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Let K be a number field with ring of integers O K . Suppose a finite
group G acts numerically tamely on a regular scheme X over O K .
One can then define a de Rham invariant class in the class group
Cl(O K [G]), which is a refined Euler characteristic of the de Rham
complex of X . Our results concern the classification of numerically
tame actions and the de Rham invariant classes. We first describe
how all Galois étale G-covers of a K -variety may be built up from
finite Galois extensions of K and from geometric covers. When X
is a curve of positive genus, we show that a given étale action of G
on X extends to a numerically tame action on a regular model
if and only if this is possible on the minimal model. Finally, we
characterize the classes in Cl(O K [G]) which are realizable as the
de Rham invariants for minimal models of elliptic curves when G
has prime order.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Suppose K is a number field with ring of integers O K , and G is a finite group. Much work has
been done by number theorists to try to understand the possible extensions L of K which are tamely
ramified with Galois group G , both in terms of their structure and in terms of the possible Galois
module structures of the ring of integers OL when viewed as an element of the class group Cl(O K G).
The situation becomes even more complicated when one tries to formulate geometric analogues of
these results, where it is not even clear what one should mean by a tame action.

The concept of numerical tameness is one attempt to generalize the theory of tame ramification
of rings of integers to the setting of coverings of schemes, and was first introduced by Chinburg and
Erez in [CE92]. In particular, let X be a connected regular scheme which is proper, flat, and of finite
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type over O K . An action of G on X over O K is defined to be numerically tame if the inertia subgroup
in G of each point x ∈ X is of order relatively prime to the residue characteristic of x. It was in this
setting that Chinburg, Erez, Pappas, and Taylor originally defined de Rham invariants χ(X , G) (see
Section 4.1 for details) which they decompose into the sum of a root number class and a ramification
class [CEPT97]. In recent years numerical tameness has proven to be a useful setting in which to
work for a variety of applications such as computing ε-constants [Gla04] and constructing a singular
homology theory for arithmetic schemes [Sch07].

Given a numerically tame action of a group G on X , we may define G-equivariant Euler charac-
teristics for coherent sheaves of X in the locally free class group Cl(O K [G]) (see [Chi94,CE92] for
details). The main goals of this paper are to classify numerically tame actions of G and to compute
the G-equivariant Euler characteristic of the de Rham complex on X under various hypotheses on G
and on X . As one application, we prove a result concerning which classes in the locally free class
group Cl(O K [G]) are equal to the de Rham invariant studied in [CEPT97] for a numerically tame G
action on the minimal model of an elliptic curve. We also consider geometric counterparts of realiz-
ability results concerning the relative structure of the stable isomorphism class of the ring of integers
in a tamely ramified Galois extension of a number field.

We will call X a regular model for its generic fiber X . It is well known that if the action of G
on X is numerically tame, then the quotient morphism on the generic fiber X → Y = X/G is étale.
Thus a first step towards classifying X with a numerically tame action of G is to classify the way
finite groups occur as Galois groups of étale coverings of K -varieties Y . We do this when Y is a
smooth projective variety over an arbitrary field K for which Y has a point defined over K . Our
main result in Section 2, Theorem 2.7, describes how all étale covers of such Y may be built up
from Galois extensions of K and geometric étale coverings of Y . To illustrate this result, Corollary 2.10
gives a classification of Galois étale coverings of Abelian varieties with Galois group isomorphic to the
quaternion group H8 of order 8. This classification groups such covers into four families according to
the interaction between the “arithmetic” and “geometric” Galois groups. This was in part motivated by
Fröhlich’s classification of Galois extensions of the rational numbers Q with Galois group isomorphic
to H8 [Frö72].

In Section 3, we assume that K is a number field and that X is a smooth projective K -variety
with an étale action of a finite group G . The next step in our classification problem is to categorize
the regular models X of X having a numerically tame action of G which induces the given action
of G on X . The existence of a regular model is not known in general. We now specialize to the
case in which X is a curve of positive genus. Among all extensions of X to a regular scheme over
O K there exists a “best” one, the minimal model X min of X . Proposition 3.3 shows that an action
of G on X extends to X min, and Theorem 3.5 shows that the existence of a regular model of X with
a numerically tame action depends only on the action on this minimal model. When X min is the
minimal model of an elliptic curve X , Theorem 3.7 describes which groups of torsion points of X
give rise to a numerically tame action. In particular, we show that it is necessary to have good or
multiplicative reduction at the places of O K whose residue characteristic divides the order of G .

The last section of this paper concerns the Galois module structure of the de Rham invariant
χ(X , G) for a numerically tame action of G on X , which is the projective G-equivariant Euler char-
acteristic of differential sheaves on X in the locally free class group Cl(O K [G]). It has been studied
in [CEPT97] as a generalization of the stable isomorphism class of the ring of integers OL in a tamely
ramified G-extension L of K . In Section 4, we specialize to the case when the minimal model X min of
an elliptic curve X has at most multiplicative reduction. In this case, we show that χ(X min, G) is the
sum of the Euler characteristics of the structure sheaves on the normalizations of the special fibers
at the places of bad reduction. To prove this, we use the Lefschetz–Riemann–Roch theorem proven by
Baum et al. [BFQ79] to compute the values of the Brauer traces at each p-regular element, where p
is the residue characteristic of a place of bad reduction.

Suppose finally that G has prime order �. We give in this case an explicit formula for χ(X min, G)

which can be viewed as a geometric counterpart of a realizability result of McCulloh [McC87] con-
cerning the stable isomorphism class of the ring of integers in a tamely ramified G-extension of K .

We end the introduction by discussing some further problems. The general goal is to describe
the subset REll(O K [G]) of the de Rham invariants in Cl(O K [G]). In order to do this one would like
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to use Riemann-Roch type theorems to show REll(O K [G]) is contained in some explicit subset R0 ⊆
Cl(O K [G]) and then show that each class in R0 actually lies in REll(O K [G]). To do this, one would
construct a desired cover locally over each place of O K , and try to see if it can be a special fiber
of some numerically tame cover of a regular model. Results of Raynaud, Harbater, Saidi and others
use rigid analytic geometry to construct Galois covers of curves over fields and Dedekind rings (see,
for example, [Har94,Ray94,Saï97]). It would be interesting to study how these techniques may be
applied to identify classes in Cl(O K [G]) which are the de Rham invariants of some cover. Remark 3.8
suggests studying regular models of higher dimensional varieties which have numerically tame actions
of finite groups. Abelian varieties and modular varieties are two natural examples to consider, for
which regular models are often known. In view of Nakajima’s work on Galois module structure of
cohomology groups of algebraic varieties over a field (see [Nak84,Nak86]), it would be interesting to
formulate an obstruction for a finite group to occur as a Galois group of numerically tame coverings
of schemes over a ring of integers.

2. Galois G-covers of K -varieties

Let Y be a normal variety over a field K . The main goal of this section is to understand the finite
quotients of the algebraic fundamental group of Y . We will begin by recalling the definition of a
Galois G-cover from [SGA03, Chapters I and V]. In what follows we will assume that a finite group
G acts admissibly on X . This means that there is a quotient morphism f : X → Y = X/G . If f is also
finite, we will say that f is a G-covering. For any scheme Z , we denote by G Z the constant Z -group
scheme G Z = ⊔

g ∈ G Z g where for all g ∈ G , Z g is isomorphic to Z . The group scheme structure of G Z

is induced by the identity maps Z g ×Z Zh → Z gh for g,h ∈ G .

Definition 2.1. A G-covering f : X → Y is Galois if X is a G-torsor over Y , in the sense that X is
faithfully flat over Y and the map (x, g) �→ (x, xg) defines an isomorphism X ×Y GY ∼= X ×Y X .

Remark 2.2. A G-covering is Galois if and only if its inertia groups are trivial [SGA03, V.2.6]. In par-
ticular, Galois G-coverings are étale.

We will make the following hypothesis for the rest of this section.

Hypothesis 2.3. Let K be a field of characteristic p � 0 and let Y be a normal K -variety with a K -point ∞.

Lemma 2.4. Denote a separable closure of K by K s, and denote Y ×K K s by Ȳ . Then under Hypothesis 2.3,
Ȳ is a normal variety over K s.

Proof. Since there is a unique K s-point of Ȳ over ∞, Ȳ must be connected. Because Y is nor-
mal, Ȳ is normal by [Mil80, Chapter I, Proposition 3.17]. For every open subset Spec R ⊂ Y , we
have an injection 0 → R → K (Y ). Since K s is flat over K , we get 0 → R ⊗K K s → K (Y ) ⊗K K s . By
[ZS58, Corollary 2, p. 198], K (Y ) ⊗K K s is an integral domain. Thus Ȳ is irreducible and reduced, so
Ȳ is a variety over K s . �

Let y be the generic point of Ȳ . Define a geometric point ȳ = Spec K s(Ȳ )s , where K s(Ȳ )s is a
separable closure of the function field K s(Ȳ ) of Ȳ . Let Ω be the union of all finite extensions K ′
of K (Y ) which are contained in K s(Ȳ )s such that the normalization of Y in K ′ is étale over Y . Then
Ω contains K s(Ȳ ). Since K is algebraically closed in K (Y ), we have a natural exact sequence

1 → Gal
(
Ω/K s(Ȳ )

) → Gal
(
Ω/K (Y )

) π−→ Gal
(

K s/K
) → 1 (1)
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in which π is the restriction of automorphisms from Ω to K s . By [Mil80, Remark 5.1(b), p. 41] and
[SGA03, IX, 6.1, 6.4], the sequence (1) is naturally identified with the sequence of algebraic fundamen-
tal groups

1 → π1(Ȳ , ȳ) → π1(Y , ȳ) → Gal
(

K s/K
) → 1. (2)

The following lemma is clear from the fact that we may view ∞ as a discrete valuation of K (Y )

which has residue field K .

Lemma 2.5. Let �∞ be a discrete valuation of Ω which extends ∞, and let G �∞ ⊆ Gal(Ω/K (Y )) be the decom-
position group of �∞. Restricting automorphisms from Ω to K s induces an isomorphism t : G �∞ → Gal(K s/K )

whose inverse s : Gal(K s/K ) → G �∞ ⊆ Gal(Ω/K (Y )) is a section of the homomorphism π in the sequence (1).
Thus (1) is split exact.

Given a finite group G , we will now show how to construct all irreducible Galois G-covers of Y
from Galois extensions of K and Galois coverings of Ȳ .

Construction 2.6. Choose a normal subgroup H1 and a subgroup H2 of G which together generate G with the
following properties:

(a) There is a Galois extension L/K of fields with Galois group H2 .
(b) There is a K -variety Y ′ such that Ȳ ′ is an irreducible Galois H1-cover of Ȳ . Thus H1 = Gal(K s(Y ′)/K s(Y )).
(c) The function field L(Y ′) of the irreducible variety Y ′ ×K L is Galois over K (Y ) with Galois group H1 � H2 ,

where H1 acts on L(Y ′) via its action on K s(Y ′).

Define an irreducible Galois G-cover X to be the normalization of Y in L(Y ′)H , where H is the normal
subgroup {(g, g−1) ∈ H1 � H2 | g ∈ H1 ∩ H2} of H1 � H2 .

L(Y ′)
H2

H1�H2

H

K (Y ′)

H1

K (X) = L(Y ′)H

G

K (Y )

The following proposition shows that we obtain all irreducible Galois G-covers in this way.

Theorem 2.7. An irreducible Galois G-cover X of Y is a quotient of an irreducible variety Y ′ ×K L for some
Galois extension L/K of fields and a K -variety Y ′ as in Construction 2.6. The function field K (X) of X is an
intermediate field L(Y ′)H of L(Y ′) over K (Y ) and the corresponding homomorphism ρ : H1 � H2 � G is an
injection on both H1 and H2 .

Proof. By Lemma 2.5, the Galois group Gal(Ω/K (Y )) is the semi-direct product Γ =
Gal(Ω/K s(Ȳ )) � G �∞ , where G �∞ is isomorphic to Gal(K s/K ). The irreducible Galois G-cover X of Y
is the normalization of Y in Ωker(ρ) , for some surjective homomorphism ρ : Γ → G .

Let I (resp. J ) be the kernel of the restriction of ρ to Gal(Ω/K s(Ȳ )) (resp. G �∞). The extension
L = (K s) J is a Galois extension of K with group H2 = G �∞/ J . The group G �∞ acts by conjugation
on I . Let Y ′ be the normalization of Y in ΩΓI , where ΓI = I � G �∞ . The point of Y ′ determined
by �∞ has residue field K . Therefore Ȳ ′ is an irreducible Galois cover of Ȳ with Galois group H1 =
Gal(Ω/K s(Ȳ ))/I .
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The group I � J is the kernel of the restriction of ρ to the normal subgroup Gal(Ω/K s(Ȳ )) � J
of Γ . Hence I � J is normal in Γ , and Ω I� J is the function field L(Y ′) of Y ′ ×K L. Thus L(Y ′) is
Galois over K (Y ) with group Γ/(I � J ) = H1 � H2. Since I � J is in the kernel of ρ , it acts trivially
on the function field K (X) of X . Thus K (X) is a subfield of L(Y ′), and we may view ρ as a surjection
ρ : H1 � H2 � G . Both H1 and H2 inject into G under ρ , so their images correspond to subgroups
which together generate G . Since H is the kernel of ρ , we see that the function field K (X) of X
is L(Y ′)H . �
Remark 2.8. We note the following facts about the relevant function fields:

(i) The function field of X and the function field of Y ′ are isomorphic over L (i.e. L(Y ′) =
L · K (Y ) · K (X) = L(X)).

(ii) Let F be the subfield of L fixed by the subgroup H1 ∩ H2 of H2 = Gal(L/K ). The exten-
sion K (X)/K (Y ) has an intermediate field F (Y ), where F is the field of constants of X (i.e.
F = K s ∩ K (X)).

Corollary 2.9. Suppose that π1(Ȳ , ȳ) has no nontrivial quotient group isomorphic to a normal subgroup of G.
Then every Galois G-cover of Y has the form Y ×K L for some Galois G-extension L/K of fields. In particular, the
condition holds if G is a non-Abelian simple group and if Y is an Abelian variety, or more generally if π1(Ȳ , ȳ)

is solvable.

Proof. The group H1 appearing in Theorem 2.7 must be trivial, so Corollary 2.9 follows from Theo-
rem 2.7. �

Fröhlich [Frö72] and others have considered the problem of classifying and constructing the Galois
field extensions L of a given field K for which Gal(L/K ) is isomorphic to the quaternion group H8 of
order 8. Such L/K will be called quaternion extensions. As an example of Theorem 2.7, we classify
the irreducible Galois H8-covers of a given Abelian variety Y over K . Write H8 = 〈σ ,τ 〉 with relations
τ 4 = 1, σ 2 = τ 2, στσ−1 = τ−1. Denote by C2 the center of H8 so that C2 ∼= Z/2Z. The possible com-
binations of subgroups H1 and H2 as in Theorem 2.7 are pairs (H1, H2) = (1,H8), (C2,H8), (C4,H8),
or (C4, C ′

4), where C4 and C ′
4 are distinct subgroups of H8 of order four.

Example 2.10. Any irreducible Galois H8-cover of a given Abelian variety Y over K comes from one
of the following four cases.

(i) Constant field extension: (H1, H2) = (1,H8).
Given the function field K (Y ) of an Abelian variety Y over K , we extend its constant field K to a
quaternion extension L/K . This gives L · K (Y ) = L(Y ) as the function field of an irreducible Galois
H8-cover X of Y .

(ii) Quadratic twist of a quaternion field: (H1, H2) = (C2,H8).
Since K (Y ′)/K (Y ) is an extension of fields of degree 2 in this case, it is Galois. Let L/K be
a quaternion extension. Then the group Gal(L(Y ′)/K (Y )) is isomorphic to C2 × H8 and there
is a unique Galois H8-extension of K (Y ) in L(Y ′) other than L(Y ). It is the subfield fixed by
the subgroup of C2 × H8 generated by (−1, τ 2). In view of Remark 2.8, the field of constants
of X is a biquadratic subextension of a quaternion extension L/K . The tower of field extensions
K (X)/F (Y )/K (Y ) corresponds to a central extension 1 → Z/2 → H8 → Z/2 × Z/2 → 1.

(iii) Quartic twist of a quaternion field: (H1, H2) = (C4,H8).
Let L/K be a quaternion extension. In this case, K (Y ′) is a degree four field extension of K (Y ).
The group Gal(L(Y ′)/K (Y )) is isomorphic to C4 � H8, where H8 acts on the group C4 by con-
jugation. Let τ be a generator of C4. Let H be the cyclic subgroup of C4 � H8 generated by
(τ , τ−1). Then K (X) = L(Y ′)H is a Galois H8 extension of K (Y ). Note that the fixed field of
C4 ⊆ H8 = Gal(L/K ) is a quadratic extension F/K such that F (Y ′)/F (Y ) is a cyclic Galois exten-
sion of degree four whose Galois group is identified with (C4 � C4)/1 � C4.
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(iv) Quartic twist of a cyclic quartic field: (H1, H2) = (C4, C ′
4).

Let L/K be a cyclic Galois extension of degree four. As in case (iii), K (Y ′) is a degree four field
extension of K (Y ). The group Gal(L(Y ′)/K (Y )) is now isomorphic to C4 � C ′

4, where C ′
4 acts on

the group C4 by conjugation. There is a unique Galois H8-extension of K (Y ) in L(Y ′). It is the
subfield fixed by the subgroup of C4 � C ′

4 generated by (τ 2, τ 2). Note that the fixed field of τ 2 ⊆
C ′

4 = Gal(L/K ) is a quadratic extension F/K such that F (Y ′)/F (Y ) is a cyclic Galois extension of
degree four whose Galois group is identified with (C4 � C2)/1 � C2.

In response to a question of H. Darmon, we will discuss one further example.

Example 2.11. Suppose that p is an odd prime and that G is the Heisenberg group of all upper
triangular unipotent matrices in GL3(Z/p). Denote by Z(G) (∼= Z/p) the center of G . Let C p and C ′

p
be two distinct subgroups of G of order p. Let X → Y be an irreducible Galois G-covering. Suppose
that the function field K (X) of X is not a constant field G-extention of K (Y ), and that K is not
algebraically closed in K (X). Then in view of Theorem 2.7, the possible combinations for H1 � H2
are:

(i) Z(G) × G ,
(ii) (Z(G) × C p) � G ,

(iii) (Z(G) × C p) � (Z(G) × C ′
p), or

(iv) (Z(G) × C p) � C ′
p (∼= G).

Suppose now that Y is an Abelian variety over K . The irreducible H1-covering Ȳ ′ → Ȳ is an
isogeny of Abelian varieties, and its kernel is a subgroup Z/p × Z/n, n = 1 or p of the group of p-
torsion points which is identified with H1. Note that if n=p and Y is an elliptic curve, then Ȳ ′ is
isomorphic to Ȳ and the above isogeny is just multiplication by p map on Ȳ .

The subgroup Z/p × Z/n of p-torsion points on Ȳ ′ is defined over H2-extension L of K . The
action of H2 = Gal(L/K ) on Z/p × Z/n corresponds to the conjugation action of H2 on H1. Since
the subgroup Z/p ⊆ Z/p × Z/n is identified with the center Z(G) of G , it is defined over K . When
n=p, the subgroup Z/n ⊆ Z/p × Z/n is defined over the subfield F of L, where Gal(F/K ) ∼= Z/p (cf.
Remark 2.8). We can choose generators of Z/p = 〈a〉 and Z/n = 〈b〉 so that Gal(F/K ) acts on 〈b〉 as
the translation by the point a [Sil94, Chapter V, Proposition 6.1].

In this example, the irreducible Galois G-cover in case (i) corresponds to a central extension 1 →
Z/p → G → Z/p × Z/p → 1.

3. Numerically tame covers of regular models

Suppose f K : X → Y is an irreducible Galois G-covering of smooth projective varieties over a num-
ber field K . Let X be a connected regular scheme which is proper, flat, and of finite type over the
ring O K of integers of K . We will call X a regular model of X if the generic fiber X ×O K K of X is
isomorphic to X . Recall from the introduction that an action of a finite group G is said to be numeri-
cally tame on X if the order of the inertia group in G of each point x ∈ X is relatively prime to the
residue characteristic of x.

In this section, we address the following question. What are necessary and/or sufficient conditions
for the existence of a numerically tame G-covering f : X → Y over the ring of integers O K which
restricts to f K on the generic fiber?

Remark 3.1. We note that it follows from [CE92, Theorem A.2] that a G-covering X → Y of normal
schemes which is tamely ramified in codimension 1 with respect to some divisor with normal cross-
ings is numerically tame. Moreover, it follows from the definition that numerical tameness is a local
condition and can be detected by an étale base change.
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Proposition 3.2. Let f : X → Y be a numerically tame G-covering over Spec O K . Then f induces an (étale)
Galois G-covering X ×O K K → Y ×O K K on the generic fiber.

Proof. Suppose that there is a point x ∈ X ×O K K with the nontrivial inertia group Ix . Let p be a
prime number which divides the order of Ix . Let v be a place of O K over p and denote by Xv the
special fiber of X over v . Since X → Spec O K is proper, there is a point x′ of Xv lying on the Zariski
closure of x in X . We have an inclusion of local rings O X ,x ⊂ O X ,x′ , so an inclusion of inertia groups
Ix ⊂ Ix′ . Since p divides the order of the group Ix , it divides the order of Ix′ . The fact that the residue
characteristic of x′ is p contradicts our hypothesis that f : X → Y is numerically tame. �

The next two propositions show that if a group acts on a smooth projective curve of genus g > 0
then the action extends to the minimal model of the curve, and further that if the action of the group
on the minimal model is numerically tame then the original action was as well.

Proposition 3.3. Suppose Y is a smooth projective curve over a number field K of positive genus on which a
finite group G acts. This action extends to an action of G on the minimal model Y of Y over R.

We begin by noting that the quotient curve V = Y /G is normal, and hence smooth over K . Let V
be a regular model of V . Then G acts on the normalization Y0 of V in the function field K (Y ), since
K (Y )/K (V ) is a Galois G-extension. We now use Lipman’s desingularization process. Beginning with
n = 0, suppose that Yn is a normal curve over R with generic fiber Y ; we will suppose in addition
that there is an action of G on Yn which extends the action of G on Y . We now define Yn+1 to
be the normalization of the blow-up of Yn at the reduced singular locus of Yn . Since the reduced
singular locus is G-equivariant, we see that G acts on Yn+1. Lipman proves that this process stops,
in the sense that Ym is regular for large enough m (see [Lip69] for details). We have thus obtained a
regular curve Ym over R with these properties:

(a) The generic fiber of Ym is Y .
(b) The action of G on Y extends to an action of G on Ym , and
(c) There is a proper birational G-equivariant morphism Ym → Y0 which is an isomorphism on the

generic fiber Y of Ym .

We now need the following lemma. Recall that an exceptional divisor E on a regular projective
curve Z over R is an irreducible fibral divisor isomorphic to P 1

k′ over k′ = H0(E, O E ) and such that
the self intersection E(2) with respect to k′ is −1. Here k′ = k since k′ is a finite extension of k and k
is algebraically closed.

Lemma 3.4. Suppose Z is a regular flat projective curve over R such that the generic fiber Z of Z is an
(irreducible) smooth curve over K of positive genus. Then no two exceptional curves on Z intersect.

Before proving this lemma, we note that we can use it along with the Castelnuovo criterion to
complete the proof of Proposition 3.3. In particular, elements of G permute the exceptional curves
on Ym , and by Lemma 3.4, none of these exceptional curves intersect. Therefore, blowing down an
exceptional curve sends a different exceptional curve to an exceptional curve on the image of the
blow-down. Thus blowing down all the exceptional curves on Ym at once gives the same result as
blowing them down one at a time. However, because the exceptional curves are permuted by G ,
blowing them all down at once gives a G-equivariant morphism. If we replace Ym by the image of
the blow-down and repeat this process, then by the minimal models theorem, after finitely many
steps, there will be no more exceptional curves and we will have the minimal model Y of Y . We
have thus produced an action of G on Y compatible with the action of G on Y .
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Proof of Lemma 3.4. Suppose E and E ′ are exceptional curves which intersect at the point y. Define
mE and mE ′ to be the multiplicities of E and E ′ in the special fiber F of Z . Let {Fi}i be the set of
other fiber components of F , and let mi be the multiplicity of Fi . As divisors, we then have

F = mE · E + mE ′ · E ′ +
∑

i

mi · Fi .

Without loss of generality, we can suppose mE � mE ′ . Now

0 = E · F

= mE(E · E) + mE ′ (E · E ′) +
∑

i

mi(E · Fi)

= −mE + mE ′ (E · E ′) +
∑

i

mi(E · Fi). (3)

Here E · E ′ � 1 and E · Fi � 0, so we conclude that E · E ′ = 1, mE ′ = mE and E · Fi = 0 for all i.
A similar argument shows that E ′ · Fi = 0 for all i. However, the special fiber of Z is connected by the
Zariski connectedness theorem, so we see that E and E ′ are in fact the only components of the special
fiber. Since E ′ is exceptional, we can blow down E ′ on Z by the Castelnuovo criterion to arrive at a
regular flat projective curve Z ′ over R with the following properties. The unique irreducible divisor
on the special fiber of Z ′ is the image E0 of E , which is isomorphic to E . The multiplicity of E0 is mE .
Let π be a uniformizer in R . Since Z ′ is flat over R , the arithmetic genus of the general fiber Z of Z ′
is equal to

g(Z) = 1 − length
(
χ(O Z ′/π O Z ′ )

)
= 1 − length

(
H0(O Z ′/π O Z ′ )

) + length
(

H1(O Z ′/π O Z ′ )
)

(4)

where length(M) is the length of an Artinian R-module M . Let I = I E0 be the ideal sheaf of E0. The
coherent sheaf O Z ′/π O Z ′ has a filtration in which the successive quotients are isomorphic to I j/I j+1

for j = 0, . . . ,mE − 1. Therefore

length
(
χ(O Z ′/π O Z ′ )

) =
mE −1∑

i=0

length
(
χ

(
I j/I j+1)). (5)

Since the special fiber of Z ′ is equal to mE E0 as a divisor, we find

0 = E0 · E0 = degk

(
I−1|E0

)
. (6)

Thus the restriction I|E0 = I/I2 of I0 to E0 also has degree 0 as a line bundle on E0 = P 1
k , so I/I2

is isomorphic to the trivial line bundle O P 1
k

. Since I j/I j+1 is isomorphic to (I/I2)⊗ j , we conclude

that each of the line bundles I j/I j+1 are isomorphic to O P 1
k

. (We are ignoring all group actions at

this point.) Now (5) and (4) give

g(Z) = 1 − length
(
χ(OZ′/π OZ′ )

)

= 1 −
mE −1∑

j=0

χ(O P 1
k
)

= 1 − mE . (7)
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However, this is impossible since mE � 1 and we assumed g(Z) > 0. The contradiction completes the
proof of Lemma 3.4, and thus of Proposition 3.3. �
Proposition 3.5. Let X be a regular model of X over O K with an action of a finite group G. Then the action
of G on X is numerically tame if and only if its action on X min is.

Proof. Since X is a regular model of X min ×O K K , there is a proper morphism φ : X → X min which
factors as a finite number of G-equivariant blow downs of exceptional curves [Chi86, Theorem 1.2].
Let v be a place of O K . Denote by R the strict henselization of the local ring O K ,v , and by k the
(algebraically closed) residue field of R with characteristic p. Then φ induces a proper morphism
φR : C′ = X ×O K R → C = X min ×O K R . A point c′ on the closed fiber of C′ has the same inertia group
as its image in X , and similarly for points on the closed fiber of C . Hence we may work with φR to
detect numerical tameness.

For any c′ ∈ C′ , Ic′ ⊆ IφR (c′) . Therefore, if p divides the order |Ic′ | of the inertia group of a point
c′ ∈ C′ then p divides |IφR (c′)|. Conversely, suppose that there is a point c ∈ C with an element g ∈ Ic

of order divisible by p. We will show that g ∈ Ic′ for some c′ ∈ φ−1
R (c), which will complete the proof

of Theorem 3.5.
Since g fixes the point c, g acts on φ−1

R (c). If c is a point of codimension 1, then φR is an isomor-
phism over an open neighborhood of c in C . Hence there is a point c′ of codimension 1 in φ−1

R (c)

such that g ∈ Ic′ . Therefore, we may assume that c is a closed point. Then φ−1
R (c) is isomorphic either

to c or to a connected curve over k whose irreducible components are each isomorphic to P1
k . The

dual graph of φ−1
R (c) is a finite tree (a graph without cycles). By the following lemma, there is a

closed point c′ ∈ φ−1
R (c) for which g ∈ Ic′ . �

Lemma 3.6. Let C be a connected curve over an algebraically closed field k whose irreducible components are
each rational. Assume that the dual graph Γ of C is a finite tree. Then for any nontrivial finite group G acting
on C , there is a closed point of C with nontrivial inertia group.

Proof. Consider the action of G on Γ . Let V be the set of vertices of Γ and let E be the set of
edges. Then χ(Γ ) = |V | − |E| = 1, since Γ is a finite tree. If G neither fixes an element of V nor
an element of E , then |G| divides χ(Γ ), contradicting |G| > 1. Hence, there is a vertex or an edge
of Γ fixed by G . A vertex of Γ corresponds to an irreducible component of C which has no fixed
point free action, since it is rational. An edge corresponds to an intersection point of two irreducible
components. Therefore, there is a closed point fixed by a nontrivial element of G , and the inertia
group of this point is nontrivial, since k is algebraically closed. �

The following theorem concerns the case when a subgroup G of torsion points acts on an elliptic
curve X by translations. Suppose that the action of G on X extends to an action on a regular model X .
By Theorem 3.5, to check whether the extended action is numerically tame, we may assume that X
is the minimal model X min.

Theorem 3.7. Let X be an elliptic curve over K and let X be the minimal model of X over O K . Consider the
action of a group G ∼= Z/n × Z/m ⊂ X(K ) of torsion points on X . Then the action of G on X is numerically
tame if and only if for each place v of O K whose residue characteristic p divides the order of G, the following
conditions are satisfied:

(i) The minimal model X has good or multiplicative reduction at v.
(ii) The Zariski closure in X of the p-Sylow subgroup G p of G is smooth over Spec O K .

Under these conditions, gcd(n,m) = 1.
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Proof. Let v be a place of O K over a prime p dividing the order of G . Since the reduction type and
the smoothness of a subscheme does not change under an étale base change to the strict henselization
of the local ring O K ,v , we may assume that the residue field k of v is algebraically closed.

We first show that condition (i) is necessary. Suppose X has additive reduction at v . By [Tat75],
each irreducible component of the special fiber Xv of X over v is isomorphic to P1

k and the dual
graph Γ of the special fiber is a finite tree. By Lemma 3.6, for a nontrivial element g ∈ G p there is a
point of Xv such that g lies in its inertia group, hence also in the inertia group of a point of X . Thus
the action of G on X is not numerically tame.

Suppose that X has good reduction at v . Condition (ii) implies that the induced action of G on the
special fiber Xv is étale. Otherwise, an element of G of order p specializes to the identity element
on Xv . Let x be the generic point of Xv . Then p divides the order of the inertia group of x.

Now suppose that X has multiplicative reduction at v . Condition (ii) now implies then that the
Zariski closure of G p specializes to points on distinct irreducible components, and it acts freely on Xv .
Hence, the induced action of G p on Xv is étale, and the action of G is numerically tame. Otherwise,
an element of G of order p specializes to the identity element on the identity component of Xv . Let
x be the generic point of the identity component. Then p divides the order of the inertia group of x.

In each case, the number of distinct p-torsion points on the special fiber Xv is at most p. Hence
to satisfy condition (ii), it is necessary that p � gcd(n,m), for all p. �
Remark 3.8. For higher dimensional Abelian varieties, it is not known whether regular models exist
in general. However, a certain regular model X for Abelian surfaces with potential good reduction is
constructed in [JM94]. The dual complex Γ of the special fiber of X is a finite tree. Each vertex of Γ

corresponds to P2 and each edge corresponds to P1. Hence, there is no fixed point free action on the
special fiber of X . Therefore, if the residue characteristic of the special fiber divides the order of the
group G of torsion points acting on X , then the action is not numerically tame.

4. G-equivariant Euler characteristics

In the classical case of number field extensions, we denote by R(O K [G]) those stable isomorphism
classes of O K [G]-modules which contain the ring of integers of some tamely ramified extension L/K
with Gal(L/K ) ∼= G . In [McC87], McCulloh gives an idelic description of describes of Cl(O K [G]) which
then allows him to describe R(O K [G]) in terms of the action on Cl(O K [G]) of the Stickelberger ideal
J whenever G is a finite Abelian group. The main goal of this section is to formulate and study an a
geometric counterpart of McCulloh’s results.

In particular, given a regular model X of an elliptic curve defined over O K with a numerically
tame action of a finite group G , Chinburg et al. give in [CEPT97] a definition for the de Rham invari-
ant of an elliptic curve, which will be an element χ(X , G) ∈ CL(O K [G]). We recap this definition in
Section 4.1 and under certain hypotheses we give an explicit decomposition of this element. In Sec-
tion 4.2 we define REll(O K [G]) to be the subset of Cl(O K [G]) consisting of those classes which are
de Rham invariants of elliptic curves with a numerically tame G action. The remainder of the section
shows that when G ∼= Z/�Z for prime � we are able to use the decompositions of χ(X , G) to describe
REll(O K [G]).

4.1. De Rham invariant of an elliptic curve

Let X be a regular model over O K with a numerically tame action of a finite group G , and let F
be a G-equivariant coherent sheaf on X . We follow Chinburg et al. and define the projective Euler
characteristic χ p(F ) of F in the locally free class group Cl(O K [G]) [Chi94,CEPT97].

A coherent (resp. coherent locally free) O X -G-module is a coherent (resp. locally free coher-
ent) sheaf of O X -modules with compatible G action. Denote by G0(G, X ) (resp. K0(G, X )) the
Grothendieck group of coherent (resp. coherent locally free) O X -G-modules. The group K0(G, X )

has a λ-ring structure via [F ][G] = [F ⊗O X G], λi([F ]) = [Λi F ], when F , G are O X -G-modules
which are locally free as O X -modules. Because X is regular, the λi operations can be extended to
G0(G, X ) (see [CPT00] for details).
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Denote by K0(O K [G]) the Grothendieck group of all finitely generated projective O K [G]-modules.
The reduced Grothendieck group K0(O K [G])red is the quotient of K0(O K [G]) by the subgroup gen-
erated by the class of (O K [G]). The ‘forgetful’ homomorphism K0(O K [G]) → C T (O K [G]) induces an
isomorphism between the locally free class group Cl(O K [G]) and K0(O K [G])red [Ser77, Example 16.4,
Theorem 34]. For a numerically tame G action on X , we have a G-cohomologically trivial Euler char-
acteristic morphism χ : G0(G, X ) → K0(O K [G]) defined in [CE92, Theorem 5.2]. We will write χ p(F )

for the image of χ(F ) in Cl(O K [G]).

Definition 4.1. (See [CEPT97].) The de Rham invariant of X with a numerically tame action of G is
the class

χ(X , G) :=
d∑

i=0

(−1)iχ p(
λi(Ω1

X /O K

))

in Cl(O K [G]), where Ω1
X /O K

is the sheaf of relative differential 1-forms on X and d + 1 is the di-
mension of X .

Example 4.2.

(i) Let L/K be a tamely ramified Galois extension of number fields with Galois group G = Gal(L/K ).
Let X be Spec OL . Then χ(X , G) = (OL).

(ii) Let X be a regular model of a curve over some number field K . Then χ(X , G) = χ p(O X ) −
χ p(Ω1

X /O K
).

The remainder of this paper is concerned with computing χ(X , G) = χ p(O X ) − χ p(Ω1
X /O K

) for
suitable choices integral models of elliptic curves. We remark that work of Chinburg et al. [CEPT99]
and Pappas [Pap00] consider the problem of directly computing χ(O X ) when the group G acts
tamely on a suitable model of a curve of any genus.

We will make the following hypothesis for the rest of this section.

Hypothesis 4.3. Let X = X min be the minimal model over O K of an elliptic curve X over K . Denote by T the
finite set of places in O K where X has bad reduction. Assume that X has multiplicative reduction at places in
T and that the action on X of a finite group G is numerically tame.

Let X̃v → Xv be the normalization of the special fiber Xv of X over v ∈ T . The action of G on Xv ,
and hence on X̃v , is numerically tame. Therefore if F is a coherent O Xv − G-module or O X̃v

− G-
module, one has a G-cohomologically trivial Euler characteristic χ(F ) in K0(k(v)[G]).

Let f : X → X /G = Y . Denote by YT the disjoint union of fibers Yv for v ∈ T , and by K Y a
canonical divisor representing the relative dualizing sheaf on Y . In [CEPT97], the class χ(X , G) is
decomposed into a sum of two classes, χ1 = χ p(O X )−χ p(L) and χ2 = χ p(L)−χ p(Ω1

X /O K
), where

L = O X ( f ∗(K Y + YT )). Then the calculation of the second term χ2 is reduced to the calculation of
the projective Euler characteristic of a sheaf supported on special fibers. In the case when X is an
elliptic curve, we will show that the first term χ1 can also be calculated by a sheaf on special fibers.

Definition 4.4. Suppose B → A is a homomorphism of Noetherian rings such that A is a finitely
generated module over the image of B and B is regular. Restriction of operators from A[G] to B[G]
then induces homomorphisms ResB→A : K0(A[G]) → K0(B[G]) and Resstab

B→A : K0(A[G]) → Cl(B[G]).

Proposition 4.5. Assume Hypothesis 4.3. Then

χ(X , G) =
⊕
v∈T

Resstab
O K →k(v) χ(O X̃v

)

in Cl(O K [G]).
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Proof. Let XT be the disjoint union of the special fibers Xv for v ∈ T and let i : XT → X be the closed
imbedding. Let U be the open complement X \ XT . Since O X |U � Ω1

X /O K
|U , there is an F = (Fv)v∈T

in G0(XT , G) such that i∗[F ] = [O X ] − [Ω1
X /O K

] by the localization sequence [Tho87, Theorem 2.7].
By making a flat base change to the strict henselization and tensoring k(v)-modules with an alge-

braic closure k of k(v), we may assume that k(v) and k are equal. For a finitely generated projective
k-module M , denote by BTr(M) the Brauer trace of M , and by BTr(M)(g) its value at g ∈ G . (For the
Brauer traces, see [Ser77, Part III].) We will compare the Brauer traces of χ(O X̃v

) and of χ(Fv). Let
p be the residue characteristic of k. Denote by W the ring of Witt vectors of k and by XW the base
change X ×O K W .

One can use the relative dualising sheaf of XW /W to construct a translation invariant global sec-
tion of Ω1

XW /W . This allows us to conclude that the natural map O XW → Ω1
XW /W is injective and the

cokernel F is supported at singular points (cf. [Blo87]). Since all singular points of Xv are ordinary
double points, the stalk of F at each singular point is k. Let cv be the number of irreducible compo-
nents of Xv . Then, dimk χ(F ) = cv . On the other hand, under Hypothesis 4.3, the normalization X̃v

of Xv is isomorphic to the disjoint union of cv copies of P1
k , and dimk χ(O X̃v

) = cv . Therefore, we
have BTr(χ(Fv ))(1) = BTrh(χ(O X̃v

))(1), for the trivial element 1 ∈ G .
The fact that for any nontrivial p-regular element h ∈ G , the Brauer traces of χ(Fv) and χ(O X̃v

)

evaluated at h are equal follows from the Lefschetz–Riemann–Roch theorem stated as Theorem 8.3.3
of [CEPT97]. This in turn implies that χ(Fv) = χ(O X̃v

) in K0(k(v)[G]), so Proposition 4.5 follows
[Ser77, Corollary 1, p. 149 and Theorem 36, p. 133]. �
4.2. Realizable classes

Suppose that G is of prime order �. Recall that in the classical setting of number field extensions,
McCulloh describes the set of realizable classes R(O K [G]) in terms of the action on Cl(O K [G]) of the
Stickelberger ideal J . We now formulate an elliptic curve counterpart of R(O K [G]).

Definition 4.6. Fix a number field K and a prime number �. Let X vary over all minimal mod-
els of elliptic curves satisfying Hypothesis 4.3 for some isomorphism of G with the group Z/�Z.
Then the de Rham invariant χ(X , G) ranges over a set REll(O K [G]) ⊆ Cl(O K [G]). We call an element
of REll(O K [G]) a realizable class in Cl(O K [G]).

Theorem 4.7. Assume Hypothesis 4.3. Suppose that the group G ∼= Z/�Z is isomorphic to a subgroup of torsion
points acting as translations. Denote by Δv the minimal discriminant of X at a finite place v of O K and denote
by D X/K the minimal discriminant ideal

∏
v P ordv (Δv )

v of X . Denote by S the set of places v ∈ T such that the
action of G on Xv is étale. Then χ(X , G) = ⊕

v∈S Resstab
O K →k(v)

( cv
�

rG) ⊕ ⊕
v /∈S Resstab

O K →k(v)
(cvεG).

Proof. By Proposition 4.5, to compute χ(X , G) we need to compute χ(O X̃v
), for each v ∈ T . As in

the proof of Proposition 4.5, we may assume that the residue field k(v) of v is algebraically closed
and the reduction splits at v . Recall from the proof of Proposition 4.5, that dimk(v) χ(O X̃v

) = cv .
If the action of G on the special fiber Xv is étale, i.e. v ∈ S ⊆ T , then the Euler characteristic

χ(O X̃v
) is a free k(v)[G]-module [Nak84]. In this case, the Zariski closure in X of G considered

now as a subgroup of torsion points of the general fibre of X must specialize to distinct irreducible
components of Xv by Theorem 3.7. Hence, the order � of G divides cv . Therefore,

BTr
(
χ(O X̃v

)
) = cv

�
rG , for v ∈ S, (8)

where rG is the character of the regular representation of G .
Suppose now that the action of G on the special fiber Xv is not étale. Since the G action is

numerically tame, the order � of G is not the characteristic p of k(v), and every 1 �= h ∈ G is p-regular.
The Zariski closure in X of G specializes to the identity component of Xv as the group of �-th roots
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of unity. The action of G stabilizes each irreducible component of Xv and it is the multiplication by
an �th root of unity on the identity component of Xv . The set of singular points of Xv is the set of
fixed points. Each singular point of Xv lies on exactly two irreducible components of Xv and if χ is
the character attached to one of the two components then χ−1 is the one on the other component.

Let χ be the nontrivial character of G giving the action of G on the canonical bundle of the
identity component of Xv . The calculation in [CEPT97, Remark 8.4.4] now gives that

BTr
(
χ(O X̃v

)
)
(h) = cv

(
1

1 − χ(h)
+ 1

1 − χ−1(h)

)
, ∀h ∈ G, h �= 1. (9)

It can be computed directly that the term in the parentheses on the right-hand side of Eq. 9 is
equal to 1. Therefore BTr(χ(O X̃v

))(h) = cv , and we can conclude that

BTr
(
χ(O X̃v

)
) = cvεG (10)

where εG is the identity character of G .
Together, (8) and (10) give the formula:

χ(X , G) =
⊕
v∈S

Resstab
O K →k(v)

(
cv

�
rG

)
⊕

⊕
v /∈S

Resstab
O K →k(v)(cvεG). (11)

The first term on the right-hand side of (11) is the class of an O K G-module given by the fractional

ideal (
∏

v∈S P
cv
�

v ) ⊗O K O K G . �
Corollary 4.8. If K is the field of rational numbers, then REll(Z[G]) is trivial.

Proof. Because K = Q, the ideals Pv are principal and thus the first term on the right-hand side of
Eq. (11) is trivial. Furthermore, we can interpret the second term as a sum of Swan classes, and in
this case we know that they are all trivial because G is a cyclic group [Tay84, Corollary 1.5]. �
Corollary 4.9. If G is trivial, then χ(X , G) = [D X/K ] in Cl(O K ). In particular, REll(O K [G]) = 12 Cl(O K ).

Proof. Denote by W X/K the Weierstrass class of X . Then for any given ideal class c ∈ Cl(O K ), there
is an elliptic curve X/K with W X/K = c [Sil84]. Our corollary now follows from Theorem 4.7 and the
fact that 12W X/K = D X/K in Cl(O K ) (see [Sil86, p. 224] for details). �
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