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Abstract Redundantly actuated planar rotational parallel mechanisms (RAPRPMs) adapt to the

requirements of robots under different working conditions by changing the antagonistic internal

force to tune their stiffness. The geometrical parameters of the mechanism impact the performances

of modulating stiffness. Analytical expressions relating stiffness and geometrical parameters of the

mechanism were formulated to obtain the necessary conditions of variable stiffness. A novel

method of variable stiffness design was presented to optimize the geometrical parameters of the

mechanism. The stiffness variation with the internal force was maximized. The dynamic change

of stiffness with the dynamic location of the mechanism was minimized, and the robustness of stiff-

ness during the motion of the mechanism was ensured. This new approach to variable stiffness

design can enable off-line planning of the internal force to avoid the difficulties of on-line control

of the internal force.
� 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Planar parallel manipulators perform two translations along
the x- and y-axes, and rotate through an angle around the z-
axis, perpendicular to the plane. They have some potential

advantages over serial robotic manipulators such as better
accuracy, greater load capacity, and higher velocity and accel-
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eration.1,2 The redundantly actuated planar rotational parallel

mechanism (RAPRPM) is a special type of planar parallel
manipulator. It does not have the ability to move along the
x- and y-axes, and only has a single degree of freedom, rotat-

ing around the z-axis. Meanwhile, the stiffness of rotation
around the z-axis can be modulated by employing redundant
actuation. The performances including inverse kinematics,
forward kinematics, Jacobian matrix, workspace, singularity,

and dexterity of planar parallel manipulators have been ana-
lyzed.1–4 Stiffness modeling of a robotic manipulator is also
one of the important issues that allows a user to evaluate its

compatibility for certain tasks.5 Based on biological studies
of the muscular properties and the skeletal structures of fish,
Cui and Jiang presented a robotic fish consisting of planar

serial-parallel mechanisms, i.e., the RAPRPMs connecting to
each other in series. It included rigid bodies, springs, dampers,
and revolution joints. Their results showed that the swimming
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Fig. 1 Compliant fish with serial-parallel redundantly actuated

mechanisms.
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performance of the robotic fish was largely dependent on the
body stiffness and the driven frequency.6 Biological experi-
ments of fish have shown that fish change their natural fre-

quency by modulating the stiffness of their bodies to match
the driving frequency. Then fish can employ resonance to
improve their swimming efficiency.7–9 Swimming fish that

can tune their body stiffness by appropriately timed muscle
contractions are able to maximize peak acceleration or swim-
ming speed. The muscles are modeled as springs of constant

stiffness.10 To study the body stiffness of robotic fish consist-
ing of planar serial-parallel mechanisms, it is important to
study the stiffness design and stiffness control of the
RAPRPM. Stiffness control schemes realized by employing

redundant actuation can be broadly categorized as: passive
stiffness control (PSC), feedback stiffness control (FSC), and
active stiffness control (ASC).11,12 PSC is a scheme that

changes the stiffness of the mechanism by adding flexible ele-
ments to the original mechanism.13,14 Because the stiffness of
flexible elements cannot be changed much, the stiffness of

the mechanism is changed less by using PSC. An FSC scheme
chooses proportional coefficients in the positioning joint con-
trollers that correspond to the desired characteristics for con-

trol of the end-effector.15,16 However, the modulation of
proportional coefficients of controllers may make the system
unstable. An ASC scheme yields antagonistic forces in a redun-
dantly actuated mechanism. The internal forces balance each

other in a closed mechanism and do not perform any effective
work, but generate end-effector stiffness.17–20 An ASC scheme
can significantly modulate the stiffness by modulating the

internal force, which involves off-line planning of antagonistic
actuator loads, so that one can obtain the desired object stiff-
ness.21–24 An ASC scheme is chosen to control the stiffness of

the RAPRPM because of its advantages over other stiffness
control schemes.

In addition, it is also meaningful to apply an ASC scheme

to maintain constant stiffness and maximize the change of
stiffness with the internal force. Sungcheul et al. introduced
two indexes, one of which was suggested to make the minimum
stiffness similar to the maximum stiffness at a given point and

to ensure robustness and balance of the stiffness in all direc-
tions. The other index was used to maximize the stiffness in
a fixed direction along the pathway.25 Hence, for the

RAPRPM whose stiffness changes with the dynamic location
of a platform, applying an ASC scheme to enable on-line con-
trol of the internal force according to the dynamic location to

keep the stiffness constant and to maximize the change of stiff-
ness with the internal force, would increase the controlling dif-
ficulty and responding time. However, when applying an ASC
scheme to enable off-line planning of the internal force to

avoid the difficulties of on-line control, geometrical parameters
are required to meet the following three requirements. Firstly,
the amount of active stiffness variation with the internal force

is maximum. Secondly, the proportion of active stiffness in
total stiffness is maximum. Thirdly, the dynamic change of
active stiffness with the rotating angle is minimum to ensure

the robustness of stiffness during movement of the platform.
In addition, optimization strategies such as particle swarm
optimization and genetic algorithms have been widely used

to minimize the power requirement for a planar parallel
manipulator,26 to compensate for compliance errors,5 to
obtain superior dexterous workspace,27,28 or to maximize stiff-
ness.29,30 Similarly, the geometrical parameters are optimized
Please cite this article in press as: Li K et al. Variable stiffness design of redundantly
dx.doi.org/10.1016/j.cja.2016.07.001
to maximize the stiffness variation with the internal force
and minimize the dynamic changes of total stiffness with the
dynamic location of the mechanism.

2. Torsional stiffness of RAPRPM

2.1. Variable stiffness principle of RAPRPM

Cui and Jiang presented the structure of a compliant fish con-

sisting of planar serial-parallel redundantly actuated mecha-
nisms, as shown in Fig. 1,6 in which the RAPRPMs connect
each other in series. The capacity of the fish to modulate stiff-

ness can be replicated by changing the stiffness of the
RAPRPMs.6 As one of a series, the working principle of a sin-
gle RAPRPM is shown in Fig. 2. The top platform A1OA2 is

supported by the middle rigid leg OB3 and the elastic legs
A1B1 and A2B2. jl1j is the length of the elastic leg A1B1. jl2j is
the length of the elastic leg A2B2. The elastic legs A1B1 and
A2B2 on both sides connect the rotating pairs of the upper rev-

olute joints A1 and A2 on the top platform and the rotating
pairs of the lower revolute joints B1 and B2 on the fixed plat-
form B1B2B3. ra is the center distance of the upper revolute

joints, while rb is the center distance of the lower revolute
joints. The middle rigid leg OB3 is attached to the fixed plat-
form. The top platform rotates around the rotating center O

with a single degree-of-freedom. q is the rotating angle, the
position where the rotating angle q = 0 rad is defined as the
initial position, h is the distance between the rotating center

O and the fixed platform, Lc is the distance between the rotat-
ing center O and the top platform, and r is the vector from the
rotating center O to the upper revolute joints. The linear dri-
vers C1 and C2 change the internal forces resulting from the

elastic legs A1B1 and A2B2, respectively, and the internal forces
balance each other to provide active stiffness in the closed
mechanism. f is the outputting internal force of the leg. XOY

is defined as the base coordinate fixed to the rotating center
O, and its Y-axis parallels to OB3. x0Oy0 is defined as the rotat-
ing coordinate fixed to the top platform.

The torsional stiffness K of the RAPRPM is defined as25

K ¼ @Q

@q
ð1Þ

where Q is the torque of the top platform.
actuated planar rotational parallel mechanisms, Chin J Aeronaut (2016), http://
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Fig. 2 Schematic of a single parallel mechanism.
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As shown in Fig. 2, the torque Q of the top platform is

defined as follows:

Q ¼ rTEf ð2Þ
where r= [x, y]T. E is the two-dimensional rotational matrix,

and E ¼ 0 1
�1 0

� �
. The components of the internal force f are

fx and fy, which can be written as

f ¼ ½fx; fy�T ¼ f0ln ð3Þ
where f0 is the amount of the internal force. ln is the unit vector

of the elastic leg, and ln ¼ l
jlj, in which l is the vector of the elas-

tic leg and jlj is the length of the elastic leg.
By substituting Eq. (2) into Eq. (1), the torsional stiffness is

K ¼ @ rTEfð Þ
@q

¼ @rT

@q
Efþ rTE

@f

@q
ð4Þ

Stiffness consists of active stiffness and passive stiffness. By
substituting Eq. (3) into Eq. (4), the torsional stiffness K can

be expressed as:

K ¼ f0
@rT

@q
Eln þ rTE

@ln
@q

� �
þ rTEln

@f0
@q

ð5Þ

where the first item is the active stiffness Ka resulting from the
internal force of the mechanisms and the second item is the

passive stiffness Kp caused by the location. Hence, the active
stiffness can be given by25

Ka ¼ f0
@rT

@q
Eln þ rTE

@ln
@q

� �
ð6Þ

The passive stiffness is31

Kp ¼ rTEln
@f0
@q

¼ @f0
@k

@k
@q

� �
rTEln ð7Þ

where k is the stretch-shortening length of the elastic leg,
@k
@q
¼ rTEln,

@f0
@k ¼ k0, and k0 is the stiffness of the elastic leg.

Therefore the passive stiffness Kp can be found from Eq. (7) as

Kp ¼ k0 rTEln
� �2 ð8Þ
241241

242

243

244

245

246
2.2. Active stiffness of RAPRPM

As shown in Fig. 2, the torque Q of the mechanisms consists of
the torque Q1 caused by the elastic leg A1B1 acting on the top
platform and the torque Q2 caused by the elastic leg A2B2 act-
Please cite this article in press as: Li K et al. Variable stiffness design of redundantly
dx.doi.org/10.1016/j.cja.2016.07.001
ing on the top platform. That is, Q= Q1 + Q2. Hence, the
total torsional stiffness K of the mechanisms consists of the
torsional stiffness K1 resulting from the elastic leg A1B1 and

the torsional stiffness K2 resulting from the elastic leg A2B2.
The total torsional stiffness K is expressed as

K ¼ K1 þ K2 ð9Þ
Hence, the active stiffness and passive stiffness resulting

from elastic legs A1B1 and A2B2 must firstly be solved before
solving the total torsional stiffness K of the mechanisms.

As shown in Fig. 2, r1 is the vector between the rotating

center O and the point of action A1 of the internal force f1,
and r1 = [x, y]T, which can be described as

r1 ¼ ROA1

��! ð10Þ
where R is the matrix for coordinate transformation from the

rotating coordinate x0Oy0 to the fixed coordinate XOY.

R ¼ cos q � sin q
sin q cos q

� �
.32,33 In coordinate x0Oy0,

OA1

��! ¼ �ra
Lc

� �
.

The vector of the elastic leg A1B1 is

l1 ¼ B3O
��!þ r1 � B3B1

���! ð11Þ

where B3O
��! ¼ 0

l0 � Lc

� �
, B3B1
���! ¼ �rb

0

� �
, l0 is the total height

from the fixed platform to the top platform at the initial posi-
tion, and l0 ¼ Lc þ h.

The vector l1 of the elastic leg A1B1 can be derived from Eq.
(11) as below31:

l1 ¼ x1½ ; y1�T

¼ �ra cos q� Lc sin qþ rb½ ;�ra sin qþ Lc cos qþ l0 � Lc�T
ð12Þ

The vector between the rotating center O and the point of
action A2 of the internal force f2 is shown as follows:

r2 ¼ ROA2

��! ð13Þ

where OA2

��! ¼ ra
Lc

� �
in coordinate x0Oy0.

Similarly, the vector l2 of the elastic leg A2B2 is expressed as

follows:

l2 ¼ ½x2; y2�T

¼ ra cos q� Lc sin q� rb;½ ra sin qþ Lc cos qþ l0 � Lc�T ð14Þ
The torque Q1 resulting from the elastic leg A1B1 acting on

the top platform and the torque Q2 resulting from the elastic

leg A2B2 acting on the top platform are in equilibrium, that
is, Q1 + Q2 = 0. Therefore, the amount of internal force
caused by the elastic leg A2B2 can be derived from Eq. (2) as

follows:

f20 ¼
�rT1El1nf10
rT2El2n

ð15Þ

where f10 is the amount of internal force caused by the elastic
leg A1B1, l1n is the unit vector of the elastic leg A1B1, and l2n is

the unit vector of the elastic leg A2B2.
The active stiffness resulting from the elastic leg A1B1 can

be found by substituting Eqs. (10) and (12) into Eq. (6) as:
actuated planar rotational parallel mechanisms, Chin J Aeronaut (2016), http://
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K1aq ¼ @rT1
@q

Ef10l1n þ rT1Ef10
@l1n
@q

ð16Þ

The active stiffness resulting from the elastic leg A1B1 at the
initial position is derived from Eq. (16) as

K1a ¼ f10

jl10j3
�l20L

2
c þ Lcl0 l20 þ r2b � r2a

� �þ l20raðra � rbÞ
	

�rarbðra � rbÞ2
i

ð17Þ

where jl10j is the length of the elastic leg A1B1 at the initial posi-

tion; consequently, from Eq. (12), jl10j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðra � rbÞ2 þ l20

q
.

Similarly, the active stiffness resulting from the elastic leg
A2B2 can be given as follows by substituting Eqs. (13) and
(14) into Eq. (6):

K2aq ¼ @rT2
@q

Ef20l2n þ rT2Ef20
@l2n
@q

ð18Þ

The stiffness k1
0 of the elastic leg A1B1 is designed to be

equal to the stiffness k2
0 of the elastic leg A2B2, that is,

k1
0 = k2

0. Meanwhile, the length of the elastic leg A1B1 is equal
to that of the elastic leg A2B2 at the initial position, that is,

jl10j ¼ jl20j. As is found from Eq. (15), the amount f10 of the
internal force caused by the elastic leg A1B1 is equal to the
amount f20 of the internal force caused by the elastic leg

A2B2, that is, f10 = f20. As is found from Eqs. (16) and (18),
the active stiffness K1a of the elastic leg A1B1 is equal to the
active stiffness K2a of the elastic leg A2B2, that is, K1a = K2a.

The total active stiffness Ka of the mechanisms at the initial
position is the sum of the active stiffness K1a and the active
stiffness K2a. That is, Ka ¼ 2K1a. According to Eqs. (9) and
(17), the total active stiffness is described as

Ka ¼ 2f10

jl10j3
�l20L

2
c þ Lcl0 l20 þ r2b � r2a

� �þ l20raðra � rbÞ � rarbðra � rbÞ2
h i

ð19Þ
As is found from Eq. (19), the active stiffness Ka = 0 when

ra = rb with Lc = 0 mm or Lc = l0, i.e., the internal force can-

not tune the total torsional stiffness when the center distance
of the upper revolute joints is equal to the center distance of
the lower revolute joints when the rotating center is on the

top platform or on the fixed platform. The condition of the
internal force tuning the stiffness is to avoid the situation. In
addition, Eq. (19) is a quadratic function of Lc, therefore,

derived from Eq. (19), the amount of active stiffness Ka is max-
imum when Lc meets the following requirement:

Lc ¼ ðrb � raÞðrb þ raÞ=ð2l0Þ þ l0=2 ð20Þ
Hence, Lc in Eq. (20) is the geometrical parameter that

maximizes the amount of stiffness variation with the internal

force.
DKa is the difference between the maximum active stiffness

Kamax and the minimum active stiffness Kamin during the rota-

tion of the platform. Ka0 is the active stiffness at the initial
position. The ratio DKa/Ka0 is the maximum change of the
active stiffness Ka during the rotation of the platform. Derived

from Eqs. (16) and (18), as the center distance ra of the upper
revolute joints or the center distance rb of the lower revolute
joints increases, the maximum change of the active stiffness

Ka during the rotation of the platform decreases.
The internal force of the elastic leg can be given as follows:
Please cite this article in press as: Li K et al. Variable stiffness design of redundantly
dx.doi.org/10.1016/j.cja.2016.07.001
f10 ¼ k01cjl10j ð21Þ
where c is the ratio of the stretch-shortening length to the total
length of the elastic leg.

The active stiffness is derived as follows by substituting Eq.

(21) into Eq. (19):

Ka ¼ 2k0
1c

jl10j2
�l20L

2
c þ Lcl0 l20 þ r2b � r2a

� �þ l20raðra � rbÞ � rarbðra � rbÞ2
h i

ð22Þ
2.3. Passive stiffness of RAPRPM

The passive stiffness resulting from the elastic leg A1B1 is
derived by substituting Eqs. (10) and (12) into Eq. (8) as
follows:

K1pq ¼ k01 rT1El1n
� �2 ð23Þ

The passive stiffness at the initial position is derived from
Eq. (23) as follows:

K1p ¼ k01½ðl0 � LcÞra þ rbLc�2
jl10j2

ð24Þ

Similarly, the passive stiffness resulting from the elastic leg

A2B2 is derived as follows by substituting Eqs. (13) and (14)
into Eq. (8):

K2pq ¼ k02 rT2El2n
� �2 ð25Þ

It can be derived from Eqs. (23) and (25) that the passive
stiffness K1p resulting from the elastic leg A1B1 is equal to

the passive stiffness K2p resulting from the elastic leg A2B2 at
the initial position. That is, K1p = K2p.

The total passive stiffness Kp of the mechanisms at the ini-

tial position is the sum of the two passive stiffness K1p and K2p.
That is, Kp = 2K1p. According to Eqs. (9) and (24), the total
passive stiffness is given as

Kp ¼ 2k01½ðl0 � LcÞra þ rbLc�2
jl10j2

ð26Þ
2.4. Total stiffness of RAPRPM

The total stiffness K at the initial position is the sum of the
total active stiffness Ka and the total passive stiffness Kp, which
can be derived from Eqs. (5), (19), and Eq. (26) as:

K ¼ 2f10

jl10j3
�l20L

2
c þ Lcl0 l20 þ r2b � r2a

� �þ l20raðra � rbÞ � rarbðra � rbÞ2
h i

þ 2k0
1½ðl0 � LcÞra þ rbLc�2

jl10j2
ð27Þ

In the case of Eq. (20), the amount of active stiffness vari-
ation with the internal force is maximum. The ratio of active to

passive stiffness at the initial position is derived from Eqs. (22)
and (26) as:

Ka

Kp

¼ c l40 þ r4a þ 6r2ar
2
b þ r4b þ 2l20r

2
b þ 2l20r

2
a � 4l20rarb � 4r3arb � 4rar

3
b

� �
l0ðra þ rbÞ þ ðrbþraÞðra�rbÞ2

l0

h i2
ð28Þ
actuated planar rotational parallel mechanisms, Chin J Aeronaut (2016), http://
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Fig. 3 Experimental setup of the RAPRPM.
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It is derived from Eq. (28) that Ka/Kp increases as the center
distance ra of the upper revolute joints or the center distance rb
of the lower revolute joints decreases, i.e., as the center dis-

tance of the upper revolute joints or the center distance of
the lower revolute joints declines, the proportion of the active
stiffness in the total stiffness rises.

2.5. Stiffness optimization

A robotic fish can be constructed by RAPRPMs connecting

each other in series. The capacity of the fish to modulate stiff-
ness can be replicated by changing the stiffness of the
RAPRPM,6 so the stiffness of the robotic fish can be optimized

by optimizing the stiffness and geometrical parameters of the
RAPRPM. Under the conditions of ensuring the profile and
the robustness of the body stiffness of the fish during a motion,
by optimizing the geometrical parameters of the RAPRPM,

the stiffness variation with the internal force was maximized
to change its natural frequency to match the driving frequency
in a large range.7–9 In the stiffness optimization of the

RAPRPM, the design variables were the center distances ra
and rb. Because the profile and the cross section of the fish
body determined the maximum center distances ramax and

rbmax, the first constraining condition was that the center dis-
tance ra was less than ramax, and rb was less than rbmax. The sec-
ond constraining condition was set as Eq. (20) to maximize the
amount of active stiffness variation. The fish was required to

swing from q= 0 to q = 0.1 rad during the swimming motion,
so the third constraining condition was set so that DKa/Ka0 was
less than the index l to ensure the robustness of stiffness as the

platform rotated from q= 0 to q= 0.1 rad. Maximizing Ka/
Kp was set as the optimal objective to maximize the proportion
of the active stiffness in the total stiffness. Therefore, by opti-

mizing the geometrical parameters ra and rb, the stiffness vari-
ation of the fish body with the internal force was maximized. ra
and rb can be obtained by solving the following optimization

problem:

Maximizing hKa=Kpi Subject to

ra 6 ramax

rb 6 rbmax

Lc ¼ ðrb � raÞðrb þ raÞ=ð2l0Þ þ l0=2

DKa=Ka0 6 l

8>>><
>>>:

ð29Þ
The constrained optimization problem of Eq. (29) was

solved by using the function ‘‘fmincon” in MATLAB. For

example, the stiffness of the elastic legs was k01 = 4.1 N/mm,

the total height from the fixed platform to the top platform

was l0 = 288 mm, the maximum center distance ramax = 100 -
mm, rbmax = 130 mm, and the index l = 0.1. The results of
optimization were ra = 22 mm and rb = 130 mm. While the
index l = 0.2, the results of optimization were ra = 30 mm

and rb = 64 mm.

3. Experimental verification

The schematic of the experimental setup of the RAPRPM is
shown in Fig. 3. The top platform was supported by the middle
rigid leg and the elastic legs on both sides. The elastic legs con-

nected to the rotating pairs of the upper revolute joints and the
lower revolute joints. The top platform rotated around the pin
with a single degree-of-freedom, and the pin was also the rotat-
Please cite this article in press as: Li K et al. Variable stiffness design of redundantly
dx.doi.org/10.1016/j.cja.2016.07.001
ing center of the top platform. The elastic legs on both sides
consisted of the upper piston, the lower cylinder, and the mid-
dle spring. To modulate the active stiffness of the mechanism,

the internal forces caused by the elastic legs could be modu-
lated by moving the ring along the screw to change the length
of spring stretch-shortening. The pin could be installed on dif-

ferent holes of the middle rigid leg to modulate the rotating
center of the top platform. The bases on both ends of the elas-
tic legs could be installed on different holes of the top platform

and the fixed platform to modulate the center distances of the
upper revolute joints and the lower revolute joints. The load
torque was provided by the rotation of the top platform
through applying a weight. The schematic of the signal collec-

tion system of the experimental setup is shown in Fig. 4, in
which the rotating angle was converted from the measurements
of the displacement sensors on both sides above the top plat-

form. The internal forces of the elastic legs were measured
by force sensors connected to the elastic legs on both sides.
The experimental torsional stiffness was obtained by the ratio

of the load torque to the measured rotating angle. In addition,
a SimMechanics simulation model of an RAPRPM corre-
sponding to the experimental setup is shown in Fig. 5, which

consists of the top platform, elastic leg 1, elastic leg 2, and
the middle rigid leg. The torque was applied to the top plat-
form to produce a rotating angle. Torsional stiffness in the
simulation was the ratio of the torque to the rotating angle.

The theoretical calculation was also verified by the Matlab
SimMechanics simulation.

When the center distance of the upper revolute joints was

ra = 50 mm and the center distance of the lower revolute joints
was rb = 50 mm, ra = rb. The stiffness of the elastic legs was
k01 = 4.1 N/mm, and the total height from the fixed platform

to the top platform was l0 = 288 mm. The distance between
the rotating center O and the top platform was Lc = 0 mm

or Lc = 288 mm. By theoretical calculation, simulation, and
experiment, the total stiffness K of Lc = 0 mm and Lc = 288 -
mm at the initial position changing with the internal force of

the elastic leg f10 are shown in Fig. 6(a) and (b), respectively,
and the result of simulation was very close to the theoretical
result. In addition, the error between the experimental and the-
actuated planar rotational parallel mechanisms, Chin J Aeronaut (2016), http://
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Fig. 4 Schematic of the signal collection system of the experi-

mental setup.

Fig. 5 SimMechanics
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oretical results was less than 10%, and because of the friction
of the experimental setup, the total stiffness obtained by exper-
iment was higher than that obtained by theory. It shows that

the total stiffness changed little with the internal force, i.e.,
the internal force could not tune the total torsional stiffness
when the center distance of the upper revolute joints was equal

to the center distance of the lower revolute joints when the
rotating center was on the top platform or on the fixed
platform.

In the experiment, with reference to Eq. (5), the active stiff-
ness Ka caused by a non-zero internal force was obtained by
the total stiffness K when the internal force was non-zero, sub-
tracting the total stiffness K when the internal force was zero

which was also the passive stiffness Kp, i.e., Ka = K � Kp.
The stiffness of the elastic legs was k01 = 4.1 N/mm, the inter-

nal force was f10 = 60 N, and the total height from the fixed
platform to the top platform was l0 = 288 mm. The center dis-
tance of the upper revolute joints was ra = 50 mm, and the

center distance of the lower revolute joints was rb = 50 mm.
By theoretical calculation, simulation, and experiment, Lc is
the distance between the rotating center and the top platform.

The active stiffness Ka at the initial position changing with Lc

is shown in Fig. 7. The curve tendencies of the active stiffness
for theory, simulation, and experiment are similar to each

other. It shows that in the case of Eq. (20), that is, Lc = 144 -
mm, the amount of active stiffness reaches the maximum.

Ka/Kp is the ratio of the active stiffness Ka to the passive
stiffness Kp at the initial position. When the stiffness of the
simulation model.

actuated planar rotational parallel mechanisms, Chin J Aeronaut (2016), http://
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elastic leg was k01 = 4.1 N/mm, the internal force was

f10 = 60 N, and Lc met the requirement of Eq. (20) to maxi-
mize the amount of active stiffness variation, by theoretical
calculation, simulation, and experiment, Ka/Kp changed with

different center distances ra of the upper revolute joints and
center distances rb of the lower revolute joints, as shown in
Fig. 8(a) and (b), respectively. The curve tendencies of Ka/Kp

changing with respect to ra or rb by theory, simulation, and

experiment are similar to each other. They show that Ka/Kp

increased with the decrease of ra or rb, i.e., as the center dis-
tance of the upper revolute joints or the center distance of

the lower revolute joints declined, the proportion of the active
stiffness in the total stiffness rose.
Please cite this article in press as: Li K et al. Variable stiffness design of redundantly actuated planar rotational parallel mechanisms, Chin J Aeronaut (2016), http://
dx.doi.org/10.1016/j.cja.2016.07.001
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DKa is the difference between the maximum active stiffness
Kamax and the minimum active stiffness Kamin as the platform
rotated from q = 0 to q= 0.1 rad. Ka0 is the active stiffness at

the initial position. The ratio DKa/Ka0 is the maximum change
of the active stiffness Ka during the rotation of the platform.
When the stiffness of the elastic legs was k01 = 4.1 N/mm, the

internal force was f10 = 60 N, and Lc met the requirement of
Eq. (20) to maximize the amount of active stiffness variation,

by theoretical calculation and experiment, for different center
distances ra of the upper revolute joints and center distances
rb of the lower revolute joints, the ratio DKa/Ka0 changing with

ra and rb is shown in Fig. 9(a) and (b), respectively. The curve
tendencies of DKa/Ka0 changing with ra and rb for the experi-
ment are similar to the theoretical results. It shows that DKa/

Ka0 decreased with the increase of ra or rb, i.e., as the center
distance of the upper revolute joints or the center distance of
the lower revolute joints increased, the maximum change of
the active stiffness Ka during the rotation of the platform

decreased.

4. Conclusions

(1) A novel design for stiffness variation was proposed to
maximize the change of stiffness with the internal force
and to minimize the dynamic change of stiffness with

the dynamic location of the mechanism by optimizing
the geometrical parameters of the mechanism. In addi-
tion, the relationships between the stiffness and the geo-
metrical parameters were established.

(2) Internal force cannot tune the total torsional stiffness
when the center distance of the upper revolute joints is
equal to the center distance of the lower revolute joints,

when the rotating center is on the top platform or on the
fixed platform. The necessary condition of internal force
tuning the stiffness is to avoid the situation.

(3) The positions of the rotating center maximizing the
amount of stiffness variation with the internal force were
obtained. The proportion of active stiffness in total stiff-
ness rises as the center distance of the upper revolute

joints or the center distance of the lower revolute joints
declines. The maximum change of active stiffness during
the rotation of the platform decreases as the center dis-

tance of the upper revolute joints or the center distance
of the lower revolute joints increases. That is, the geo-
metrical parameters maximize the change of stiffness

with the internal force and minimize the dynamic change
of total stiffness with the dynamic location of the
mechanism.
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