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We investigate the influence of the isospin asymmetry on the phase structure of quark matter near
the chiral critical point systematically using a generalized version of Ginzburg–Landau approach. The
effect has proven to be so profound that it brings about not only a shift of the critical point but also a
rich variety of phases in its neighborhood. In particular, there shows up a phase with spatially varying
charged pion condensate which we name the “solitonic pion condensate” in addition to the “chiral defect
lattice” where the chiral condensate is partially destructed by periodic placements of two-dimensional
wall-like defects. Our results suggest that there may be an island of solitonic pion condensate in the low
temperature and high density side of QCD phase diagram.

© 2013 The Author. Published by Elsevier B.V. Open access under CC BY license.
1. Introduction

The chiral critical point (CP) in QCD phase diagram is the sub-
ject of extensive theoretical/experimental studies [1]. It was shown
in [2,3] that once the possibility of inhomogeneity is taken into
account, the CP turns into a Lifshitz critical point (LCP) where
a line of the chiral crossover meets two lines of second-order
phase transitions surrounding the phase of an inhomogeneous chi-
ral condensate. The inhomogeneous state can be viewed as an or-
dered phase separation, produced via the compromise between
quark–antiquark attraction and a pair breaking due to imbalanced
population of quarks and antiquarks [4,5]. Such inhomogeneity ap-
pears rather commonly in a wide range of physics; the Abrikosov
lattice [6] and the Fulde–Ferrell–Larkin–Ovchinnikov superconduc-
tors [7] are such examples.

In this Letter, we address the question what is the possible im-
pact of the effect of an isospin asymmetry on the LCP. For bulk sys-
tems such as matter realized in compact stars, the flavor symmetry
breaking is caused mainly by a neutrality constraint that should be
imposed to prevent the diverging energy density. The effect leads
to a rich variety of color superconducting phases at high density
[8]. On the other hand, at large isospin density QCD vacuum devel-
ops a charged pion condensate (PC) as soon as |μI| > mπ with mπ

and μI being the vacuum pion mass and the isospin chemical po-
tential [9]. The PC has a rich physical content including a crossover
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from a Bose–Einstein condensate of pions to a superfluidity of the
Bardeen–Cooper–Schrieffer type, and has been extensively studied
using effective models [10].

We focus here how the neighborhood of CP is to be modified
by inclusion of isospin density. To this aim, we use the generalized
Ginzburg–Landau (GL) approach developed in [2,4] which can give
rather model-independent predictions near the CP. Since we are
interested in the response of the CP and its vicinity against μI �= 0,
our strategy is to take μI as a perturbative field and expand the
GL functional with respect to it. The inclusion of μI further brings
new GL parameters, but they can be evaluated within the quark
loop approximation [2,4] since gluons are insensitive to isospin
charge. What we will find is that the isospin asymmetry dramat-
ically modifies the neighborhood of CP bringing about new multi-
critical points. Accordingly, an inhomogeneous version of charged
pion condensate dominates a major part of phase diagram.

2. Generalized Ginzburg–Landau approach

We consider two-flavor QCD, and assume the existence of
a tricritical point (TCP) in the (μ, T )-phase diagram in the chi-
ral limit at vanishing μI . We take the chiral four vector φ =
(σ ,π) ∼ (〈q̄q〉, 〈q̄iγ5τq〉) as a relevant order parameter of the sys-
tem. A minimal GL description of TCP requires the expansion of
the thermodynamic potential up to sixth order in φ. The result-
ing chiral O(4) invariant potential expanded up to the sixth order
is, with incorporating the derivative terms as well [2,4]: ω[φ(x)] =∑

n=1,2,3 ω2n[φ(x)], where

ω2
[
φ(x)

] = α2
φ(x)2, ω4

[
φ(x)

] = α4 (
φ4 + (∇φ)2),
2 4
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ω6
[
φ(x)

] = α6

6

(
φ6 + 3

[
φ2(∇φ)2 − (φ,∇φ)2]

+ 5(φ,∇φ)2 + 1

2
(�φ)2

)
. (1)

The current quark mass adds to this a term ω1[σ(x)] = −hσ(x)

which explicitly breaks O(4) symmetry down to O(3), and thus
makes the condensate align in the direction φ → (σ ,0). We
use α

−1/2
6 as a unit of an energy dimension. Accordingly we re-

place α6 with 1, and every quantity is to be regarded as a dimen-
sionless. Then via scaling φ → φh1/5, x → xh−1/5 together with
α2 → α2h4/5, α4 → α4h2/5, we can get rid of h in ω apart from
a trivial overall scaling factor h6/5, i.e., ω → ωh6/5. Then we set
h = 1, and retain the original letters φ, x, α2, α4 and ω hereafter,
but we should keep in mind that they should scale as h1/5, h−1/5,
h4/5, h2/5, h6/5 respectively.

We assume that σ(x) is spatially varying in one direction, z [2].
The Euler–Lagrange equation (EL), δω/δφ(z) = 0, becomes

6h = σ (4)(z) − 10
(
σ 2σ ′′ + σ

(
σ ′)2) − 3α4σ

′′

+ 6σ 5 + 6α4σ
3 + 6α2σ ,

(2)

where h is temporarily recovered to remind us that the term
comes from the mass term. We try the ansatz [3]

σ(z) = A sn(kz − b/2, ν)sn(kz + b/2, ν) + B, (3)

where “sn” is the Jacobi elliptic function with ν the elliptic mod-
ulus, and k, b, A, B are real parameters. We call the state the
“chiral defect lattice” (CDL).1 This is a spatially modulating state
having a period �p = 2K (ν)/k. Let us first show that the ansatz ac-
tually provides a one-parameter family of solution to the EL (2)
when suitable conditions for A, B , k and b are met. First, we
note from (3), sn(kz, ν)2 = (σ (z)−B)/A+b2

1+νb2(σ (z)−B)/A with b2 ≡ sn(b/2, ν).
The fact that f (z) = sn(kz, ν) obeys the Jacobi differential equa-
tion ( f ′)2 = k2(1 − f 2)(1 − ν2 f 2) translates into

d0 = (
σ ′)2 + d1σ + d2σ

2 + d3σ
3 + d4σ

4, (4)

where {d0,d1,d2,d3,d4} are functions of A, B , b, k and ν . We here
give the expressions for d3 and d4 only,

d3 = 4d4

(
A

cn(b, ν)dn(b, ν)

ν2sn2(b, ν)
− B

)
, d4 = −k2ν4sn2(b, ν)

A2
. (5)

Differentiating (4) with respect to z and dividing the result by 2σ ′ ,
we obtain

−d1

2
= σ ′′(z) + d2σ(z) + 3d3

2
σ(z)2 + 2d4σ(z)3. (6)

Differentiating this twice we have

0 = σ (4)(z) + 6d4σ
2σ ′′ + 12d4σ

(
σ ′)2 + d2σ

′′

+ 3d3
(
σ ′)2 + 3d3σσ ′′.

(7)

Adding to this, ( f0 + f1σ(z))×(4) and (g0 + g1σ(z)+ g2σ(z)2)×(6)
with f0, f1, g0, g1, g2 being arbitrary constants, we obtain a wider
fourth-order differential equation. Then by tuning f0 = g1 = −3d3,
we can get rid of unnecessary σ ′2 and σσ ′′ terms, and setting
f1 = −10 − 12d4, g2 = −10 − 6d4, g0 = −d2 − 3α4 leads to

1 The ansatz is called the “solitonic chiral condensate” in [3]. As we will see later,
the state can be viewed as periodically placed wall-like defects of chiral condensate,
so we use the term “CDL” here.
γ
({di},α4

) = σ (4)(z) − 10
(
σ 2σ ′′ + σ

(
σ ′)2) − 3α4σ

′′

− 6d4(5 + 4d4)σ
5 − 5d3(5 + 6d4)σ

4

+
∑

n=3,2,1

βn
({di},α4

)
σ n, (8)

where γ and βn (n = 1,2,3) are simple algebraic functions of
d0,d1,d2,d3,d4, and α4. Matching the coefficients of σ 5 and σ 4

with those in (2) leaves two choices; (d3,d4) = (0,−1) or (0,

−1/4). It turns out that the latter cannot satisfy the remaining
constraints so we choose (d3,d4) = (0,−1) which, with (5), con-
strains A and B as

A = kν2sn(b, ν), B = k
cn(b, ν)dn(b, ν)

sn(b, ν)
. (9)

The conditions β3 = 6α2 and β2 = 0 are then automatically sat-
isfied, so we are left with two constraints 6h = γ and 6α2 = β1.
Now that {di} are functions of three variables {k, ν,b}, the two
conditions fix two of them, for instance, {k,b} at a fixed el-
liptic modulus ν . Hence, the ansatz (3) together with (9) gives
a one-parameter solution to (2). To our knowledge, this is the first
demonstration of the fact that (3) constitutes a solution also in the
GL functional approach which could be applied in a wide range of
physics. The parameter ν is to be determined via the minimization
of thermodynamic potential Ω , the spatial average of the energy
density over one period �p = 2K (ν)/k:

Ω(ν;α2,α4) = 1

�p

�p/2∫
−�p/2

dz ω
[
σ(z)

]
. (10)

Let us briefly check the two extreme limits, ν → 1 and ν → 0.
First when ν → 1,

σ(z) → σsd(z) = k

th(b)

(
1 − th2(b) fdef.(kz,b)

)
, (11)

where the subscript “sd” refers to a “single-defect”, and fdef.(kz,b)

≡ 1−th(kz+b/2)th(kz−b/2). This describes a defect in chiral con-
densate, represented by a soliton–antisoliton pair located at z = 0.
The homogeneous value gets eventually recovered as |z| → ∞:
σsd(±∞) ≡ σL = k/th(b). Since k = σLth(b), we regard σsd(z) as
a function of z parametrized by σL and b. On the other hand, when
ν → 0 the ansatz reduces to, retaining up to the first non-trivial
order in ν ,

σ(z) → σsin(z) = k cot(b) − ν2 k sin(b)

2
cos(2kz). (12)

This is the state where chiral condensate is about to develop a rip-
ple sinusoidal wave on the homogeneous background. We denote
the background chiral condensate as k cot(b) ≡ σS , σsin(z) is now
viewed as a function of z parametrized by σS , k, and vanishing ν .

3. Phase structure at μI = 0

We compute the phase diagram via minimization of (10). The
result is displayed in Fig. 1. The CP is indeed realized as the LCP
where the three phases meet; the CDL phase with σ(z), the chi-
ral symmetry broken (χSB) phase with a homogeneous conden-
sate σL , and the nearly symmetry-restored phase characterized by
a smaller condensate σS . For illustration, also shown by a solid line
is the line of would-be first-order transition. Fig. 2 shows how σ(z)
smoothly interpolates between σL and σS along α4 = −4. Dis-
played in the left panel is the max amplitude maxz[σ(z)] as
a function of α2. Abrupt drop in σ indicated by a solid line shows
the location of would-be first-order transition which would have
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Fig. 1. The GL phase diagram at μI = 0. The CDL is realized in the shaded region. The

dotted line starting from the LCP (αLCP
2 ,αLCP

4 ) ≡ ( 5
4

34/5

22/5 ,− 5
21/533/5 ) stands for the

crossover, while two dot-dashed lines enclosing the CDL denote the second-order
phase transitions.

taken place if we ignored the possibility of inhomogeneity. Two
figures in the right panel show the spatial profiles of σ(z) for two
values of α2 denoted by A and B, whose locations are marked by
a cross and a circle in the left figure. It looks like the periodic
placements of defects near the σL -side, while it is just a tiny rip-
ple sinusoidal wave near the σS -side. For both points, the σS -state
exists as a local minimum, and its magnitude is depicted by a dot-
dashed line. We see σS is roughly the median of σ(z). At point A,
the σL -state also exists as a metastable state. The magnitude of σL
is shown by a dashed line, which roughly corresponds to the max
amplitude of σ(z). The modulation period, �p , is also shown by the
arrow. �p grows towards the σL -side, evolving to infinity realizing
a single defect state σsd(z) just at the onset.

Formation of a single defect. The second-order phase transition
from the χSB phase to the CDL is signaled by the formation
of a single wall-like defect (11), that is, a creation of soliton–
antisoliton pair. Let us briefly describe this critical condition.
When the defect forms in the sea of homogeneous background,
mass per unit area associated with the wall extending in the
transverse (x, y)-plane should vanish. The energy per unit area
is fsd(b;α2,α4) = ∫ ∞
−∞ dz(ω[σsd(z)] − ω[σL]). Note that, for any

(α2,α4), once the homogeneous value σL is numerically fixed, fsd
is a function of b only. In the left panel of Fig. 3, plotted are fsd
for α2 = 3.5, 3.76, 4.0 at α4 = −4. We see that σsd(z) with b �= 0
becomes more favorable once α2 exceeds 3.76(≡ α2c), the crit-
ical value for defect formation onset. Note that the state with
b = 0 is equivalent to the χSB as σsd(z) → σL with b → 0 as seen
from (11). In the right panel of Fig. 3, the spatial profile of σsd(z)
at α2 = α2c is depicted by a light solid line, and that of energy
density ω[σsd(z)] − ω[σL] is drawn by a heavy solid line. Contri-
bution from each ωi is also separately shown. We see that the
gradient terms in particular in ω6, and ω2 are responsible for the
spontaneous generation a defect.

Rippling of the chiral condensate. To derive the critical line sepa-
rating the CDL and σS -phases, we first plug (12) into (10), then
minimize the result over b and perform expansion about ν2. Then
looking at the location where the coefficient of ν4 changes its sign,
we reach the condition for the onset of rippling chiral condensate.

4. Phase structure for μI �= 0

When we take μI into consideration, the GL coefficients {αi}
become functions of μI , to be denoted by {αi(μI)}. In addition,
since μI breaks the isospin SU(2)V symmetry to U(1)I3 which de-
scribes the rotation about the isospin third axis, the potential has
new feedback terms which is invariant under U(1)I3 but not un-
der full SU(2)V. Up to the fourth order in (σ ,π), the most general
form of the feedback potential describing the response to μI is [11]

δωI = β2

2
π2⊥ + β4

4
π4⊥ + β4b

4

(
φ2 − π2⊥

)
π2⊥ + β4c

4
(∇π⊥)2,

where π⊥ = (π1,π2) is the charged pion doublet. When |π⊥| �= 0,
the residual U(1)I3 (or equivalently the electromagnetic U(1)Q) gets
broken spontaneously.

In order to find an expression of the potential up to the sixth
order in {μI, σ ,π,∇} we need to expand α2n , β2 and β4,4b,4c up
to the corresponding orders in μI . Via explicit computations [11],
we have α6(μI) = α6 + O(μ2

I ), α4(μI) = α4 + μ2
I α6 + O(μ4

I ) and
α2(μI) = α2 + O(μ6

I ). β2 and β4,4b,4c have the following general
structure:
Fig. 2. (Left panel): The amplitude maxz[σ(z)] as a function of α2 along the line α4 = −4. (Right panel): The spatial profiles of σ(z) at point A (α2 = 3.77h4/5) and B
(α2 = 6.05h4/5) shown in the left figure by a cross and a circle.
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Fig. 3. (Left): The energy per unit area associated with a single wall-like defect as a function of b. (Right): The spatial profile of σsd(z) and energy density at the onset
α2 = 3.76h4/5.
(
β2(μI)

β{4,4b,4c}(μI)

)
= μ2

I

(
a eμ2

I
0 {b, c,d}

)(
α4
α6

)
+

(
O(μ6

I )

O(μ4
I )

)
.

Straightforward (but tedious) work leads to a = − 1
2 , e = 0, and

{b, c,d} = {−2,−2,− 4
3 }. Plugging all these expressions into the po-

tential ω + δωI ≡ ωt we have

ωt = ω6
[
φ(x)

] − hσ + α2

2
σ 2 +

(
α2

2
− μ2

I α4

4

)
π2⊥

+
(

α4

4
+ μ2

I α6

4

)
σ 4 + α4

2
σ 2π2⊥ +

(
α4

4
− μ2

I α6

12

)
π4⊥

+
(

α4

4
+ μ2

I α6

4

)
(∇σ)2 +

(
α4

4
− μ2

I α6

12

)
(∇π⊥)2. (13)

We see that h favors condensation in the σ -direction, while μI
prefers π⊥ �= 0. Now the potential has parameters {α2,α4,α6,h}
and μ2

I . Repeating the same dimensional and scaling analysis as
before, we get rid of α6 and h, so the remaining parameters are
α2,α4 and μ2

I which scale as h4/5, h2/5 and h2/5.
The remaining task is to find the most favorable state for

a given parameter set of {α2,α4,μ
2
I }. We here consider four vari-

ational states:

(i) The χSB state with σ �= 0, π⊥ = 0.
(ii) The CDL state with π⊥ = 0, σ(z) described in (3). In the same

way as before, with a replacement α4 → α4 +μ2
I we can show

this gives a solution to the EL.
(iii) The homogeneous charged pion condensate (PC) with π⊥ =

(π,0), σ �= 0.
(iv) The solitonic charged pion condensate (SPC) with

σ �= 0, π⊥ = (
π(z),0

)
, π(z) = kν sn(kz, ν).

This indeed gives a solution to the EL.

In Table 1, we summarize these states with associated symme-
tries.2

In Fig. 4 we display the GL phase diagrams computed for
μ2

I = 0.01 (a), 0.1 (b), 0.2 (c), and 0.5 (d). Let us start with the
case μ2

I = 0.01. First, a rough order estimate is useful to have
in mind what is the physical scale of μI . Since h ∼ mq/Λ with
mq ∼ 10 MeV and Λ ∼ 1 GeV being the current quark mass and

2 We also tried two other exotic inhomogeneous states. One is the “skewed chiral
spiral” defined by σ = σ0 + A sin(kz), and π1 = B cos(kz), which is an extension of
the “CDW” introduced in [12], and the other is the “IPC” state taken in [13]. These
were found to be less favorable than the CDL (or SPC) state for any value of μI .
Table 1
State candidates for μI �= 0.

σ π⊥ Internal symmetry Translation

χSB σ �= 0 π⊥ = 0 U(1)B × U(1)Q Unbroken
PC σ �= 0 π �= 0 U(1)B Unbroken
CDL σ(z) π⊥ = 0 U(1)B × U(1)Q Broken
SPC σ �= 0 π(z) U(1)B Broken

the energy scale for chiral symmetry breaking, μ2
I = 0.01 corre-

sponds to μI = 0.1Λ(mq/Λ)1/5 ∼ 40 MeV. We see that the LCP
found in the previous analysis is intact apart from the trivial shift
of its location (αLCP

2 ,αLCP
4 ) → (αLCP

2 ,αLCP
4 − μ2

I ), which is absorbed
in the redefinition of the vertical axis: α4 → α4 + μ2

I . The major
topological change from the case μI = 0 is the appearance of an
island for the SPC replacing a part of the CDL phase which would
have extended off the LCP. In fact, the second-order transition from
the σS -phase to the CDL is taken over by the one to the SPC for
α4 � −6.16 where the instability for developing an infinitesimal si-
nusoidal density wave of the charged pion condensate takes place
earlier than that for rippling the chiral condensate. This is because
μ2

I makes the coefficient of negative gradient term (π ′⊥)2 larger
than that of (σ ′)2 by μ2

I α6/3 as seen in (13). On the other hand,
the SPC and CDL phases are separated by a first-order transition. As
a consequence, there is a bicritical point marked by “BCP” where a
first-order transition meets two second-order transitions.

Let us briefly discuss what can be a possible interpretation of
the physical reason why an inhomogeneous pion condensate oc-
curs at large value of α2 which roughly corresponds to the high
density side of the (μ, T )-phase diagram [11]. The pion conden-
sate for μI > 0 is described by the formation of u and d̄ quark pair
on the matched Fermi surface μI [9]. The effect of μ is to break
the pair making mismatched Fermi surface via producing a net ex-
cess of u quarks to d̄ quarks. When this effect stresses the pair
condensate, it is sometimes possible that the pairing is partially
broken periodically in the real space or the momentum space such
as in the FFLO superconductor in the presence of an external mag-
netic field [7].

When μ2
I increases to 0.1, the situation changes to the one

displayed in Fig. 4(b). The CDL region shrinks and the SPC now
occupies a major part. The transition between the SPC and χSB
phases is first-order, accompanied by an abrupt change in σ . Ac-
cordingly there shows up point “E” at which a second-order tran-
sition comes across two first-order transitions. Another notable
change is the appearance of continent of PC in the deep inside
the χSB phase [11]; the two phases are separated by a second-
order transition. Fig. 4(c) shows the situation for μ2

I = 0.2. The
PC now meets the SPC island, and their competition gives rise
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Fig. 4. The GL phase diagram for μ2
I = 0.01 (a), 0.1 (b), 0.2 (c) and 0.5 (c). The solid lines stand for first-order phase transitions, while (dot-)dashed lines represent

second-order phase transitions.
to a first-order phase boundary between them. As a result there
appears a new Lifshitz point “LP”, which has two branches of first-
order transitions, and a second-order transition between the PC
and χSB phases. The phase diagram for μ2

I = 0.5 is shown in
Fig. 4(d). The CDL region shrinks so much that its existence can
be only confirmed in the inset figure that magnifies the vicinity of
the LCP. The transition between the PC and χSB phases changes to
first-order before coming across the SPC island. As a result, the LP
now has three branches of first-order transitions.

5. Conclusion

We investigated systematically the two-flavor QCD phase di-
agram near the CP using a generalized version of GL approach,
combined with the perturbative expansion in μI . We have clarified
that the effect of isospin imbalance brings about drastic changes
in the phase structure. The most significant one is the stabilization
of the SPC for a wide range of GL parameter space. Our results
suggest that at low temperature, going down in density from high
density side, one may have a second-order phase transition from
the nearly chirally symmetric matter to the SPC, which is signaled
by development of a ripple sinusoidal density wave of a charged
pion condensate. The state eventually evolves to solitonic lattice.

The magnetic property of inhomogeneous pion condensate is
worth to be addressed in the future. The homogeneous PC has an
electric charge, so is also a superconductor. Thus it should exhibit a
Meissner effect by which a weak magnetic field applied to the sys-
tem is expelled from the bulk. In the inhomogeneous SPC phase,
however, there are domainwalls where the pair is effectively bro-
ken so that the magnetic field can penetrate there. This may bring
some phenomenological consequences to compact star physics.

There remain a couple of interesting questions unsolved. First,
it would be interesting to explore the possibility of higher dimen-
sional lattice structures. In particular it may be possible that the
three-dimensional spherical chiral defect is formed in advance of
the two-dimensional wall-like defect studied here. Second, it is in-
teresting to specify the low energy excitations on the SPC/CDL and
clarify their nature. Lastly, it should be worth trying to extend the
current GL analyses to three-flavor case where we have to take
care a possible Kaon condensate driven by the chemical potential
for strangeness. The future study along these directions would be
the first step towards clarifying how these exotic inhomogeneous
states leave unique footprints in the phenomenology of compact
star physics.

Acknowledgements

The author thanks M. Ruggieri for several useful comments. Nu-
merical calculations were carried out on SR16000 at YITP in Kyoto
University.

References

[1] See for an extensive review, K. Fukushima, T. Hatsuda, Rep. Prog. Phys. 74
(2011) 014001.

[2] D. Nickel, Phys. Rev. Lett. 103 (2009) 072301.
[3] D. Nickel, Phys. Rev. D 80 (2009) 074025.
[4] H. Abuki, D. Ishibashi, K. Suzuki, Phys. Rev. D 85 (2012) 074002.
[5] K. Fukushima, Phys. Rev. D 86 (2012) 054002.
[6] A.A. Abrikosov, J. Explt. Theoret. Phys. (USSR) 32 (1957) 1147.
[7] P. Fulde, R.A. Ferrell, Phys. Rev. 135 (1964) A550;

A. Larkin, Y. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47 (1964) 1136;
A. Larkin, Y. Ovchinnikov, Sov. Phys. JETP 20 (1965) 762.

[8] See, for example, K. Iida, T. Matsuura, M. Tachibana, T. Hatsuda, Phys. Rev. Lett.
93 (2004) 132001;
H. Abuki, M. Kitazawa, T. Kunihiro, Phys. Lett. B 615 (2005) 102;
H. Abuki, T. Kunihiro, Nucl. Phys. A 768 (2006) 118.

[9] D.T. Son, M.A. Stephanov, Phys. Rev. Lett. 86 (2001) 592.
[10] L.-y. He, M. Jin, P.-f. Zhuang, Phys. Rev. D 71 (2005) 116001;

L.-y. He, M. Jin, P.-f. Zhuang, Phys. Rev. D 74 (2006) 036005;
A. Barducci, R. Casalbuoni, G. Pettini, L. Ravagli, Phys. Rev. D 69 (2004) 096004;
J.O. Andersen, L. Kyllingstad, J. Phys. G 37 (2010) 015003;
H. Abuki, R. Anglani, R. Gatto, M. Pellicoro, M. Ruggieri, Phys. Rev. D 79 (2009)
034032;

http://refhub.elsevier.com/S0370-2693(13)00940-4/bib46756B757368696D613A323031306271s1
http://refhub.elsevier.com/S0370-2693(13)00940-4/bib46756B757368696D613A323031306271s1
http://refhub.elsevier.com/S0370-2693(13)00940-4/bib4E69636B656C3A323030396B65s1
http://refhub.elsevier.com/S0370-2693(13)00940-4/bib4E69636B656C3A32303039776As1
http://refhub.elsevier.com/S0370-2693(13)00940-4/bib4162756B693A323031317066s1
http://refhub.elsevier.com/S0370-2693(13)00940-4/bib46756B757368696D613A323031326D7As1
http://refhub.elsevier.com/S0370-2693(13)00940-4/bib416272696B6F736F76s1
http://refhub.elsevier.com/S0370-2693(13)00940-4/bib46464C4Fs1
http://refhub.elsevier.com/S0370-2693(13)00940-4/bib46464C4Fs2
http://refhub.elsevier.com/S0370-2693(13)00940-4/bib46464C4Fs3
http://refhub.elsevier.com/S0370-2693(13)00940-4/bib4162756B693A323030347A6Bs1
http://refhub.elsevier.com/S0370-2693(13)00940-4/bib4162756B693A323030347A6Bs1
http://refhub.elsevier.com/S0370-2693(13)00940-4/bib4162756B693A323030347A6Bs2
http://refhub.elsevier.com/S0370-2693(13)00940-4/bib4162756B693A323030347A6Bs3
http://refhub.elsevier.com/S0370-2693(13)00940-4/bib536F6E3A323030307863s1
http://refhub.elsevier.com/S0370-2693(13)00940-4/bib48653A323030356E6Bs1
http://refhub.elsevier.com/S0370-2693(13)00940-4/bib48653A323030356E6Bs2
http://refhub.elsevier.com/S0370-2693(13)00940-4/bib48653A323030356E6Bs3
http://refhub.elsevier.com/S0370-2693(13)00940-4/bib48653A323030356E6Bs4
http://refhub.elsevier.com/S0370-2693(13)00940-4/bib48653A323030356E6Bs5
http://refhub.elsevier.com/S0370-2693(13)00940-4/bib48653A323030356E6Bs5


432 H. Abuki / Physics Letters B 728 (2014) 427–432
for general thermodynamic structures of a relativistic crossover from fermion
Cooper pairs to Bose superfluidity, see Y. Nishida, H. Abuki, Phys. Rev. D 72
(2005) 096004;
H. Abuki, Nucl. Phys. A 791 (2007) 117.

[11] H. Abuki, Phys. Rev. D 87 (2013) 094006;
Y. Iwata, H. Abuki, K. Suzuki, arXiv:1206.2870;
Y. Iwata, H. Abuki, K. Suzuki, AIP Conf. Proc. 1492 (2012) 293.

[12] E. Nakano, T. Tatsumi, Phys. Rev. D 71 (2005) 114006.
[13] N.V. Gubina, K.G. Klimenko, S.G. Kurbanov, V.C. Zhukovsky, Phys. Rev. D 86

(2012) 085011.

http://refhub.elsevier.com/S0370-2693(13)00940-4/bib48653A323030356E6Bs6
http://refhub.elsevier.com/S0370-2693(13)00940-4/bib48653A323030356E6Bs6
http://refhub.elsevier.com/S0370-2693(13)00940-4/bib48653A323030356E6Bs6
http://refhub.elsevier.com/S0370-2693(13)00940-4/bib48653A323030356E6Bs7
http://refhub.elsevier.com/S0370-2693(13)00940-4/bib4162756B693A32303133767761s1
http://refhub.elsevier.com/S0370-2693(13)00940-4/bib4162756B693A32303133767761s2
http://refhub.elsevier.com/S0370-2693(13)00940-4/bib4162756B693A32303133767761s3
http://refhub.elsevier.com/S0370-2693(13)00940-4/bib4E616B616E6F3A323030346364s1
http://refhub.elsevier.com/S0370-2693(13)00940-4/bib477562696E613A323031327770s1
http://refhub.elsevier.com/S0370-2693(13)00940-4/bib477562696E613A323031327770s1

	Ginzburg-Landau phase diagram of QCD near chiral critical point - chiral defect lattice and solitonic pion condensate
	1 Introduction
	2 Generalized Ginzburg-Landau approach
	3 Phase structure at μI=0
	4 Phase structure for μI<>0
	5 Conclusion
	Acknowledgements
	References


