10) is
43.3 m/s.

Table 3 shows that there is a good agreement between the re-
sults obtained using the different codes and the results from the
proposed method. Although the STD values of the acceleration
obtained by the ASCE 7-2010 and the Eurocode are similar, the
maximum values are different.

In conclusion, the methodology presented in the current pa-
per has the advantages of considering complex shapes of struc-
tures with non-uniform mass distribution and can easily

account for any required number of mode shapes to be consid-
ered in the response analysis. Wind-induced response analysis
of tall buildings in their preliminary design stages can help



Table 3 Comparison of the along-wind responses obtained by the proposed procedure the response predicted by different design

standards.

Results ESDU ASCE 7-2010 Eurocode 1 Proposed approach

90� 90� 90� 90� 270�

rx, m 0.102 – 0.1336 0.1118 0.1183

Xmax, m 0.671 0.582 0.7114 0.5954 0.7270

r€x;m=s
2 0.177 0.201 0.2083 0.2056 0.2078

€Xmax;m=s
2 0.785 0.764 0.6866 0.7395 0.7316

Figure 16 Schematic representation of a proposed decision making strategy, helpful in the design of high-rise buildings for wind.
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decision makers to choose among potential mitigation solu-
tions like aerodynamic shape modification, structural member

size adjustment, and/or damping enhancement by passive, ac-
tive, or semi-active control devices [3–8]. Fig. 16 shows a sche-
matic representation of a proposed decision making strategy,

helpful in the design of high-rise buildings for wind.

6. Concluding remarks

The paper presents practical procedure for response prediction
in high-rise buildings under wind loads. To show the applica-
bility of the procedure, aerodynamic loads acting on a quasi-

rectangular high-rise building based on an experimental ap-
proach (surface pressure measurement) are used with a math-
ematical model of the structure for wind-induced response
evaluation. The contributions of this paper can be summarized

as follows:

� The case study building represents an engineered steel

design of a structure that is very vulnerable to wind loads.
This may be due to its low weight as well as high flexibility
associated with the low dominant natural frequencies and

the high aspect ratio.
� A good agreement in the predicted responses was found
among the proposed approach and the most significant

design standards (in the along-wind direction).
� The methodology based on HFPI and FE modeling, pro-
posed for the estimation of the response of high-rise build-
ings under wind loads, has the advantage of combining
lateral along-wind, lateral cross-wind, and torsional

responses altogether. The proposed technique has the capa-
bilities of considering structures with: (1) complex mode
shapes, (2) non-uniform mass distribution, and (3) interfer-

ence from the surrounding. In addition, the technique can
account for the contribution of higher modes of vibration
and the wind direction angle.

� The effect of the wind incident angle is very important as
the maximum cross-wind response occurred at angle of
292.5� (at this angle it is difficult to calculate such response

by traditional codes) rather than 90� or 270�. This is due to
the interference effect caused by two tall buildings in the
vicinity. However, this effect resulted into reduction in the
mean wind loads and the associated maximum along-wind

displacement, when the surrounding buildings were located
in the upstream flow.
� The response of tall buildings in the cross-wind direction (lat-
eral response combined simultaneously with torsion) can be
higher than the response in the along-wind direction. This
reveals the importance of the methodology presented in the

current study, as the literaturemay provide accurate estimate
of the along-wind response but less guidance for the estima-
tion of the critical cross-wind and torsional response.
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� For accurate estimation of the acceleration response it is

important to consider not only the first two lateral vibra-
tional modes but also higher modes. Ignoring contribution
of higher modes may lead to underestimation of the accel-

eration response; however, it could result in overestimation
of the displacement responses.
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Appendix A.

A.1. Calculation of the along-wind response using Eurocode 1

Note: All Expressions, Figures, Tables and Sections referred to in

this appendix are the same as that stated in the Eurocode 1 [12].
The standard deviation of the turbulence rv may be deter-

mined using Expression (4.6).

rv ¼ kr � vb � kl

kr ¼ 0:19 � z0
z0;ll

� �0:07

z0 is the roughness length, 0.7 m and z0,ll = 0.05 (terrain
category II, Table 4.1) then kr = 0.2286. vb = 25 m/s, is the
basic mean wind speed at a height of 10 m for a period of

10 min. kl is the turbulence factor. The recommended value
is kl = 1. From the above expression rm = 5.7138 m/s.

The wind force Fw acting on a structure or a structural com-

ponent may be determined directly by the Expression (5.3)

Fw ¼ CsCd � Cf � qqðzeÞ � Aref

where CsCd is the structural factor, Cf is the force coefficient
for the structure or structural element, qq(ze) is the peak veloc-
ity pressure (defined in 4.5) at reference height ze, Aref is the

reference area of the structure or structural element.The struc-
tural factor CsCd is given in Expression (6.1).

CsCd ¼
1þ 2 � kp � IvðzeÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ R2

p
1þ 7 � IvðzeÞ

in which ze = 0.6 h = 125.4 m and

IvðzeÞ ¼ rv
VmðzeÞ ¼

5:7138
31
¼ 0:1843. The turbulent length scale

L(ze) represents the average gust size for natural winds. For
heights z below 200 m the turbulent length scale may be calcu-
lated using Expression (B.1):

LðzÞ ¼ Lt �
z

zt

� �a

with a reference height, zt of 200 m, a reference length scale,
Lt of 300 m, and with a = 0.67 + 0.05 ln(z0). This gives
L(ze) = 221.2616 m.

The background factor B2 allowing for the lack of full cor-

relation of the pressure on the structure surface may be calcu-
lated using Expression (B.3):
B2 ¼ 1

1þ 0:9 bþh
LðzeÞ

� �0:63 ¼ 1

1þ 0:9 57:6þ209
221:2616

� �0:63 ¼ 0:4970

However, the value recommended by the code for B2 is 1.
The resonance response factor R2 allowing for turbulence in

resonance with the considered vibration mode of the structure

should be determined using Expression (B.6):

R2 ¼ p2

2d
SLðze; n1;xÞRhðghÞRbðgbÞ

where d is the total logarithmic decrement of damping given in
F.5, SL is the non-dimensional power spectral density function

given in B.1 (2) and Rh and Rb are the aerodynamic admittance
functions.

The logarithmic decrement of damping d for fundamental
bending mode may be estimated by Expression (F.15).

d ¼ ds þ da þ dd

where ds is the logarithmic decrement of structural damping, da
is the logarithmic decrement of aerodynamic damping for the

fundamental mode and dd is the logarithmic decrement of
damping due to special devices (in this case dd is zero).

ds ¼ 2pf ¼ 2� 3:1416� 0:01 ¼ 0:0628

The logarithmic decrement of aerodynamic damping da for
along-wind vibrations may be estimated by Expression (F.18).

da ¼
CfqVmðzeÞ

2n1le

Cf is the force coefficient for wind action in the wind direc-
tion stated in Section 7 (see Eurocode 1). For a force blowing

normal to a face

Cf ¼ Cf;0wrwk

where Cf,0 is the force coefficient of rectangular section with
sharp corners, wr is the reduction factor for square sections
with rounded corners and wk is the end coefficient factor for

elements.
From Fig. 7.23, d/b = 0.3819, Cf,0 = 2.25. From Fig. 7.24

wr is 1. From Fig. 7.36 considering u = 1 and k ¼ 70 (from

Table 7.16 consider case no. 4), wk ¼ 0:915.

Cf ¼ 2:25� 1� 0:915 ¼ 2:0587

da ¼
2:0587� 1:225� 31

2� 0:21� ð1:33� 107=ð57:6� 209ÞÞ
¼ 0:1681

d ¼ 0:0628þ 0:1681þ 0 ¼ 0:2309

The wind distribution over frequencies is expressed by the
non-dimensional power spectral density function, SL(z,n)

which should be determined using Expression (B.2)

SLðze; n1;xÞ ¼
6:8� fLðze; n1;xÞ

ð1þ 10:2� fLðze; n1;xÞÞ5=3
;

fLðze; n1;xÞ ¼
n1;x � LðzeÞ

VmðzeÞ

fLðze; n1;xÞ ¼
0:21� 221:2616

31
¼ 1:5

SLðze; n1;xÞ ¼
6:8� 1:5

ð1þ 10:2� 1:5Þ5=3
¼ 0:0974
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The aerodynamic admittance functions Rh and Rb for a funda-

mental mode shape may be approximated using Expressions
(B.7) and (B.8)

Rh ¼
1

gh

� 1

2� g2
h

ð1� e�2ghÞ; Rh ¼ 1 for gh ¼ 0

Rb ¼
1

gb

� 1

2� g2
b

ð1� e�2gbÞ; Rb ¼ 1 for gb ¼ 0

with : gh ¼
4:6� h

LðzeÞ
fLðze; n1;xÞ and gb ¼

4:6� b

LðzeÞ
fLðze; n1;xÞ

gh ¼
4:6� 209

221:2616
� 1:5 ¼ 6:5127; gb ¼

4:6� 57:6

221:2616
� 1:5

¼ 1:7949

Rh ¼
1

6:513
� 1

2� 6:5132
¼ 0:1418; Rb ¼

1

1:795
� 1

2� 1:7952

¼ 0:4019

then R2 ¼ ð3:1416Þ
2

2�0:2309� 0:0974� 0:1418� 0:4019 ¼ 0:1186:
The peak factor kp, defined as the ratio of the maximum va-

lue of the fluctuating part of the response to its standard devi-
ation, should be obtained from Expression (B.4)

kp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnðvTÞ

p
þ 0:6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 lnðvTÞ
p or kp ¼ 3 whichever is larger:

The up-crossing frequency v should be obtained from
Expression (B.5):

v¼ n1;x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

B2þR2

s
¼ 0:21�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1186

1þ0:1186

r
¼ 0:0684; v> 0:08Hz

The limit of v P 0.08 Hz corresponds to a peak factor, kp of
3. While T is the averaging time for the mean wind velocity,
T = 600 s.

Referring back to Expression (6.1)

CsCd ¼
1þ 2� 3� 0:1843�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:1186
p

1þ 7� 0:1843
¼ 0:9473

From Expression (5.3)

Fw ¼ 1:9504� qqðzeÞ � Aref

¼ 1:9504� 1

2
q� V2

mðzeÞ
� �

� ðb� hÞ

To determine the peak response of the tower, the peak

velocity pressure qp at height ze should be considered instead
of qq in the above equation. The recommended rule to deter-
mine qp is given in Expression (4.8).

qp ¼ ½1þ 7� IvðzeÞ� �
1

2
� q� V2

mðzeÞ

that gives Fw;max ¼ 4:4667� ð1
2
q� V2

mðzeÞÞ � ðb� hÞ.
The mean displacement, Xmean and the maximum displace-

ment, Xmax are determined using Fw and Fw,max respectively.
The root mean square value of the fluctuating deflection, rx

is determined using the definition of the peak factor, kp [21]

rx ¼
Xmax � Xmean

kp
The standard deviation ra,x of the characteristic along-wind
acceleration of the structural point at height z should be
obtained using Expression (B.10)

ra;zðzÞ ¼
CfqbIvðzeÞV2

mðzeÞ
m1;x

RKxU1;xðzÞ

Kx is the non-dimensional coefficient, given by Expression
(B.12)c

Kx ¼
ð2fþ 1Þ ðfþ 1Þ ln ze

z0

� �
þ 0:5

h i
� 1

n o
ðfþ 1Þ2 ln ze

z0

� �

ra;zðzÞ ¼
2:0587� 1:225� 57:6� 0:1843� 312

ð1:33� 107=209Þ

� 0:3444� 1:5� 1 ¼ 0:2083 m=s2

Using Expression (B.4) and replacing m by n1; the peak
factor for the acceleration is 3.2957 which gives a maximum
along-wind acceleration of 0.6866 m/s2.
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